CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes
Abstract
:1. Introduction
- High total nevi count: individuals typically exhibit a high number of nevi, often exceeding 50 in total.
- Specific nevi histologies: nevi in affected individuals may present with specific histological patterns, such as a lentiginous pattern and nuclear atypia.
- Presence of melanoma cases in relatives: a key criterion involves the document melanoma cases in at least one first- or second-degree relative.
- Three or more invasive cutaneous melanomas: individuals with a personal history of three or more invasive cutaneous melanomas should be considered for p16/CDKN2A genetic testing.
- Mixed cancer diagnoses: cases involving a combination of invasive melanoma, pancreatic cancer, and/or astrocytoma diagnoses in an individual or within a family should be referred for genetic testing.
2. Materials and Methods
2.1. Targeted Sequencing
2.2. Whole Genome Sequencing
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 5 November 2023).
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef]
- Hu, J.X.; Zhao, C.F.; Chen, W.B.; Liu, Q.C.; Li, Q.W.; Lin, Y.Y.; Gao, F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J. Gastroenterol. 2021, 27, 4298–4432. [Google Scholar] [CrossRef]
- Mela, A.; Rdzanek, E.; Tysarowski, A.; Sakowicz, M.; Jaroszyński, J.; Furtak-Niczyporuk, M.; Żurek, G.; Poniatowski, Ł.A.; Jagielska, B. The impact of changing the funding model for genetic diagnostics and improved access to personalized medicine in oncology. Expert. Rev. Pharmacoecon Outcomes Res. 2023, 23, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Imyanitov, E.N.; Kuligina, E.S.; Sokolenko, A.P.; Suspitsin, E.N.; Yanus, G.A.; Iyevleva, A.G.; Ivantsov, A.O.; Aleksakhina, S.N. Hereditary cancer syndromes. World J. Clin. Oncol. 2023, 14, 40–68. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.; Keane, F.; Mc Dermott, R. Synchronous Melanoma and Pancreas Malignancies Leading to a Discovery of a CDKN2A Mutation in a Patient with No Known Family History. Case Rep. Oncol. 2021, 14, 333–337. [Google Scholar] [CrossRef]
- Norris, W. A case of fungoid disease. Edinburgh Med. Surg. J. 1820, 16, 562. [Google Scholar]
- Lynch, H.T.; Krush, A.J. Heredity and malignant melanoma: Implications for early cancer detection. Can. Med. Assoc. J. 1968, 99, 17–21. [Google Scholar] [PubMed]
- Raj, R.C.; Patil, R. Familial atypical multiple mole melanoma syndrome in an adult Indian male-case report and literature review. Indian. J. Dermatol. 2015, 60, 217. [Google Scholar] [PubMed]
- Soura, E.; Eliades, P.J.; Shannon, K.; Stratigos, A.J.; Tsao, H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J. Am. Acad. Dermatol. 2016, 74, 395–407; quiz 408–410. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; Fusaro, R.M.; Lynch, J.F.; Brand, R. Pancreatic cancer and the FAMMM syndrome. Fam. Cancer 2008, 7, 103–112. [Google Scholar] [CrossRef]
- Kimura, H.; Klein, A.P.; Hruban, R.H.; Roberts, N.J. The Role of Inherited Pathogenic CDKN2A Variants in Susceptibility to Pancreatic Cancer. Pancreas 2021, 50, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Haluska, F.G.; Tsao, H.; Wu, H.; Haluska, F.S.; Lazar, A.; Goel, V. Genetic alterations in signaling pathways in melanoma. Clin. Cancer Res. 2006, 12, 2301s–2307s. [Google Scholar] [CrossRef] [PubMed]
- McConnell, B.B.; Gregory, F.J.; Stott, F.J.; Hara, E.; Peters, G. Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol. Cell Biol. 1999, 19, 1981–1989. [Google Scholar] [CrossRef]
- Kamb, A.; Shattuck-Eidens, D.; Eeles, R.; Liu, Q.; Gruis, N.A.; Ding, W.; Hussey, C.; Tran, T.; Miki, Y.; Weaver-Feldhaus, J. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat. Genet. 1994, 8, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Laud, K.; Marian, C.; Avril, M.F.; Barrois, M.; Chompret, A.; Goldstein, A.M.; Tucker, M.A.; Clark, P.A.; Peters, G.; Chaudru, V.; et al. Comprehensive analysis of CDKN2A (p16INK4A/p14ARF) and CDKN2B genes in 53 melanoma index cases considered to be at heightened risk of melanoma. J. Med. Genet. 2006, 43, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Deev, R.V.; Bilyalov, A.I.; Zhampeisov, T.M. Modern ideas about cell death. Genes Cells 2018, 13, 6–19. [Google Scholar] [CrossRef]
