Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Search Strategy
2.3. Study Selection and Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
2.6. Publication Bias
3. Results
3.1. Study Selection and Identification
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Meta-Analysis of Hg Levels in Hair
3.5. Meta-Analysis of Hg Levels in Whole Blood
3.6. Meta-Analysis of Hg Levels in Plasma
3.7. Meta-Analysis of Hg Levels in RBCs
3.8. Meta-Analysis of Hg Levels in Urine
4. Discussion
4.1. Hg in Hair
4.2. Hg in Whole Blood and Its Parts (Plasma/Serum and RBCs)
4.3. Hg in Urine
4.4. Are Hg Levels in the Teeth a Promising Link to ASD?
4.5. Advantages and Limitations of Study Design and Further Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veselinović, A.; Petrović, S.; Žikić, V.; Subotić, M.; Jakovljević, V.; Jeremić, N.; Vučić, V. Neuroinflammation in autism and supplementation based on omega-3 polyunsaturated fatty acids: A narrative review. Medicina 2021, 57, 893. [Google Scholar] [CrossRef]
- Awadh, S.M.; Yaseen, Z.M.; Al-Suwaiyan, M.S. The role of environmental trace element toxicants on autism: A medical biogeochemistry perspective. Ecotoxicol. Environ. Saf. 2023, 251, 114561. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization. 2022. Available online: https://www.who.int/standards/classifications/classification-of-diseases (accessed on 18 May 2023).
- EAIS. European Autism Information System. 2023. Available online: https://ec.europa.eu/health (accessed on 16 August 2023).
- Basu, S.; Parry, P. The autism spectrum disorder ‘epidemic’: Need for biopsychosocial formulation. Aust. N. Z. J. Psychiatry 2013, 7, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization. 2023. Available online: https://www.who.int/news-room/factsheets/detail/autismspectrumdisorders#:~:text=About%201%20in%20100%20children,and%20can%20evolve%20over%20time (accessed on 30 June 2023).
- CDC. Centers for Disease Control and Prevention. 2023. Available online: https://www.cdc.gov/ncbddd/autism/data.html (accessed on 7 September 2023).
- Arora, M.; Reichenberg, A.; Willfors, C.; Austin, C.; Gennings, C.; Berggren, S.; Lichtenstein, P.; Anckarsäter, H.; Tammimies, K.; Bölte, S. Fetal and postnatal metal dysregulation in autism. Nat. Commun. 2017, 8, 15493. [Google Scholar] [CrossRef] [PubMed]
- Behl, S.; Mehtam, S.; Pandey, M.K. Abnormal levels of metal micronutrients and autism spectrum disorder: A perspective review. Front. Mol. Neurosci. 2020, 13, 586209. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States. MMWR Surveill. Summ. 2020, 72, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; et al. Autism spectrum disorder. Nat. Rev. Dis. Primers 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Hirota, T.; King, B.H. Autism spectrum disorder: A review. JAMA 2023, 329, 157–168. [Google Scholar] [CrossRef]
- LeClerc, S.; Easley, D. Pharmacological therapies for autism spectrum disorder: A review. PT 2015, 40, 389–397. [Google Scholar]
- DeFilippis, M.; Wagnerm, K.D. Treatment of autism spectrum disorder in children and adolescents. Psychopharmacol. Bull. 2016, 46, 18–41. [Google Scholar]
- Siafis, S.; Çıray, O.; Wu, H.; Schneider-Thoma, J.; Bighelli, I.; Krause, M.; Rodolico, A.; Ceraso, A.; Deste, G.; Huhn, M.; et al. Pharmacological and dietary-supplement treatments for autism spectrum disorder: A systematic review and network meta-analysis. Mol. Autism 2022, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.Y.; Feng, J.Y.; Li, H.H.; Yue, X.J.; Jia, F.Y. Non-parental caregivers, low maternal education, gastrointestinal problems and high blood lead level: Predictors related to the severity of autism spectrum disorder in Northeast China. BMC Pediatr. 2022, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Sauer, A.K.; Stanton, J.E.; Hans, S.; Grabrucker, A.M. Autism spectrum disorders: Etiology and pathology. In Autism Spectrum Disorders [Internet]; Grabrucker, A.M., Ed.; Exon Publications: Brisbane, Australia, 2021; Chapter 1. [Google Scholar]
- Dickerson, A.S.; Rotem, R.S.; Christian, M.A.; Nguyen, V.T.; Specht, A.J. Potential sex differences relative to autism spectrum disorder and metals. Curr. Environ. Health Rep. 2017, 4, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Marquès, M.; Correig, E.; Capdevila, E.; Gargallo, E.; González, N.; Nadal, M.; Domingo, J.L. Essential and Non-essential Trace Elements in Milks and Plant-Based Drinks. Biol. Trace Elem. Res. 2022, 200, 4524–4533. [Google Scholar] [CrossRef] [PubMed]
- Jagodić, J.; Pavlović, S.; Borković-Mitić, S.; Perović, M.; Miković, Ž.; Đurđić, S.; Manojlović, D.; Stojsavljević, A. Examination of trace metals and their potential transplacental transfer in pregnancy. Int. J. Mol. Sci. 2022, 23, 8078. [Google Scholar] [CrossRef] [PubMed]
