Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Subjects
2.2. Blood Collection and Biochemical Analysis
2.3. Red Blood Cell (RBC) Membrane Fatty Acid Analysis
2.4. Statistical Analysis
3. Results
3.1. Anthropometric Parameters
3.2. Biochemical Parameters
3.3. Adipokine Concentrations
3.4. Fatty Acid Profile of RBCs
3.5. Correlation Analysis
3.6. Stepwise Multiple Regression Analysis for Major Determinations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries Over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [PubMed]
- Haslam, D.W.; James, W.P. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Li, Y.; Shu, T.; Wang, J. Cytokines and Inflammation in Adipogenesis: An Updated Review. Front. Med. 2019, 13, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [PubMed]
- Escoté, X.; Gómez-Zorita, S.; López-Yoldi, M.; Milton-Laskibar, I.; Fernández-Quintela, A.; Martínez, J.A.; Moreno-Aliaga, M.J.; Portillo, M.P. Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. Int. J. Mol. Sci. 2017, 18, 1770. [Google Scholar] [CrossRef] [PubMed]
- Shibata, R.; Ouchi, N.; Ohashi, K.; Murohara, T. The Role of Adipokines in Cardiovascular Disease. J. Cardiol. 2017, 70, 329–334. [Google Scholar] [PubMed]
- Ferreri, C.; Chatgilialoglu, C. Role of Fatty Acid-Based Functional Lipidomics in the Development of Molecular Diagnostic Tools. Expert Rev. Mol. Diagn. 2012, 12, 767–780. [Google Scholar] [CrossRef]
- Jauregibeitia, I.; Portune, K.; Gaztambide, S.; Rica, I.; Tueros, I.; Velasco, O.; Grau, G.; Martín, A.; Castaño, L.; Larocca, A.V.; et al. Molecular Differences Based on Erythrocyte Fatty Acid Profile to Personalize Dietary Strategies between Adults and Children with Obesity. Metabolites 2021, 11, 43. [Google Scholar] [CrossRef]
- Sansone, A.; Tolika, E.; Louka, M.; Sunda, V.; Deplano, S.; Melchiorre, M.; Anagnostopoulos, D.; Chatgilialoglu, C.; Formisano, C.; Di Micco, R.; et al. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and their Relevance for the Interpretation of Lipidomic Profiles. PLoS ONE 2016, 11, e0152378. [Google Scholar] [CrossRef]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef]
- ISO/EIC 17025:2017 Regulation. Available online: https://www.iasonline.org/wp-content/uploads/2021/02/ISO-IEC-17025-2017-IAS.pdf (accessed on 12 December 2023).
- Ghezzo, A.; Visconti, P.; Abruzzo, P.M.; Bolotta, A.; Ferreri, C.; Gobbi, G.; Malisardi, G.; Manfredini, S.; Marini, M.; Nanetti, L.; et al. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features. PLoS ONE 2013, 8, e66418. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Würfel, M.; Blüher, M.; Stumvoll, M.; Ebert, T.; Kovacs, P.; Tönjes, A.; Breitfeld, J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines 2023, 11, 1427. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, S.; Ilić, M.D.; Ilić, S.; Petrović, D.; Djukić, S. The Significance of Adiponectin as a Biomarker in Metabolic Syndrome and/or Coronary Artery Disease. Vojn. Pregl. 