- Aoude, L.G.; Wadt, K.A.; Pritchard, A.L.; Hayward, N.K. Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res. 2015, 28, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Bahuau, M.; Vidaud, D.; Jenkins, R.B.; Bieche, I.; Kimmel, D.W.; Assouline, B.; Smith, J.S.; Alderete, B.; Cayuela, J.M.; Harpey, J.P.; et al. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res. 1998, 58, 2298–2303. [Google Scholar]
- Randerson-Moor, J.A.; Harland, M.; Williams, S.; Cuthbert-Heavens, D.; Sheridan, E.; Aveyard, J.; Sibley, K.; Whitaker, L.; Knowles, M.; Newton Bishop, J. A germline deletion of p14ARF but not CDKN2A in a melanoma–neural system tumour syndrome family. Human Mol. Genet. 2001, 10, 55–62. [Google Scholar] [CrossRef]
- Ghiorzo, P.; Fornarini, G.; Sciallero, S.; Battistuzzi, L.; Belli, F.; Bernard, L.; Bonelli, L.; Borgonovo, G.; Bruno, W.; De Cian, F.; et al. CDKN2A is the main susceptibility gene in Italian pancreatic cancer families. J. Med. Genet. 2012, 49, 164–170. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, X.; Ye, H.; Wu, N.; Chen, X.; Duan, S. CDKN2A and CDKN2B methylation in coronary heart disease cases and controls. Exp. Ther. Med. 2017, 14, 6093–6098. [Google Scholar] [CrossRef] [PubMed]
- Yeap, I.; Becker, T.; Azimi, F.; Kernohan, M. The management of hereditary melanoma, FAMMM syndrome and germline CDKN2A mutations: A narrative review. Australas. J. Plast. Surg. 2022, 5, 12–22. [Google Scholar] [CrossRef]
- Risk Management for People with Inherited CDKN2A Mutations. Available online: https://www.facingourrisk.org/info/hereditary-cancer-and-genetic-testing/hereditary-cancer-genes-and-risk/genes-by-name/cdkn2a/risk-management (accessed on 10 September 2023).
- Bilyalov, A.; Nikolaev, S.; Shigapova, L.; Khatkov, I.; Danishevich, A.; Zhukova, L.; Smolin, S.; Titova, M.; Lisica, T.; Bodunova, N.; et al. Application of Multigene Panels Testing for Hereditary Cancer Syndromes. Biology 2022, 11, 1461. [Google Scholar] [CrossRef] [PubMed]
- Makarova, M.; Nemtsova, M.; Danishevich, A.; Chernevskiy, D.; Belenikin, M.; Krinitsina, A.; Baranova, E.; Sagaydak, O.; Vorontsova, M.; Khatkov, I.; et al. The CFTR Gene Germline Heterozygous Pathogenic Variants in Russian Patients with Malignant Neoplasms and Healthy Carriers: 11,800 WGS Results. Int. J. Mol. Sci. 2023, 24, 7940. [Google Scholar] [CrossRef] [PubMed]
- CDKN2A[Gene]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/?term=CDKN2A%5Bgene%5D&redir=gene (accessed on 10 September 2023).
- Walker, G.J.; Hussussian, C.J.; Flores, J.F.; Glendening, J.M.; Haluska, F.G.; Dracopoli, N.C.; Hayward, N.K.; Fountain, J.W. Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum. Mol. Genet. 1995, 4, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Harland, M.; Meloni, R.; Gruis, N.; Pinney, E.; Brookes, S.; Spurr, N.K.; Frischauf, A.M.; Bataille, V.; Peters, G.; Cuzick, J.; et al. Germline mutations of the CDKN2 gene in UK melanoma families. Hum. Mol. Genet. 1997, 6, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Levin, T.; Mæhle, L. Uptake of genetic counseling, genetic testing and surveillance in hereditary malignant melanoma 358 (CDKN2A) in Norway. Fam. Cancer 2017, 16, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Pollock, P.M.; Liu, L.; Karimi, S.; Jothy, S.; Milner, B.J.; Renwick, A.; Lassam, N.J.; Hayward, N.K.; Hogg, D.; et al. CDKN2A mutation in a non-FAMMM kindred with cancers at multiple sites results in a functionally abnormal protein. Int. J. Cancer 1997, 73, 531–536. [Google Scholar] [CrossRef]
- Becker, T.M.; Rizos, H.; Kefford, R.F.; Mann, G.J. Functional impairment of melanoma-associated p16(INK4a) mutants in melanoma cells despite retention of cyclin-dependent kinase 4 binding. Clin. Cancer Res. 2001, 7, 3282–3288. [Google Scholar]