- Kaur, I.; Behl, T.; Aleya, L.; Rahman, M.H.; Kumar, A.; Arora, S.; Akter, R. Role of metallic pollutants in neurodegeneration: Effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. Environ. Sci. Pollut. Res. Int. 2021, 28, 8989–9001. [Google Scholar] [CrossRef] [PubMed]
- Skogheim, T.S.; Weyde, K.V.F.; Engel, S.M.; Aase, H.; Surén, P.; Øie, M.G.; Biele, G.; Reichborn-Kjennerud, T.; Caspersen, I.H.; Hornig, M.; et al. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ. Int. 2021, 152, 106468. [Google Scholar] [CrossRef]
- McCaulley, M.E. Autism spectrum disorder and mercury toxicity: Use of genomic and epigenetic methods to solve the etiologic puzzle. Acta Neurobiol. Exp. 2019, 79, 113–125. [Google Scholar] [CrossRef]
- Grabrucker, A.M. Environmental factors in autism. Front. Psychiatry 2013, 3, 118. [Google Scholar] [CrossRef]
- Santos-Sacramento, L.; Arrifano, G.P.; Lopes-Araújo, A.; Augusto-Oliveira, M.; Albuquerque-Santos, R.; Takeda, P.Y.; Souza-Monteiro, J.R.; Macchi, M.; do Nascimento, J.L.M.; Lima, R.R.; et al. Human neurotoxicity of mercury in the Amazon: A scoping review with insights and critical considerations. Ecotoxicol. Environ. Saf. 2021, 208, 111686. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Bjørklund, G.; Skalny, A.V.; Rahman, M.M.; Dadar, M.; Yassa, H.A.; Aaseth, J.; Chirumbolo, S.; Skalnaya, M.G.; Tinkov, A.A. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ. Res. 2018, 166, 234–250. [Google Scholar] [CrossRef]
- Bernhoft, R.A. Mercury toxicity and treatment: A review of the literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef] [PubMed]
- Magos, L.; Clarkson, T.W. Overview of the clinical toxicity of mercury. Ann. Clin. Biochem. 2006, 43, 257–268. [Google Scholar] [CrossRef]
- Sweet, L.I.; Zelikoff, J.T. Toxicology And Immunotoxicology Of Mercury: A Comparative Review In Fish And Humans. J. Toxicol. Environ. Health B 2001, 4, 161–205. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, E.R.; Bruns, D.E.; Tietz, N.W. Textbook of Clinical Chemistry and Molecular Diagnostics, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ijomone, O.M.; Olung, N.F.; Akingbade, G.T.; Okoh, C.O.A.; Aschner, M. Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. J. Trace Elem. Med. Biol. 2020, 62, 126638. [Google Scholar] [CrossRef]
- Hsueh, Y.-M.; Lee, C.-Y.; Chien, S.-N.; Chen, W.-J.; Shiue, H.-S.; Huang, S.-R.; Lin, M.-I.; Mu, S.-C.; Hsieh, R.-L. Association of blood heavy metals with developmental delays and health status in children. Sci. Rep. 2017, 7, 43608. [Google Scholar] [CrossRef]
- Osman, M.A.; Yang, F.; Massey, I.V.Y. Exposure routes and health effects of heavy metals on children. BioMetals 2019, 32, 563–573. [Google Scholar] [CrossRef]
- Jafari, T.; Rostampour, N.; Fallah, A.A.; Hesami, A. The association between mercury levels and autism spectrum disorders: A systematic review and metaanalysis. J. Trace Elem. Med. Biol. 2017, 44, 289–297. [Google Scholar] [CrossRef]
- Amadi, C.N.; Orish, C.N.; Frazzoli, C.; Orisakwe, O.E. Association of autism with toxic metals: A systematic review of case-control studies. Pharmacol. Biochem. Behav. 2022, 212, 173313. [Google Scholar] [CrossRef]
- El-Ansary, A.; Bjørklund, G.; Tinkov, A.A.; Skalny, A.V.; Al Dera, H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab. Brain Dis. 2017, 32, 1073–1080. [Google Scholar] [CrossRef]
- Błażewicz, A.; Grabrucker, A.M. Metal profiles in autism spectrum disorders: A crosstalk between toxic and essential metals. Int. J. Mol. Sci. 2022, 24, 308. [Google Scholar] [CrossRef] [PubMed]
- Shandley, K.; Austin, D.W. Ancestry of pink disease (infantile acrodynia) identified as a risk factor for autism spectrum disorders. J. Toxicol. Environ. Health A 2011, 74, 1185–1194. [Google Scholar] [CrossRef]
- Lai, O.; Parsi, K.K.; Wu, D.; Konia, T.H.; Younts, A.; Sinha, N.; McNelis, A.; Sharon, V.R. Mercury toxicity presenting as acrodynia and a papulovesicular eruption in a 5-year-old girl. Dermatol. Online J. 2016, 22, 13030/qt6444r7nc. [Google Scholar] [CrossRef]
- Adams, J.B.; Romdalvik, J.; Ramanujam, V.M.; Legator, M.S. Mercury, lead, and zinc in baby teeth of children with autism versus controls. J. Toxicol. Environ. Health A 2007, 70, 1046–1051. [Google Scholar] [CrossRef]
- Dadar, M.; Peyghan, R.; Memari, H.R. Evaluation of the bioaccumulation of heavy metals in white shrimp (Litopenaeus vannamei) along the Persian Gulf coast. Bull. Environ. Contam. Toxicol. 2014, 93, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Jinadasa, B.K.K.K.; Jayasinghe, G.D.T.M.; Pohl, P.; Fowler, S.W. Mitigating the impact of mercury contaminants in fish and other seafood-A review. Mar. Pollut. Bull. 2021, 171, 112710. [Google Scholar] [CrossRef]
- FDA. The Food and Drug Administration. 2023. Available online: https://www.fda.gov/food/consumers/advice-about-eating-fish (accessed on 5 October 2023).
