Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Printing of PLCL Scaffolds
2.2. Mechanical Characterization and Analysis of Microarchitecture via High-Resolution X-ray Tomography
2.3. In Vitro Scaffold Degradation
2.4. Identification and Quantification of Degradation Products via Quantitative Proton Nuclear Magnetic Resonance (1H-NMR)
2.5. Cell Culture
2.6. Assessment of Viability and Adipocyte Differentiation
2.7. Cell Seeding Experiment
2.8. CAM Assay
2.9. Animal Models
2.10. Tissue Assessment for Histomorphometry and Immunohistochemistry
2.11. Statistical Analysis
3. Results
3.1. Design of the Scaffolds and Mechanical Characterization
3.2. In Vitro Degradation Profile of PLCL Scaffolds
3.3. In Vitro Cellular Effects of PLCL Scaffold Degradation Products
3.4. Cell Attachment on PLCL Scaffold
3.5. Vascularization of the PLCL Scaffolds in the CAM Assay
3.6. In Vivo Implantation of Lipoaspirate-Seeded Scaffolds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shauly, O.; Gould, D.J.; Ghavami, A. Fat Grafting: Basic Science, Techniques, and Patient Management. Plast. Reconstr. Surg.—Glob. Open 2022, 10, e3987. [Google Scholar] [CrossRef] [PubMed]
- van Zuijlen, P.; Gardien, K.; Jaspers, M.; Bos, E.; Baas, D.; van Trier, A.; Middelkoop, E. Tissue Engineering in Burn Scar Reconstruction. Burn. Trauma 2015, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, B.; Guerrero, D.; Cruz, C.D.L.; Kokai, L. Fat Grafting in Autologous Breast Reconstruction: Applications, Outcomes, Safety, and Complications. Plast. Aesthetic Res. 2023, 10, 12. [Google Scholar] [CrossRef]
- Gir, P.; Brown, S.A.; Oni, G.; Kashefi, N.; Mojallal, A.; Rohrich, R.J. Fat Grafting. Plast. Reconstr. Surg. 2012, 130, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Pu, L.L.Q. Towards More Rationalized Approach to Autologous Fat Grafting. J. Plast. Reconstr. Aesthetic Surg. 2012, 65, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.; Davis, M.; Winocour, S. The Science of Fat Grafting. Semin. Plast. Surg. 2020, 34, 005–010. [Google Scholar] [CrossRef] [PubMed]
- Eto, H.; Kato, H.; Suga, H.; Aoi, N.; Doi, K.; Kuno, S.; Yoshimura, K. The Fate of Adipocytes after Nonvascularized Fat Grafting. Plast. Reconstr. Surg. 2012, 129, 1081–1092. [Google Scholar] [CrossRef]
- Bucky, L.P.; Percec, I. The Science of Autologous Fat Grafting: Views on Current and Future Approaches to Neoadipogenesis. Aesthetic Surg. J. 2008, 28, 313–321. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, S.; Yi, Y.; Gao, J.; Lu, F. Construction of Expanded Prefabricated Adipose Tissue Using an External Volume Expansion Device. Plast. Reconstr. Surg. 2017, 139, 1129–1137. [Google Scholar] [CrossRef]
- Landau, M.J.; Birnbaum, Z.E.; Kurtz, L.G.; Aronowitz, J.A. Review: Proposed Methods to Improve the Survival of Adipose Tissue in Autologous Fat Grafting. Plast. Reconstr. Surg—Global Open 2018, 6, e1870. [Google Scholar] [CrossRef]
- Stosich, M.S.; Mao, J.J. Adipose Tissue Engineering from Human Adult Stem Cells: Clinical Implications in Plastic and Reconstructive Surgery. Plast. Reconstr. Surg. 2007, 119, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Flynn, L.; Woodhouse, K.A. Adipose Tissue Engineering with Cells in Engineered Matrices. Organogenesis 2008, 4, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Kambe, Y.; Ogino, S.; Yamanaka, H.; Morimoto, N.; Yamaoka, T. Adipose Tissue Regeneration in a 3D-Printed Poly(Lactic Acid) Frame-Supported Space in the Inguinal Region of Rats. Bio-Med. Mater. Eng. 2020, 31, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Y.; Zhang, J.; Liu, H.; Wang, J.; Liu, Q.; Zhang, Y. Three-Dimensional Bioprinting Adipose Tissue and Mammary Organoids Feasible for Artificial Breast Structure Regeneration. Mater. Des. 2021, 200, 109467. [Google Scholar] [CrossRef]