2015, 72, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Golubović, M.V.; Dimić, D.; Antić, S.; Radenković, S.; Djindjić, B.; Jovanović, M. Relationship of Adipokine to Insulin Sensitivity and Glycemic Regulation in Obese Women–the Effect of Body Weight Reduction by Caloric Restriction. Vojn. Pregl. 2013, 70, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, Y.; Jin, Y.; Zhang, T.; Chang, X.; Liao, S.; Xu, H.; Liu, X.; Yang, J.; Zhang, J.; et al. Associations between Serum Adipocytokines and Glycemic Tolerance Biomarkers in a Rural Chinese Population. PLoS ONE 2017, 12, e0182273. [Google Scholar] [CrossRef] [PubMed]
- Marusyn, O.V. The Relationship between Obesity, Glycemia and Leptin Level of Type 2 Diabetes Mellitus Patients with Metabolic Syndrome. Wiad. Lek. 2018, 71, 1165–1168. [Google Scholar]
- Bidulescu, A.; Dinh, P.C.; Sarwary, S.; Forsyth, E.; Luetke, M.C.; King, D.B.; Liu, J.; Davis, S.K.; Correa, A. Associations of Leptin and Adiponectin with Incident Type 2 Diabetes and Interactions among African Americans: The Jackson Heart Study. BMC Endocr. Disord. 2020, 20, 31. [Google Scholar] [CrossRef]
- Strowski, M.Z. Impact of FGF21 on Glycemic Control. Horm. Mol. Biol. Clin. Investig. 2017, 30, 20170001. [Google Scholar]
- Gomez-Ambrosi, J.; Gallego-Escuredo, J.M.; Catalan, V.; Rodriguez, A.; Domingo, P.; Moncada, R.; Valentí, V.; Salvador, J.; Giralt, M.; Villarroya, F.; et al. FGF19 and FGF21 Serum Concentrations in Human Obesity and Type 2 Diabetes Behave Differently After Diet- or surgically-Induced Weight Loss. Clin. Nutr. 2017, 36, 861–868. [Google Scholar] [CrossRef]
- Zhang, X.; Yeung, D.C.; Karpisek, M.; Stejskal, D.; Zhou, Z.G.; Liu, F.; Wong, R.L.C.; Chow, W.-S.; Tso, A.W.K.; Lam, K.S.L.; et al. Serum FGF21 Levels are Increased in Obesity and are Independently Associated with the Metabolic Syndrome in Humans. Diabetes 2008, 57, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Carbonetti, M.P.; Almeida-Oliveira, F.; Majerowicz, D. Use of FGF21 Analogs for the Treatment of Metabolic Disorders: A Systematic Review and Meta-analysis. Arch. Endocrinol. Metab. 2023, 68, e220493. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Ishibashi, C.; Ide, S.; Yamamoto, R.; Nishida, M.; Nagatomo, I.; Moriyama, T.; Yamauchi-Takihara, K. Serum FGF21 Levels are Altered by various Factors Including Lifestyle Behaviors in Male Subjects. Sci. Rep. 2021, 11, 22632. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Hsu, B.; Wu, D.; Hou, J.; Chen, M. Serum Fibroblast Growth Factor 21 Levels are Positively Associated with Metabolic Syndrome in Patients with Type 2 Diabetes. Int. J. Endocrinol. 2019, 2019, 5163245. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Nam, H.; Rhie, Y.; Lee, K. Serum FGF21 Levels in Obese Korean Children and Adolescents. J. Obes. Metab. Syndr. 