- Windham, G.C.; Zhang, L.; Gunier, R.; Croen, L.A.; Grether, J.K. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area. Environ. Health Perspect. 2006, 114, 1438–1444. [Google Scholar] [CrossRef]
- Palmer, R.F.; Blanchard, S.; Wood, R. Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place 2009, 15, 18–24. [Google Scholar] [CrossRef]
- Gorini, F.; Muratori, F.; Morales, M.A. The role of heavy metal pollution in neurobehavioral disorders: A focus on autism. Rev. J. Autism Dev. Disord. 2014, 1, 354–372. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Flieger, M.; Forma, A.; Sitarz, E.; Skórzyńska-Dziduszko, K.; Grochowski, C.; Maciejewski, R.; Karakuła-Juchnowicz, H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci. Biobehav. Rev. 2021, 129, 117–132. [Google Scholar] [CrossRef]
- Ye, B.S.; Leung, A.O.W.; Wong, M.H. The association of environmental toxicants and autism spectrum disorders in children. Environ. Pollut. 2017, 227, 234–242. [Google Scholar] [CrossRef]
- Kern, J.K.; Geier, D.A.; Sykes, L.K.; Haley, B.E.; Geier, M.R. The relationship between mercury and autism: A comprehensive review and discussion. J. Trace Elem. Med. Biol. 2016, 37, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Geier, D.A.; King, P.G.-; Sykes, L.K.; Geier, M.R. A comprehensive review of mercury provoked autism. Indian J. Med. Res. 2008, 128, 383–411. [Google Scholar]
- Battaglia, M.R.; Di Fazio, C.; Battaglia, S. Activated Tryptophan-Kynureninemetabolic system in the human brain is associated with learned fear. Frontiers Mol. Neurisci. 2023, 16, 1217090. [Google Scholar] [CrossRef]
- Geier, D.A.; Kern, J.K.; King, P.G.; Sykes, L.K.; Geier, M.R. Hair toxic metal concentrations and autism spectrum disorder severity in young children. Int. J. Environ. Res. Public Health 2012, 9, 4486–4497. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 21, e1000097. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall International Inc.: New Jersey, NJ, USA, 1999. [Google Scholar]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2009. [Google Scholar]
- Nakhaee, S.; Amirabadizadeh, A.; Farnia, V.; Ali Azadi, N.; Mansouri, B.; Radmehr, F. Association between biological lead concentrations and autism spectrum disorder (ASD) in children: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2023, 201, 1567–1581. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration Version 5.1.0. 2011. (Updated March 2011). The Cochrane Collaboration. Available online: www.cochrane-handbook.org (accessed on 13 September 2013).