- Bonferoni, M.C.; Caramella, C.; Catenacci, L.; Conti, B.; Dorati, R.; Ferrari, F.; Genta, I.; Modena, T.; Perteghella, S.; Rossi, S.; et al. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021, 13, 1341. [Google Scholar] [CrossRef] [PubMed]
- Louis, F.; Piantino, M.; Liu, H.; Kang, D.-H.; Sowa, Y.; Kitano, S.; Matsusaki, M. Bioprinted Vascularized Mature Adipose Tissue with Collagen Microfibers for Soft Tissue Regeneration. Cyborg Bionic Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, Y.; Yang, W.; Li, X.; Tao, K.; He, W.; Yan, J. Biomimetic Peptide Dynamic Hydrogel Inspired by Humanized Defensin Nanonets as the Wound-Healing Gel Coating. Chem. Eng. J. 2023, 470, 144266. [Google Scholar] [CrossRef]
- Janoušková, O. Synthetic Polymer Scaffolds for Soft Tissue Engineering. Physiol. Res. 2018, 67, S335–S348. [Google Scholar] [CrossRef]
- Arefin, A.M.E.; Khatri, N.R.; Kulkarni, N.; Egan, P.F. Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications. Polymers 2021, 13, 1499. [Google Scholar] [CrossRef]
- Damme, L.V.; Briant, E.; Blondeel, P.; Vlierberghe, S.V. Indirect versus Direct 3D Printing of Hydrogel Scaffolds for Adipose Tissue Regeneration Lana Van Damme, Emilie Briant, Phillip Blondeel, Sandra Van Vlierberghe. MRS Adv. 2020, 5, 855–864. [Google Scholar] [CrossRef]
- Wong, V. The Science of Absorbable Poly(L-Lactide-Co-ε-Caprolactone) Threads for Soft Tissue Repositioning of the Face: An Evidence-Based Evaluation of Their Physical Properties and Clinical Application. Clin. Cosmet. Investig. Dermatol. 2021, 14, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, D.S.; Mohammed, M.M.; Ibrahim, M.M.; Bachtiar, E.O.; Erning, K.; Ansari, K.; Everitt, J.I.; Brown, D.; Klitzman, B.; Koshut, W.; et al. Poly(Lactide-co-ε-caprolactone) Scaffold Promotes Equivalent Tissue Integration and Supports Skin Grafts Compared to a Predicate Collagen Scaffold. Wound Repair Regen. 2021, 29, 1035–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ci, H.; Ma, C.; Li, Z.; Jiang, W.; Chen, L.; Wang, Z.; Zhou, M.; Sun, J. Additive Manufactured Macroporous Chambers Facilitate Large Volume Soft Tissue Regeneration from Adipose-Derived Extracellular Matrix. Acta Biomater. 2022, 14, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Yassin, M.A.; Fuoco, T.; Liu, H.; Mohamed-Ahmed, S.; Mustafa, K.; Finne-Wistrand, A. Engineering 3D Degradable, Pliable Scaffolds toward Adipose Tissue Regeneration; Optimized Printability, Simulations and Surface Modification. J. Tissue Eng. 2020, 11, 2041731420954316. [Google Scholar] [CrossRef] [PubMed]
- Faglin, P.; Gradwohl, M.; Depoortere, C.; Germain, N.; Drucbert, A.-S.; Brun, S.; Nahon, C.; Dekiouk, S.; Rech, A.; Azaroual, N.; et al. Rationale for the Design of 3D-Printable Bioresorbable Tissue-Engineering Chambers to Promote the Growth of Adipose Tissue. Sci. Rep. 2020, 10, 11779. [Google Scholar] [CrossRef] [PubMed]
- Cleret, D.; Gradwohl, M.; Dekerle, L.; Drucbert, A.-S.; Idziorek, T.; Pasquier, D.; Blanchemain, N.; Payen, J.; Guerreschi, P.; Marchetti, P. Preclinical Study of Radiation on Fat Flap Regeneration under Tissue-Engineering Chamber: Potential Consequences for Breast Reconstruction. Plastic Reconstr. Surg—Glob. Open 2022, 10, e4720. [Google Scholar] [CrossRef] [PubMed]