- Lum, H.; Aschner, J.L.; Phillips, P.G.; Fletcher, P.W.; Malik, A.B. Time course of thrombin-induced increase in endothelial permeability: Relationship to Ca2+i and inositol polyphosphates. Am. J. Physiol. 1992, 263, L219–L225. [Google Scholar] [CrossRef]
- Newton Bishop, J.A.; Harland, M.; Bennett, D.C.; Bataille, V.; Goldstein, A.M.; Tucker, M.A.; Ponder, B.A.; Cuzick, J.; Selby, P.; Bishop, D.T. Mutation testing in melanoma families: INK4A, CDK4 and INK4D. Br J. Cancer 1999, 80, 295–300. [Google Scholar] [CrossRef]
- Rahmani, F.; Avan, A.; Amerizadeh, F.; Ferns, G.A.; Talebian, S.; Shahidsales, S. The association of a genetic variant in CDKN2A/B gene and the risk of colorectal cancer. EXCLI J. 2020, 19, 1316–1321. [Google Scholar] [PubMed]
- Okawa, Y.; Ebata, N.; Kim, N.K.D.; Fujita, M.; Maejima, K.; Sasagawa, S.; Nakamura, T.; Park, W.Y.; Hirano, S.; Nakagawa, H. Actionability evaluation of biliary tract cancer by genome transcriptome analysis and Asian cancer knowledgebase. Oncotarget 2021, 12, 1540–1552. [Google Scholar] [CrossRef] [PubMed]
- Mondaca, S.; Nervi, B.; Pinto, M.; Abou-Alfa, G.K. Biliary tract cancer prognostic and predictive genomics. Chin. Clin. Oncol. 2019, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Lamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M.; Im, S.A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; et al. Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal 373 Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3. J. Clin. Oncol. 2018, 36, 2465–2472. [Google Scholar]
- Heilmann, A.M.; Perera, R.M.; Ecker, V.; Nicolay, B.N.; Bardeesy, N.; Benes, C.H.; Dyson, N.J. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Res. 2014, 74, 3947–3958. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.S.; Kumarasamy, V.; Ruiz, A.; Sivinski, J.; Chung, S.; Grant, A.; Vail, P.; Chauhan, S.S.; Jie, T.; Riall, T.S.; et al. Cell cycle plasticity driven by MTOR signaling: Integral resistance to CDK4/6 inhibition in patient-derived models of pancreatic cancer. Oncogene 2019, 38, 3355–3370. [Google Scholar] [CrossRef]
- Witkiewicz, A.K.; Borja, N.A.; Franco, J.; Brody, J.R.; Yeo, C.J.; Mansour, J.; Choti, M.A.; McCue, P.; Knudsen, E.S. Selective impact of CDK4/6 suppression on patient-derived models of pancreatic cancer. Oncotarget 2015, 6, 15788–15801. [Google Scholar] [CrossRef] [PubMed]
- APUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People with Advanced Stage Cancer (TAPUR). Available online: https://clinicaltrials.gov/study/NCT02693535 (accessed on 10 September 2023).
- Franco, J.; Witkiewicz, A.K.; Knudsen, E.S. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget 2014, 5, 6512–6525. [Google Scholar] [CrossRef]
- Franco, J.; Balaji, U.; Freinkman, E.; Witkiewicz, A.K.; Knudsen, E.S. Metabolic Reprogramming of Pancreatic Cancer Mediated by CDK4/6 Inhibition Elicits Unique Vulnerabilities. Cell Rep. 2016, 14, 979–990. [Google Scholar] [CrossRef]
- Van Sciver, R.E.; Lee, M.P.; Lee, C.D.; Lafever, A.C.; Svyatova, E.; Kanda, K.; Colliver, A.L.; Siewertsz van Reesema, L.L.; Tang-Tan, A.M.; Zheleva, V.; et al. A New Strategy to Control and Eradicate “Undruggable” Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology. Cancers 2018, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Gentilini, A.; Pastore, M.; Marra, F.; Raggi, C. The Role of Stroma in Cholangiocarcinoma: The Intriguing Interplay between Fibroblastic Component, Immune Cell Subsets and Tumor Epithelium. Int. J. Mol. Sci. 2018, 19, 2885. [Google Scholar] [CrossRef] [PubMed]
- Erkan, M.; Hausmann, S.; Michalski, C.W.; Fingerle, A.A.; Dobritz, M.; Kleeff, J.; Friess, H. The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bu, X.; Wang, H.; Zhu, Y.; Geng, Y.; Nihira, N.T.; Tan, Y.; Ci, Y.; Wu, F.; Dai, X.; et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 2018, 553, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Garutti, M.; Targato, G.; Buriolla, S.; Palmero, L.; Minisini, A.M.; Puglisi, F. CDK4/6 Inhibitors in Melanoma: A Comprehensive Review. Cells 2021, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