2017, 26, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, E.; Gietka-Czernel, M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm. Metab. Res. 2022, 54, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Liao, B.; Jin, L.; Huang, Z.; Triggle, C.R.; Ding, H.; Zhang, J.; Huang, Y.; Lin, Z.; Xu, A. Exercise Alleviates Obesity-Induced Metabolic Dysfunction Via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Rep. 2019, 26, 2738–2752.e4. [Google Scholar] [CrossRef]
- Flippo, K.H.; Potthoff, M.J. Metabolic Messengers: FGF21. Nat. Metab. 2021, 3, 309–317. [Google Scholar] [CrossRef]
- Lin, Z.; Pan, X.; Wu, F.; Ye, D.; Zhang, Y.; Wang, Y.; Jin, L.; Lian, Q.; Huang, Y.; Ding, H.; et al. Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice. Circulation 2015, 131, 1861–1871. [Google Scholar] [CrossRef]
- Sato, R. Sterol Metabolism and SREBP Activation. Arch. Biochem. Biophys. 2010, 501, 177–181. [Google Scholar] [CrossRef]
- Guan, Y.; Zuo, F.; Zhao, J.; Nian, X.; Shi, L.; Xu, Y.; Huang, J.; Kazumi, T.; Wu, B. Relationships of Adiponectin to Regional Adiposity, Insulin Sensitivity, Serum Lipids, and Inflammatory Markers in Sedentary and Endurance-Trained Japanese Young Women. Front. Endocrinol. 2023, 14, 1097034. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Y.; Luo, Z. Effect of Adiponectin Variant on Lipid Profile and Plasma Adiponectin Levels: A Multicenter Systematic Review and Meta-Analysis. Cardiovasc. Ther. 2022, 2022, 4395266. [Google Scholar] [CrossRef] [PubMed]
- Terazawa-Watanabe, M.; Tsuboi, A.; Fukuo, K.; Kazumi, T. Association of Adiponectin with Serum Preheparin Lipoprotein Lipase Mass in Women Independent of Fat Mass and Distribution, Insulin Resistance, and Inflammation. Metab. Syndr. Relat. Disord. 2014, 12, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Hafiane, A.; Gasbarrino, K.; Daskalopoulou, S.S. The Role of Adiponectin in Cholesterol Efflux and HDL Biogenesis and Metabolism. Metabolism 2019, 100, 153953. [Google Scholar] [CrossRef] [PubMed]
- Chedid, R.; Zoghbi, F.; Halaby, G.; Gannagé-Yared, M.H. Serum Uric Acid in Relation with the Metabolic Syndrome Components and Adiponectin Levels in Lebanese University Students. J. Endocrinol. Investig. 2011, 34, 153. [Google Scholar]
- Simão, A.N.C.; Lozovoy, M.A.B.; Simão, T.N.C.; Morimoto, H.K.; Dichi, I. Adiponectinemia is Associated with Uricemia but Not with Proinflammatory Status in Women with Metabolic Syndrome. J. Nutr. Metab. 2012, 2012, 418094. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kang, S.; Ahn, C.W.; Cha, B.S.; Kim, K.R.; Lee, H.C. Relationships between Serum Uric Acid, Adiponectin and Arterial Stiffness in Postmenopausal Women. Maturitas 2012, 73, 344–348. [Google Scholar] [CrossRef]