- Chhaya, M.P.; Melchels, F.P.W.; Holzapfel, B.M.; Baldwin, J.G.; Hutmacher, D.W. Sustained Regeneration of High-Volume Adipose Tissue for Breast Reconstruction Using Computer Aided Design and Biomanufacturing. Biomaterials 2015, 52, 551–560. [Google Scholar] [CrossRef]
- Krouskop, T.A.; Wheeler, T.M.; Kallel, F.; Garra, B.S.; Hall, T. Elastic Moduli of Breast and Prostate Tissues under Compression. Ultrason. Imaging 1998, 20, 260–274. [Google Scholar] [CrossRef]
- Garkhal, K.; Verma, S.; Jonnalagadda, S.; Kumar, N. Fast Degradable Poly(L-lactide-co-ε-caprolactone) Microspheres for Tissue Engineering: Synthesis, Characterization, and Degradation Behavior. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2755–2764. [Google Scholar] [CrossRef]
- Jain, S.; Yassin, M.A.; Fuoco, T.; Mohamed-Ahmed, S.; Vindenes, H.; Mustafa, K.; Finne-Wistrand, A. Understanding of How the Properties of Medical Grade Lactide Based Copolymer Scaffolds Influence Adipose Tissue Regeneration: Sterilization and a Systematic in Vitro Assessment. Mater. Sci. Eng. C 2021, 124, 112020. [Google Scholar] [CrossRef]
- Young, D.A.; Choi, Y.S.; Engler, A.J.; Christman, K.L. Stimulation of Adipogenesis of Adult Adipose-Derived Stem Cells Using Substrates That Mimic the Stiffness of Adipose Tissue. Biomaterials 2013, 34, 8581–8588. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cai, X.; Wang, J.; Tang, H.; Yuan, Q.; Gong, P.; Lin, Y. Mechanical Stretch Inhibits Adipogenesis and Stimulates Osteogenesis of Adipose Stem Cells. Cell Prolif. 2012, 45, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Awwad, H.K.; Aggar, M.E.; Mocktar, N.; Barsoum, M. Intercapillary Distance Measurement as an Indicator of Hypoxia in Carcinoma of the Cervix Uteri. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1329–1333. [Google Scholar] [CrossRef]
- Wiggenhauser, P.S.; Müller, D.F.; Melchels, F.P.W.; Egaña, J.T.; Storck, K.; Mayer, H.; Leuthner, P.; Skodacek, D.; Hopfner, U.; Machens, H.G.; et al. Engineering of Vascularized Adipose Constructs. Cell Tissue Res. 2012, 347, 747–757. [Google Scholar] [CrossRef]
- Janarthanan, R.; Jayakumar, R.; Iyer, S. Injectable Pectin–Alginate Hydrogels for Improving Vascularization and Adipogenesis of Human Fat Graft. J. Funct. Biomater. 2023, 14, 409. [Google Scholar] [CrossRef] [PubMed]
- Reksodiputro, M.H.; Diandini, D.; Koento, T.; Arisanty, R.; Harahap, A.R. Autologous Microlobular Fat Combined with Platelet-Rich Fibrin Is Associated with Good Fat Graft Viability. J. Phys. Conf. Ser. 2018, 1073, 032060. [Google Scholar] [CrossRef]
- Patrick, C.W.; Zheng, B.; Johnston, C.; Reece, G.P. Long-Term Implantation of Preadipocyte-Seeded PLGA Scaffolds. Tissue Eng. 2002, 8, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chang, Z.; Wang, X.; Li, Q. Synthesis of Poly(l-Lactide-Co-ε-Caprolactone) Copolymer: Structure, Toughness, and Elasticity. Polymers 2021, 13, 1270. [Google Scholar] [CrossRef]
- Chhaya, M.P.; Balmayor, E.R.; Hutmacher, D.W.; Schantz, J.-T. Transformation of Breast Reconstruction via Additive Biomanufacturing. Sci. Rep. 2016, 6, 28030. [Google Scholar] [CrossRef]
- Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P. The in Vivo Degradation, Absorption and Excretion of PCL-Based Implant. Biomaterials 2006, 27, 1735–1740. [Google Scholar] [CrossRef]