Melanoma | Pancreatic Cancer |
---|---|
Self-examination of the skin: Regularly check for the emergence of new nevi or any changes in the appearance of existing ones. Inspect existing nevi: keep a vigilant eye on existing nevi to monitor alterations in their shape, size, and color. Biannual dermatologist examinations: Schedule visits with a dermatologist twice a year. This includes the mapping of moles, followed by a dermatoscopy for a detailed examination. In case of suspected melanoma, consider the scraping of nevi followed by cytological examination. Sun protection for high-risk individuals: Individuals with familial melanoma and carrying pathogenic mutations in the CDKN2A gene, who have an elevated risk of melanoma, should regularly use sunscreens and take measures to avoid direct skin exposure to sunlight. Early screening for children in high-risk families: Initiate screening procedures and melanoma diagnosis for children in families with identified cases of melanoma from the age of 10. | Screening at age 40 (or 10 years earlier than earliest family diagnosis): Begin screening for pancreatic cancer at the age of 40, or 10 years prior to the earliest diagnosis of pancreatic cancer in the family history. Annual MRI with contrast: Undergo an MRI with contrast once a year, starting between the ages of 30 and 35. Endoscopic ultrasound examination: Consider an endoscopic ultrasound examination for a detailed assessment of the pancreas. |
Patient № | Gender | Diagnosis | Stage | Histological Characteristics | Chromosomal Change | Coding | Protein | ACMG | Cancer Cases in Family History | GnomAD Exomes |
---|---|---|---|---|---|---|---|---|---|---|
1 | F (42) | C24.0 Biliary tract cancer | IIB | Adenocarcinoma, G2 | chr9:21971051delCG | c.307_308del | p.Arg103AlafsTer16 | P | + | Not found |
C19 Colorectal cancer | I | Adenocarcinoma (KRAS, NRAS, BRAF negative) | ||||||||
2 | F (36) | D23.5 Dysplastic nevus | Dysplastic nevus, low grade | chr9:21974757C>G | c.71G>C | p.Arg24Pro | P | + | ƒ = 0.0000169 | |
3 | M (64) | C25.1 Malignant neoplasm: Body of pancreas. | III | Adenocarcinoma, G2 | chr9:21974757C>G | c.71G>C | p.Arg24Pro | P | + | ƒ = 0.0000169 |
4 | M (62) | C25.0 Malignant neoplasm: Head of pancreas. | IV | Adenocarcinoma, G2 | chr9:21971051delCG | c.307_308del | p.Arg103AlafsTer16 | P | + | Not found |
5 | F (41) | C25.0 Malignant neoplasm: Head of pancreas. | II | Neuroendocrine tumor, G1 | chr9:21971200C>0 | c.159G>C | p.Met53Ile | P | + | ƒ = 0.00000905 |
C43.0 Melanoma | II | Melanoma | ||||||||
6 | F (51) | C25.0 Malignant neoplasm: Head of pancreas. | III | Adenocarcinoma, high grade | chr9:g.21971051delCG | c.307_308del | p.Arg103AlafsTer16 | P | + | Not found |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danishevich, A.; Bilyalov, A.; Nikolaev, S.; Khalikov, N.; Isaeva, D.; Levina, Y.; Makarova, M.; Nemtsova, M.; Chernevskiy, D.; Sagaydak, O.; et al. CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes. Biomedicines 2023, 11, 3343. https://doi.org/10.3390/biomedicines11123343
Danishevich A, Bilyalov A, Nikolaev S, Khalikov N, Isaeva D, Levina Y, Makarova M, Nemtsova M, Chernevskiy D, Sagaydak O, et al. CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes. Biomedicines. 2023; 11(12):3343. https://doi.org/10.3390/biomedicines11123343
Chicago/Turabian StyleDanishevich, Anastasiia, Airat Bilyalov, Sergey Nikolaev, Nodirbec Khalikov, Daria Isaeva, Yuliya Levina, Maria Makarova, Marina Nemtsova, Denis Chernevskiy, Olesya Sagaydak, and et al. 2023. "CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes" Biomedicines 11, no. 12: 3343. https://doi.org/10.3390/biomedicines11123343
APA StyleDanishevich, A., Bilyalov, A., Nikolaev, S., Khalikov, N., Isaeva, D., Levina, Y., Makarova, M., Nemtsova, M., Chernevskiy, D., Sagaydak, O., Baranova, E., Vorontsova, M., Byakhova, M., Semenova, A., Galkin, V., Khatkov, I., Gadzhieva, S., & Bodunova, N. (2023). CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes. Biomedicines, 11(12), 3343. https://doi.org/10.3390/biomedicines11123343