- Kralisch, S.; Tönjes, A.; Krause, K.; Richter, J.; Lossner, U.; Kovacs, P.; Ebert, T.; Blüher, M.; Stumvoll, M.; Fasshauer, M. Fibroblast Growth Factor-21 Serum Concentrations are Associated with Metabolic and Hepatic Markers in Humans. J. Endocrinol. 2013, 216, 135–143. [Google Scholar] [CrossRef]
- Karamfilova, V.; Assyov, Y.; Nedeva, I.; Gateva, A.; Ivanova, I.; Cherkezov, N.; Mateva, L.; Kamenov, Z. Fibroblast Growth Factor 21 as a Marker of Prediabetes in Patients with Non-alcoholic Fatty Liver Disease. Turk. J. Gastroenterol. 2022, 33, 233–239. [Google Scholar] [CrossRef]
- He, L.; Deng, L.; Zhang, Q.; Guo, J.; Zhou, J.; Song, W.; Yuan, F. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2017, 2017, 9729107. [Google Scholar] [CrossRef]
- Yan, H.; Xia, M.; Chang, X.; Xu, Q.; Bian, H.; Zeng, M.; Rao, S.; Yao, X.; Tu, Y.; Jia, W.; et al. Circulating Fibroblast Growth Factor 21 Levels are Closely Associated with Hepatic Fat Content: A Cross-Sectional Study. PLoS ONE 2011, 6, e24895. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fang, Q.; Gao, F.; Fan, J.; Zhou, J.; Wang, X.; Zhang, H.; Pan, X.; Bao, Y.; Xiang, K.; et al. Fibroblast Growth Factor 21 Levels are Increased in Nonalcoholic Fatty Liver Disease Patients and are Correlated with Hepatic Triglyceride. J. Hepatol. 2010, 53, 934–940. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, T.; Tan, H.; Xu, Y.; Wang, Y.; Ma, X.; Bao, Y. Insight to the Association Among Fibroblast Growth Factor 21, Non-alcoholic Fatty Liver Disease and Cardiovascular Outcomes: A Population-based Study. Cytokine 2023, 170, 156318. [Google Scholar] [CrossRef] [PubMed]
- Flisiak-Jackiewicz, M.; Bobrus-Chociej, A.; Wasilewska, N.; Tarasow, E.; Wojtkowska, M.; Lebensztejn, D.M. Can Hepatokines be Regarded as Novel Non-Invasive Serum Biomarkers of Intrahepatic Lipid Content in Obese Children? Adv. Med. Sci. 2019, 64, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Lebensztejn, D.M.; Wojtkowska, M.; Skiba, E.; Werpachowska, I.; Tobolczyk, J.; Kaczmarski, M. Serum Concentration of Adiponectin, Leptin and Resistin in Obese Children with Non-Alcoholic Fatty Liver Disease. Adv. Med. Sci. 2009, 54, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Małecki, P.; Mania, A.; Tracz, J.; Łuczak, M.; Mazur-Melewska, K.; Figlerowicz, M. Adipocytokines as Risk Factors for Development of Nonalcoholic Fatty Liver Disease in Children. J. Clin. Exp. Hepatol. 2021, 11, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Mercer, K.E.; Ou, X.; Mansfield, K.; Buchmann, R.; Børsheim, E.; Tas, E. Circulating microRNAs Are Associated With Metabolic Markers in Adolescents With Hepatosteatosis. Front. Endocrinol. 2022, 13, 856973. [Google Scholar] [CrossRef]
- Matsuda, M.; Kawamoto, T.; Tamura, R. Predictive Value of Serum Dihomo-Γ-Linolenic Acid Level and Estimated Δ-5 Desaturase Activity in Patients with Hepatic Steatosis. Obes. Res. Clin. Pract. 2017, 11, 34–43. [Google Scholar] [CrossRef]