- Mata, D.A.; Ramos, M.A.; Bansal, N.; Khan, R.; Guille, C.; Di Angelantonio, E.; Sen, S. Prevalence of depression and depressive symptoms among resident physicians: A systematic review and meta-analysis. JAMA 2015, 314, 2373–2383. [Google Scholar] [CrossRef]
- Peeters, W.; Van den Brande, R.; Polinder, S.; Brazinova, A.; Steyerberg, E.W.; Lingsma, H.F.; Maas, A.I. Epidemiology of traumatic brain injury in Europe. Acta Neurochir. 2015, 157, 1683–1696. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Jian, B.; Wu, C.; Jiang, C.Z.; Kang, Y.; Zhou, J.X.; Yang, F.; Liang, Y. A comparison of blood metal levels in autism spectrum disorder and unaffected children in Shenzhen of China and factors involved in bioaccumulation of metals. Environ. Sci. Pollut. Res. Int. 2018, 25, 17950–17956. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Al-Ayadhi, L.Y. Heavy metals and trace elements in hair samples of autistic children in central Saudi Arabia. Neurosciences 2005, 10, 213–218. [Google Scholar] [PubMed]
- Aljumaili, O.I.; Ewais, E.E.D.A.; El-Waseif, A.A.; AbdulJabbar Suleiman, A. Determination of hair lead, iron, and cadmium in a sample of autistic Iraqi children: Environmental risk factors of heavy metals in autism. Mater. Today Proc. 2021, 80, 2712–2715. [Google Scholar] [CrossRef]
- Blaurock-Busch, E.; Amin, O.R.; Rabah, T. Heavy metals and trace elements in hair and urine of a sample of Arab children with autistic spectrum disorder. Maedica 2011, 6, 247–257. [Google Scholar]
- Mohamed Fel, B.; Zaky, E.A.; El-Sayed, A.B.; Elhossieny, R.M.; Zahra, S.S.; Salah Eldin, W.; Youssef, W.Y.; Khaled, R.A.; Youssef, A.M. Assessment of hair aluminum, lead, and mercury in a sample of autistic Egyptian children: Environmental risk factors of heavy metals in autism. Behav. Neurol. 2015, 2015, 545674. [Google Scholar] [CrossRef]
- Ouisselsat, M.; Maidoumi, S.; Elmaouaki, A.; Lekouch, N.; Pineau, A.; Sedki, A. Hair trace elements and mineral content in Moroccan children with autism spectrum disorder: A case-control study. Biol. Trace Elem. Res. 2023, 201, 2701–2710. [Google Scholar] [CrossRef]
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Bjørklund, G.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab. Brain Dis. 2017, 32, 195–202. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Skalnaya, M.G.; Simashkova, N.V.; Klyushnik, T.P.; Skalnaya, A.A.; Bjørklund, G.; Notova, S.V.; Kiyaeva, E.V.; Skalny, A.V. Association between catatonia and levels of hair and serum trace elements and minerals in autism spectrum disorder. Biomed. Pharmacother. 2019, 109, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Cen, S.; Jiang, J.; Zhao, J.; Zhang, H.; Chen, W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environ. Res. 2019, 171, 501–509. [Google Scholar] [CrossRef]
- Adams, J.B.; Holloway, C.E.; George, F.; Quig, D. Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol. Trace Elem. Res. 2006, 110, 193–209. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Catalani, S.; Franco, A.; Brighenti, M.; Apostoli, P. Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J. Autism. Dev. Disord. 2012, 42, 342–353. [Google Scholar] [CrossRef]
- El-Baz, F.; Elhossiny, R.M.; Elsayed, A.B.; Gaber, G.M. Hair mercury measurement in Egyptian autistic children. Egypt. J. Med. Hum. Gen. 2010, 11, 135–141. [Google Scholar] [CrossRef]
- Gil-Hernández, F.; Gómez-Fernández, A.R.; de la Torre-Aguilar, M.J.; Pérez-Navero, J.L.; Flores-Rojas, K.; Martín-Borreguero, P.; Gil-Campos, M. Neurotoxicity by mercury is not associated with autism spectrum disorders in Spanish children. Ital. J. Pediatr. 2020, 46, 19. [Google Scholar] [CrossRef] [PubMed]
- Ip, P.; Wong, V.; Ho, M.; Lee, J.; Wong, W. Mercury exposure in children with autistic spectrum disorder: Case-control study. J. Child Neurol. 2004, 19, 431–434, Erratum in: J. Child. Neurol. 2004, 22, 1324. [Google Scholar] [CrossRef]