- Pober, J.S.; Sessa, W.C. Inflammation and the Blood Microvascular System. Cold Spring Harb. Perspect. Biol. 2015, 7, a016345. [Google Scholar] [CrossRef]
- Weiser, B.; Prantl, L.; Schubert, T.E.O.; Zellner, J.; Fischbach-Teschl, C.; Spruss, T.; Seitz, A.K.; Tessmar, J.; Goepferich, A.; Blunk, T. In Vivo Development and Long-Term Survival of Engineered Adipose Tissue Depend on In Vitro Precultivation Strategy. Tissue Eng. Part A 2008, 14, 275–284. [Google Scholar] [CrossRef]
- Herrero-Herrero, M.; Alberdi-Torres, S.; González-Fernández, M.L.; Vilariño-Feltrer, G.; Rodríguez-Hernández, J.C.; Vallés-Lluch, A.; Villar-Suárez, V. Influence of Chemistry and Fiber Diameter of Electrospun PLA, PCL and Their Blend Membranes, Intended as Cell Supports, on Their Biological Behavior. Polym. Test. 2021, 103, 107364. [Google Scholar] [CrossRef]
- Haq, R.H.A.; Khairilhijra, K.R.; Wahab, M.S.; Sa’ude, N.; Ibrahim, M.; Marwah, O.M.F.; Yusof, M.S.; Rahman, M.N.A.; Ariffin, A.M.T.; Hassan, M.F.; et al. PCL/PLA Polymer Composite Filament Fabrication Using Full Factorial Design (DOE) for Fused Deposition Modelling. J. Phys. Conf. Ser. 2017, 914, 012017. [Google Scholar] [CrossRef]
- Pina, S.; Ferreira, J. Bioresorbable Plates and Screws for Clinical Applications: A Review. J. Healthc. Eng. 2012, 3, 243–260. [Google Scholar] [CrossRef]
Scaffold Characteristics | ||
---|---|---|
Nature | Poly(l-lactide-co-ε-caprolactone) (PLCL) | |
Bioresorbable | Yes | |
3D Printer | Ultimaker S5 FDM (Utrecht, The Netherlands) | |
Dimensions (length × width, cm) | 25 × 10 | |
Nozzle diameter (mm) | 0.2 | |
Thickness (mm) | 5 (in vitro study) | |
Theorical volume (mm3) | 125.000 | |
Density (g/cm3) | <0.1 | |
Porosity (%) | >90% | |
No. of pores/mm2 | 38 | |
Distribution | Heterogeneous | |
In vivo study | scaffold 1 | scaffold 2 |
Diameter (mm) | 8 | 8 |
Thickness (mm) | 2 | 6 |
Theorical volume (mm3) | 100 | 300 |
Molecule | Functional Group | Chemical Shift (ppm) |
---|---|---|
Lactate | CH3 | 1.21 |
PCL+ 6-hydroxyhexanoic acid | CH2 | 1.45–1.53 |
6-hydroxyhexanoic acid | CH2-COOH | 2.07 |
PCL | CH2-COO | 2.29–2.33 |
PCL+ 6-hydroxyhexanoic acid | CH2-OH | 3.5 |
Lactate | CH-OH | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordao, A.; Cléret, D.; Dhayer, M.; Le Rest, M.; Cao, S.; Rech, A.; Azaroual, N.; Drucbert, A.-S.; Maboudou, P.; Dekiouk, S.; et al. Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study. Biomedicines 2023, 11, 3337. https://doi.org/10.3390/biomedicines11123337
Jordao A, Cléret D, Dhayer M, Le Rest M, Cao S, Rech A, Azaroual N, Drucbert A-S, Maboudou P, Dekiouk S, et al. Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study. Biomedicines. 2023; 11(12):3337. https://doi.org/10.3390/biomedicines11123337
Chicago/Turabian StyleJordao, Amélia, Damien Cléret, Mélanie Dhayer, Mégann Le Rest, Shengheng Cao, Alexandre Rech, Nathalie Azaroual, Anne-Sophie Drucbert, Patrice Maboudou, Salim Dekiouk, and et al. 2023. "Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study" Biomedicines 11, no. 12: 3337. https://doi.org/10.3390/biomedicines11123337
APA StyleJordao, A., Cléret, D., Dhayer, M., Le Rest, M., Cao, S., Rech, A., Azaroual, N., Drucbert, A. -S., Maboudou, P., Dekiouk, S., Germain, N., Payen, J., Guerreschi, P., & Marchetti, P. (2023). Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study. Biomedicines, 11(12), 3337. https://doi.org/10.3390/biomedicines11123337