- Yashiro, H.; Takagahara, S.; Tamura, Y.O.; Miyahisa, I.; Matsui, J.; Suzuki, H.; Ikeda, S.; Watanabe, M. A Novel Selective Inhibitor of Delta-5 Desaturase Lowers Insulin Resistance and Reduces Body Weight in Diet-Induced Obese C57BL/6J Mice. PLoS ONE 2016, 11, e0166198. [Google Scholar] [CrossRef]
- Mustonen, A.; Nieminen, P. Dihomo-γ-Linolenic Acid (20:3n-6)—Metabolism, Derivatives, and Potential Significance in Chronic Inflammation. Int. J. Mol. Sci. 2023, 24, 2116. [Google Scholar] [CrossRef]
- Fekete, K.; Györei, E.; Lohner, S.; Verduci, E.; Agostoni, C.; Decsi, T. Long-Chain Polyunsaturated Fatty Acid Status in Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. 2015, 16, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Steffen, B.T.; Steffen, L.M.; Tracy, R.; Siscovick, D.; Hanson, N.Q.; Nettleton, J.; Tsai, M.Y. Obesity Modifies the Association between Plasma Phospholipid Polyunsaturated Fatty Acids and Markers of Inflammation: The Multi-Ethnic Study of Atherosclerosis. Int. J. Obes. 2012, 36, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, H.; Gu, Y. Multiple Roles of Dihomo-Γ-Linolenic Acid Against Proliferation Diseases. Lipids Health Dis. 2012, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- La Cava, A. Leptin in Inflammation and Autoimmunity. Cytokine 2017, 98, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Rausch, J.; Gillespie, S.; Orchard, T.; Tan, A.; McDaniel, J.C. Systematic Review of Marine-Derived Omega-3 Fatty Acid Supplementation Effects on Leptin, Adiponectin, and the Leptin-to-Adiponectin Ratio. Nutr. Res. 2021, 85, 135–152. [Google Scholar] [CrossRef]
- Deon, V.; Del Bò, C.; Guaraldi, F.; Gargari, G.; Bosusco, A.; Simonetti, P.; Riso, P.; Guardamagna, O. Serum Lipid Profile and Fatty Acid Composition of Erythrocyte Phospholipids in Children and Adolescents with Primary Hyperlipidemia. Int. J. Food Sci. Nutr. 2017, 68, 339–348. [Google Scholar] [CrossRef]
- Pickens, C.A.; Matsuo, K.H.; Fenton, J.I. Relationship between Body Mass Index, C-Peptide, and Delta-5-Desaturase Enzyme Activity Estimates in Adult Males. PLoS ONE 2016, 11, e0149305. [Google Scholar] [CrossRef]
- Do, H.J.; Chung, H.K.; Moon, J.; Shin, M. Relationship between the Estimates of Desaturase Activities and Cardiometabolic Phenotypes in Koreans. J. Clin. Biochem. Nutr. 2011, 49, 131–135. [Google Scholar]
- Walker, C.G.; West, A.L.; Browning, L.M.; Madden, J.; Gambell, J.M.; Jebb, S.A.; Calder, P.C. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions. Nutrients 2015, 7, 6281–6293. [Google Scholar] [CrossRef]
- Čermák, T.; MuŽáková, V.; Matějka, J.; Skalický, J.; Laštovička, P.; Líbalová, M.; Kanďár, R.; Novotný, V.; Čegan, A. Fatty Acid Profile in Erythrocyte Membranes and Plasma Phospholipids Affects significantly the Extent of Inflammatory Response to Coronary Stent Implantation. Physiol. Res. 2016, 65, 941–951. [Google Scholar] [CrossRef]
Normal-Weight Subjects (n = 37) | Subjects with Obesity (n = 38) | |