- Nabgha-e-Amen Eqani, S.A.M.A.S.; Khuram, F.; Alamdar, A.; Tahir, A.; Shah, S.T.A.; Nasir, A.; Javed, S.; Bibi, N.; Hussain, A.; Rasheed, H.; et al. Environmental exposure pathway analysis of trace elements and autism risk in Pakistani children population. Sci. Total Environ. 2020, 712, 136471. [Google Scholar] [CrossRef]
- Wecker, L.; Miller, S.B.; Cochran, S.R.; Dugger, D.L.; Johnson, W.D. Trace element concentrations in hair from autistic children. J. Intellect. Disabil. Res. 1985, 29, 15–22. [Google Scholar] [CrossRef]
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Radysh, I.V.; Skalnaya, M.G.; Tinkov, A.A. Analysis of hair trace elements in children with autism spectrum disorders and communication disorders. Biol. Trace Elem. Res. 2017, 107, 215–223. [Google Scholar] [CrossRef]
- Hodgson, N.W.; Waly, M.I.; Al-Farsi, Y.M.; Al-Sharbati, M.M.; Al-Farsi, O.; Ali, A.; Ouhtit, A.; Zang, T.; Zhou, Z.S.; Deth, R.C. Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp. Biol. Med. 2014, 239, 697–706. [Google Scholar] [CrossRef]
- Lakshmi Priya, M.D.; Geetha, A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol. Trace Elem. Res. 2011, 142, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.S.; Blaxill, M.F.; Haley, B.E. Reduced levels of mercury in first baby haircuts of autistic children. Int. J. Toxicol. 2003, 22, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Fido, A.; Al-Saad, S. Toxic trace elements in the hair of children with autism. Autism 2005, 9, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Albizzati, A.; Morè, L.; Di Candia, D.; Saccani, M.; Lenti, C. Normal concentrations of heavy metals in autistic spectrum disorders. Minerva Pediatr. 2012, 64, 27–31. [Google Scholar] [PubMed]
- Kern, J.K.; Grannemann, B.D.; Trivedi, M.H.; Adams, J.B. Sulfhydryl-reactive metals in autism. J. Toxicol. Environ. Health A 2007, 70, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Romdalvik, J.; Levine, K.E.; Hu, L.W. Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicol. Environ. Chem. 2008, 90, 739–753. [Google Scholar] [CrossRef]
- Majewska, M.D.; Urbanowicz, E.; Rok-Bujko, P.; Namyslowska, I.; Mierzejewski, P. Age-dependent lower or higher levels of hair mercury in autistic children than in healthy controls. Acta Neurobiol. Exp. 2010, 70, 196–208. [Google Scholar]
- Elsheshtawy, E.; Tobar, S.; Sherra, K.; Atallah, S.; Elkasaby, R. Study of some biomarkers in hair of children with autism. MECP 2011, 18, 6–10. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Li, Y.; Liu, Y.; Zhao, Z. Blood mercury, arsenic, cadmium, and lead in children with autism spectrum disorder. Biol. Trace Elem. Res. 2018, 181, 31–37. [Google Scholar] [CrossRef]
- Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.A.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol. Trace Elem. Res. 2013, 151, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Macedoni-Lukšič, M.; Gosar, D.; Bjørklund, G.; Oražem, J.; Kodrič, J.; Lešnik-Musek, P.; Zupančič, M.; France-Štiglic, A.; Sešek-Briški, A.; Neubauer, D.; et al. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol. Trace Elem. Res. 2015, 163, 2–10. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.J.; Gan, X.Y.; Li, J.R.; Wu, X.X.; Liu, S.Y.; Jin, Y.S.; Zhang, K.R.; Wu, H.M. Analysis of whole blood and urine trace elements in children with autism spectrum disorders and autistic behaviors. Biol. Trace Elem. Res. 2023, 201, 627–635. [Google Scholar] [CrossRef]
- Yassa, H.A. Autism: A form of lead and mercury toxicity. Environ. Toxicol. Pharmacol. 2014, 38, 1016–1024. [Google Scholar] [CrossRef]
- Stamova, B.; Green, P.G.; Tian, Y.; Hertz-Picciotto, I.; Pessah, I.N.; Hansen, R.; Yang, X.; Teng, J.; Gregg, J.P.; Ashwood, P.; et al. Correlations between gene expression and mercury levels in blood of boys with and without autism. Neurotox. Res. 2011, 19, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Picciotto, I.; Green, P.G.; Delwiche, L.; Hansen, R.; Walker, C.; Pessah, I.N. Blood mercury concentrations in CHARGE Study children with and without autism. Environ. Health Perspect. 2020, 118, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Loveland, K.A.; Ardjomand-Hessabi, M.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; Pearson DALalor, G.C.; et al. Seafood consumption and blood mercury concentrations in Jamaican children with and without autism spectrum disorders. Neurotox. Res. 2013, 23, 22–38. [Google Scholar] [CrossRef]
- Yau, V.M.; Green, P.G.; Alaimo, C.P.; Yoshida, C.K.; Lutsky, M.; Windham, G.C.; Delorenze, G.; Kharrazi, M.; Grether, J.K.; Croen, L.A. Prenatal and neonatal peripheral blood mercury levels and autism spectrum disorders. Environ. Res. 2014, 133, 294–303. [Google Scholar] [CrossRef]
- McKean, S.J.; Bartell, S.M.; Hansen, R.L.; Barfod, G.H.; Green, P.G.; Hertz-Picciotto, I. Prenatal mercury exposure, autism, and developmental delay, using pharmacokinetic combination of newborn blood concentrations and questionnaire data: A case control study. Environ. Health 2015, 14, 62. [Google Scholar] [CrossRef]
- Mostafa, G.A.; Al-Ayadhi, L.Y. The possible association between elevated levels of blood mercury and the increased frequency of serum anti-myelin basic protein autoantibodies in autistic children. J. Clin. Cell Immunol. 2015, 310, 6. [Google Scholar] [CrossRef]
- Mostafa, G.A.; Bjørklund, G.; Urbina, M.A.; Al-Ayadhi, L.Y. The levels of blood mercury and inflammatory-related neuropeptides in the serum are correlated in children with autism spectrum disorder. Metab. Brain Dis. 2016, 31, 593–599. [Google Scholar] [CrossRef]
- Mostafa, G.A.; Refai, T.M. Antineuronal antibodies in autistic children: Relation to blood mercury. Egypt J. Pediatr. Allergy Immunol. 2007, 5, 21–30. [Google Scholar]
- Chehbani, F.; Gallello, G.; Brahim, T.; Ouanes, S.; Douki, W.; Gaddour, N.; Cervera Sanz, M.L. The status of chemical elements in the blood plasma of children with autism spectrum disorder in Tunisia: A case-control study. Environ. Sci. Pollut. Res. Int. 2020, 27, 35738–35749. [Google Scholar] [CrossRef] [PubMed]
- Khaled, E.M.; Meguid, N.A.; Bjørklund, G.; Gouda, A.; Bahary, M.H.; Hashish, A.; Sallam, N.M.; Chirumbolo, S.; El-Bana, M.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab. Brain Dis. 2016, 31, 1419–1426. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, J.; Zhao, X.; Yao, F.; Feng, C.; He, Z.; Cao, X.; Gao, Y.; Khan, N.U.; Chen, M.; et al. Trace element changes in the plasma of autism spectrum disorder children and the positive correlation between chromium and vanadium. Biol. Trace Elem. Res. 2022, 200, 4924–4935. [Google Scholar] [CrossRef] [PubMed]
- Vergani, L.; Cristina, L.; Paola, R.; Luisa, A.M.; Shyti, G.; Edvige, V.; Giuseppe, M.; Elena, G.; Laura, C.; Adriana, V. Metals, metallothioneins and oxidative stress in blood of autistic children. Res. Autism Spectr. Disord. 2011, 5, 286–293. [Google Scholar] [CrossRef]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav. Brain Funct. 2014, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Geier, D.A.; Audhya, T.; Kern, J.K.; Geier, M.R. Blood mercury levels in autism spectrum disorder: Is there a threshold level? Acta Neurobiol. Exp. 2010, 70, 177–186. [Google Scholar]
- El-Ansary, A. Data of multiple regressions analysis between selected biomarkers related to glutamate excitotoxicity and oxidative stress in Saudi autistic patients. Data Brief. 2016, 7, 111–116. [Google Scholar] [CrossRef]
- Metwally, F.M.; Abdelraoof, E.R.; Rashad, H.; Hasheesh, A.; Elsedfy, Z.B.; Gebril, O.; Meguid, N.A. Toxic effect of some heavy metals in Egyptian autistic children. Int. J. Pharm. Clin. Res. 2015, 7, 206–211. [Google Scholar]
- Wright, B.; Pearce, H.; Allgar, V.; Miles, J.; Whitton, C.; Leon, I.; Jardine, J.; McCaffrey, N.; Smith, R.; Holbrook, I.; et al. A comparison of urinary mercury between children with autism spectrum disorders and control children. PLoS ONE 2012, 7, e29547. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.S.; Armel, S.E.; Fulton, D.I.; Allen, J.; Wessels, K.; Simmonds, P.L.; Granpeesheh, D.; Mumper, E.; Bradstreet, J.J.; Echeverria, D.; et al. Urinary porphyrin excretion in neurotypical and autistic children. Environ. Health Perspect. 2010, 118, 1450–1457. [Google Scholar] [CrossRef]