---|---|---|
Weight (kg) | 66.9 ± 1.4 | 111.6 ± 5.0 *** |
Height (cm) | 170.4 ± 1.7 | 166.9 ± 1.60 |
BMI (kg/m2) | 22.9 ± 0.2 | 40.8 ± 1.1 *** |
Waist circumference (cm) | 78.7 ± 1.6 | 120.0 ± 2.6 *** |
Normal-Weight Subjects (n = 37) | Subjects with Obesity (n = 38) | |
---|---|---|
Glucose (mg/dL) | 86.9 ± 1.50 | 103.0 ± 3.2 ** |
Insulin (mU/L) | 10.0 ± 1.1 | 20.5 ± 1.9 ** |
HOMA-IR | 2.2 ± 0.2 | 5.6 ± 0.5 ** |
Total cholesterol (mg/dL) | 184.8 ± 6.6 | 193.4 ± 5.3 |
HDL-c (mg/dL) | 61.3 ± 2.6 | 50.5 ± 2.7 ** |
LDL-c (mg/dL) | 107.1 ± 5.3 | 121.9 ± 4.9 * |
Triglycerides (mg/dL) | 80.72 ± 4.9 | 155.5 ± 11.2 ** |
AST/GOT (U/L) | 19.3 ± 0.8 | 21.7 ± 1.3 |
ALT/GPT (U/L) | 19.5 ± 1.7 | 26.3 ± 1.9 * |
AST/ALT | 1.2 ± 0.1 | 0.9 ± 0.04 ** |
Fatty Acid (%) | Normal-Weight Subjects (n = 37) | Subjects with Obesity (n = 38) |
---|---|---|
Palmitic acid (C16:0) | 22.13 ± 0.27 | 22.66 ± 0.19 |
Stearic acid (C18:0) | 17.12 ± 0.23 | 17.11 ± 0.19 |
Total SFAs | 39.25 ± 0.29 | 39.77 ± 0.22 |
Sapienic acid (C16:1, 6c) | 0.38 ± 0.03 | 0.32 ± 0.04 |
Palmitoleic acid (C16:1, 9c) | 0.48 ± 0.03 | 0.45 ± 0.03 |
Oleic acid (C18:1, 9c) | 17.04 ± 0.19 | 16.75 ± 0.22 |
cis-Vaccenic acid (C18:1, 11c) | 1.29 ± 0.05 | 1.24 ± 0.04 |
Total MUFAs | 19.19 ± 0.21 | 18.76 ± 0.23 |
Linoleic acid (C18:2) | 12.82 ± 0.20 | 12.43 ± 0.29 |
Alpha-linolenic acid (C18:3) | 0.22 ± 0.02 | 0.20 ± 0.02 |
Dihomo-γ-linolenic acid (C20:3) | 1.84 ± 0.09 | 2.19 ± 0.07 ** |
Arachidonic acid (C20:4) | 18.03 ± 0.33 | 18.89 ± 0.31 |
Eicosapentaenoic acid (C20:5) | 0.73 ± 0.08 | 0.64 ± 0.06 |
Docosapentaenoic acid (C22:5) | 1.97 ± 0.07 | 1.82 ± 0.05 |
Docosahexaenoic acid (C22:6) | 5.75 ± 0.20 | 5.12 ± 0.22 * |
Total ω-6 | 32.69 ± 0.46 | 33.50 ± 0.40 |
Total ω-3 | 8.67 ± 0.29 | 7.80 ± 0.30 * |
Total PUFA | 41.36 ± 0.42 | 41.30 ± 0.31 |
Trans C18:1 | 0.09 ± 0.01 | 0.10 ± 0.01 |
Trans C20:4 | 0.11 ± 0.02 | 0.08 ± 0.01 |
Total Trans | 0.20 ± 0.02 | 0.18 ± 0.02 |
SFA/MUFA | 2.05 ± 0.02 | 2.13 ± 0.03 * |
ω-6/ω-3 | 3.95 ± 0.16 | 4.56 ± 0.20 * |
∆6D + ELO 20:3/18:2 | 0.15 ± 0.01 | 0.18 ± 0.01 * |
∆5D 20:4/20:3 | 10.47 ± 0.45 | 8.98 ± 0.35 * |
∆9D 16:1/16:0 | 58.88 ± 6.12 | 64.49 ± 6.12 |
∆9D 18:1/18:0 | 1.01 ± 0.02 | 1.03 ± 0.02 |
Adiponectin | NOV/CCN3 | Leptin | FGF21 | ||
---|---|---|---|---|---|
Glucose | ρ | −0.338 ** | 0.146 | 0.453 ** | 0.356 ** |
p | 0.004 | 0.244 | 0.000 | 0.002 | |
Insulin | ρ | −0.392 ** | 0.061 | 0.495 ** | 0.451 ** |
p | 0.001 | 0.615 | 0.000 | 0.000 | |
HOMA-IR | ρ | −0.441 ** | 0.079 | 0.504 ** | 0.503 ** |
p | 0.000 | 0.513 | 0.000 | 0.000 | |
Triglycerides | ρ | −0.434 ** | 0.223 | 0.395 ** | 0.546 ** |
p | 0.000 | 0.066 | 0.001 | 0.000 | |
Cholesterol | ρ | 0.144 | 0.119 | 0.176 | 0.123 |
p | 0.221 | 0.325 | 0.133 | 0.295 | |
HDL-c | ρ | 0.441 ** | −0.062 | −0.179 | −0.389 ** |
p | 0.000 | 0.624 | 0.142 | 0.001 | |
LDL-c | ρ | 0.027 | 0.213 | 0.198 | 0.229 |