- Bradstreet, J.; Geier, D.A.; Kartzinel, J.J.; Adams, J.B.; Geier, M.R. A case–control study of mercury burden in children with autistic spectrum disorders. J. Am. Phys. Surg. 2003, 8, 76–79. [Google Scholar]
- Abdullah, M.M.; Ly, A.R.; Goldberg, W.A.; Clarke-Stewart, K.A.; Dudgeon, J.V.; Mull, C.G.; Chan, T.J.; Kent, E.E.; Mason, A.Z.; Ericson, J.E. Heavy metal in children’s tooth enamel: Related to autism and disruptive behaviors? J. Autism Dev. Disord. 2012, 42, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Ambeskovic, M.; Laplante, D.P.; Kenney, T.; Elgbeili, G.; Beaumier, P.; Azat, N.; Simcock, G.; Kildea, S.; King, S.; Metz, G.A.S. Elemental Analysis of hair provides biomarkers of maternal hardship linked to adverse behavioral outcomes in 4-year-old children: The QF2011 Queensland Flood Study. J. Trace Elem. Med. Biol. 2022, 73, 127036. [Google Scholar] [CrossRef]
- McDowell, M.A.; Dillon, C.F.; Osterloh, J.; Bolger, P.M.; Pellizzari, E.; Fernando, R.; Montes de Oca, R.; Schober, S.E.; Sinks, T.; Jones, R.L.; et al. Hair mercury levels in U.S. children and women of childbearing age: Reference range data from NHANES 1999–2000. Environ. Health Perspect. 2004, 112, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, A.; Rezaei, N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog. Neuropsychopharmacol. Biol. Psychiatry B 2017, 79, 340–368. [Google Scholar] [CrossRef]
- Fiore, M.; Barone, R.; Copat, C.; Grasso, A.; Cristaldi, A.; Rizzo, R.; Ferrante, M. Metal and essential element levels in hair and association with autism severity. J. Trace Elem. Med. Biol. 2020, 57, 126409. [Google Scholar] [CrossRef]
- Bridle, T.G.; Kumarathasan, P.; Gailer, J. Toxic Metal Species and ‘Endogenous’ Metalloproteins at the Blood–Organ Interface: Analytical and Bioinorganic Aspects. Molecules 2021, 26, 3408. [Google Scholar] [CrossRef]
- Ryu, J.; Ha, E.H.; Kim, B.N.; Ha, M.; Kim, Y.; Park, H.; Hong, Y.C.; Kim, K.N. Associations of prenatal and early childhood mercury exposure with autistic behaviors at 5years of age: The Mothers and Children’s Environmental Health (MOCEH) study. Sci. Total Environ. 2017, 15, 251–257. [Google Scholar] [CrossRef]
- Babaknejad, N.; Sayehmiri, F.; Sayehmiri, K.; Mohamadkhani, A.; Bahrami, S. The relationship between zinc levels and autism: A systematic review and meta-analysis. Iran J. Child. Neurol. 2016, 10, 1–9. [Google Scholar]
- Chen, C.; Yu, H.; Zhao, J.; Li, B.; Qu, L.; Liu, S.; Zhang, P.; Chai, Z. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ. Health Perspect. 2006, 114, 297–301. [Google Scholar] [CrossRef]
- Shiani, A.; Sharafi, K.; Omer, A.K.; Kiani, A.; Karamimatin, B.; Massahi, T.; Ebrahimzadeh, G. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder. Sci. Total Environ. 2023, 857, 59246. [Google Scholar] [CrossRef]
- Stojsavljević, A.; Lakićević, N.; Pavlović, S. Does lead have a connection to autism? a systematic review and meta-analysis. Toxics 2023, 11, 753. [Google Scholar] [CrossRef]
- Soden, S.E.; Lowry, J.A.; Garrison, C.B.; Wasserman, G.S. 24-hour provoked urine excretion test for heavy metals in children with autism and typically developing controls, a pilot study. Clin. Toxicol. 2007, 45, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Nataf, R.; Skorupka, C.; Amet, L.; Lam, A.; Springbett, A.; Lathe, R. Porphyrinuria in childhood autistic disorder: Implications for environmental toxicity. Toxicol. Appl. Pharmacol. 2006, 14, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Geier, D.A.; Geier, M.R. A prospective assessment of porphyrins in autistic disorders: A potential marker for heavy metal exposure. Neurotox. Res. 2006, 10, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.K.; Geier, D.A.; Adams, J.B.; Geier, M.R. A biomarker of mercury body burden correlated with diagnostic domain specific clinical symptoms of autistic disorders. Biometals 2010, 23, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Heyer, N.J.; Echeverria, D.; Woods, J.S. Disordered porphyrin metabolism: A potential biological marker for autism risk assessment. Autism Res. 2012, 5, 84–92. [Google Scholar] [CrossRef]