p | 0.831 | 0.094 | 0.109 | 0.063 | |
Uric acid | ρ | −0.360 ** | 0.174 | 0.196 | 0.313 ** |
p | 0.002 | 0.150 | 0.095 | 0.007 | |
ALT/AST | ρ | −0.353 ** | 0.012 | 0.027 | 0.265 * |
p | 0.003 | 0.923 | 0.821 | 0.026 |
Adiponectin | Leptin | FGF21 | ||
---|---|---|---|---|
∆6D + ELO | ρ | 0.412 ** | −0.344 * | −0.322 * |
p | 0.004 | 0.024 | 0.042 | |
∆5D | ρ | 0.374 * | −0.197 | −0.263 |
p | 0.011 | 0.301 | 0.121 | |
DGLA | ρ | −0.378 * | 0.068 | 0.337 * |
p | 0.011 | 0.297 | 0.029 | |
DHA | ρ | 0.177 | −0.375 * | −0.131 |
p | 0.364 | 0.011 | 0.531 | |
total ω-3 fatty acids | ρ | 0.122 | −0.393 ** | −0.168 |
p | 0.573 | 0.006 | 0.398 | |
ω-6/ω-3 ratio | ρ | −0.124 | 0.345 * | 0.157 |
p | 0.562 | 0.024 | 0.435 |
Dependent Variable | Independent Variables | β Coefficient | p | Adjusted R2 |
---|---|---|---|---|
HOMA-IR | sex | −0.251 | 0.040 | 0.362 |
adiponectin | −0.273 | 0.017 | ||
leptin | 0.521 | 0.000 | ||
Triglycerides | FGF21 | 0.476 | 0.000 | 0.329 |
adiponectin | −0.277 | 0.007 | ||
HDL-c | FGF21 | −0.272 | 0.017 | 0.207 |
adiponectin | 0.360 | 0.002 | ||
Uric acid | age | 0.267 | 0.012 | 0.236 |
sex | −0.420 | 0.000 | ||
ALT | sex | −0.553 | 0.000 | 0.296 |
Adiponectin | HOMA-IR | −0.320 | 0.005 | 0.352 |
sex | 0.307 | 0.004 | ||
D6D + ELO | 0.315 | 0.005 | ||
Leptin | HOMA-IR | 0.175 | 0.045 | 0.876 |
age | 0.175 | 0.009 | ||
sex | 0.520 | 0.000 | ||
ALT/AST | 0.128 | 0.021 | ||
DHA | −0.175 | 0.000 | ||
FGF21 | triglycerides | 0.329 | 0.003 | 0.339 |
age | 0.330 | 0.003 | ||
HDL-cholesterol | −0.232 | 0.029 | ||
DGLA | triglycerides | 0.312 | 0.015 | 0.187 |
adiponectin | −0.253 | 0.047 | ||
Δ6D + ELO | adiponectin | 0.321 | 0.008 | 0.283 |
leptin | −0.426 | 0.001 | ||
Δ5D | triglycerides | −0.410 | 0.000 | 0.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Léniz, A.; Fernández-Quintela, A.; Arranz, S.; Portune, K.; Tueros, I.; Arana, E.; Castaño, L.; Velasco, O.; Portillo, M.P. Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity. Biomedicines 2023, 11, 3320. https://doi.org/10.3390/biomedicines11123320
Léniz A, Fernández-Quintela A, Arranz S, Portune K, Tueros I, Arana E, Castaño L, Velasco O, Portillo MP. Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity. Biomedicines. 2023; 11(12):3320. https://doi.org/10.3390/biomedicines11123320
Chicago/Turabian StyleLéniz, Asier, Alfredo Fernández-Quintela, Sara Arranz, Kevin Portune, Itziar Tueros, Eunate Arana, Luis Castaño, Olaia Velasco, and María P. Portillo. 2023. "Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity" Biomedicines 11, no. 12: 3320. https://doi.org/10.3390/biomedicines11123320
APA StyleLéniz, A., Fernández-Quintela, A., Arranz, S., Portune, K., Tueros, I., Arana, E., Castaño, L., Velasco, O., & Portillo, M. P. (2023). Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity. Biomedicines, 11(12), 3320. https://doi.org/10.3390/biomedicines11123320