- Geier, D.A.; Kern, J.K.; Geier, M.R. A prospective blinded evaluation of urinary porphyrins verses the clinical severity of autism spectrum disorders. J. Toxicol. Environ. Health A 2009, 72, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Shandley, K.; Austin, D.W.; Bhowmik, J.L. Are urinary porphyrins a valid diagnostic biomarker of autism spectrum disorder? Autism Res. 2014, 7, 535–542. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Sample Size Controls/CaseS | Age Controls/Cases | Gender (Fem/Male) Controls/Cases | Biological Material | Analytical Technique | Mercury Level (Mean ± SD) Controls/Cases | |
---|---|---|---|---|---|---|---|---|
Hair | µg/g | |||||||
1. | Al-Ayadhi, 2005 [65] | Saudi Arabia | 80/65 | 7.2 ± 0.7/9.0 ± 0.3 | not specified; 4/61 | Hair | AAS | 0.713 ± 0.228/4.204 ± 1.129 |
2. | Aljumaili et al., 2021 [66] | Iraq | 20/75 | 3–14/3–14 | not specified | Hair | AAS | 1.25 ± 0.66/3.44 ± 2.93 |
3. | Blaurock-Bush et al., 2011 [67] | Saudi Arabia | 25/25 | 6.25 ± 2.31/5.29 ± 1.90 | 6/19; 3/22 | Hair | ICP-MS | 0.30 ± 0.31/0.47 ± 0.42 |
4. | Mohamed et al., 2015 [68] | Egypt | 100/100 | 6.80 ± 3.04/6.20 ± 2.40 | 26/74; 16/84 | Hair | AAS | 0.25 ± 0.16/0.39 ± 0.37 |
5. | Ouisselsat et al., 2023 [69] | Morrocco | 120/107 | 6.68 ± 2.39/7.14 ± 2.47 | 36/84; 25/82 | Hair | ICP-MS | 0.193 ± 0.13/0.200 ± 0.12 |
6. | Skalny et al., 2017 [70] | Russia | 74/74 | 5.11 ± 2.34/5.12 ± 2.36 | not specified | Hair | ICP-MS | 0.167 ± 0.077/0.127 ± 0.049 |
7. | Tinkov et al., 2019 [71] | Russia | 30/30 | 4.8 ± 2.2/4.7 ± 2.1 | not specified | Hair | ICP-MS | 0.077 ± 0.039/0.229 ± 0.072 |
8. | Zhai et al., 2019 [72] | China | 58/78 | 4.90 ± 0.97/4.96 ± 1.01 | 27/31; 22/56 | Hair | ICP-MS | 0.26 ± 0.13/0.41 ± 0.25 |
9. | Adams et al., 2006 [73] | USA | 40/51 | 7.5 ± 3.0/7.1 ± 3.0 | 10/30; 12/39 | Hair | ICP-MS | 0.29 ± 0.35/0.29 ± 0.41 |
10. | De Palma et al., 2012 [74] | Italy | 61/44 | 8.4 ± 1.3/9.0 ± 4.0 | 25/36; 7/37 | Hair | ICP-MS | 0.25 ± 0.11/0.50 ± 0.14 |
11. | El-Baz et al., 2010 [75] | Egypt | 15/32 | 5.53 ± 2.75/6.75 ± 3.26 | 6/9; 10/22 | Hair | AAS | 0.12 ± 0.019/0.79 ± 0.51 |
12. | Gil-Hernandez et al., 2020 [76] | Spain | 54/54 | Not specified | not specified | Hair | AAS | 13.00 ± 12.68/8.26 ± 10.57 |
13. | Ip et al., 2004 [77] | Japan | 55/82 | 7.8 ± 0.4/7.0 ± 0.2 | 9/46; 9/73 | Hair | AAS | 1.92 ± 1.58/1.98 ± 1.05 |
14. | Nabgha-e-Amen et al., 2020 [78] | Pakistan | 76/90 | 3–11/3–11 | 22/54; 20/70 | Hair | ICP-MS | 1.0 ± 0.26/1.3 ± 0.4 |
15. | Wecker et al., 1985 [79] | USA | 22/12 | 4.3 ± 2.6/5.67 ± 0.69 | 0/22; 0/12 | Hair | AAS | 15.75 ± 0.35/15.2 ± 0.45 |
16. | Skalny et al., 2017b [80] | Russia | 16/16 | 5–8/5–8 | 0/16; 0/16 | Hair | ICP-MS | 0.151 ± 0.134/0.105 ± 0.09 |
17. | Hodgson et al., 2014 [81] | Oman | 22/22 | 5.50 ± 1.00/3.5 ± 1.5 | 6/9; 7/15 | Hair | ICP-MS | 6.93 ± 0.36/6.03 ± 0.96 |
18. | Lakshmi and Geetha., 2011 [82] | India | 15/50 | 4–12/4–12 | not specified; 20/30 | Hair | ICP-MS | 0.37 ± 0.04/3.09 ± 0.37 |
19. | Holmes et al., 2003 [83] | USA | 45/94 | 0.7 ± 0.102/0.7 ± 0.325 | 11/34; 21/73 | Hair | ICP-MS | 3.63 ± 3.56/0.47 ± 0.28 |
20. | Fido and Al-Saad, 2005 [84] | Kuwait | 40/40 | 4.3 ± 2.67/4.2 ± 2.2 | 0/40; 0/40 | Hair | ICP-MS | 0.30 ± 0.24/4.50 ± 3.33 |
21. | Albizzati et al., 2012 [85] | Italy | 20/17 | 10.41 ± 3.05/11.52 ± 3.20 | 6/14; 2/15 | Hair | ICP-MS | 0.28 ± 0.08/0.32 ± 0.04 |
22. | Kern et al., 2007 [86] | USA | 45/45 | 3.0 ± 1.4/3.0 ± 1.4 | 10/35; 10/35 | Hair | ICP-MS | 0.16 ± 0.10/0.14 ± 0.11 |
23. | Adams et al., 2008 [87] | USA | 31/78 | 1.37 ± 0.42/1.38 ± 0.37 | 11/21; 11/67 | Hair | AFS | 0.95 ± 0.87/0.87 ± 2.6 |
24. | Majewska et al., 2010 [88] | Poland | 38/55 | 8.4 ± 0.20/8.1 ± 0.15 | 19/25; 19/30 | Hair | AAS | 0.14 ± 0.02/2.1 ± 0.05 |
25. | Elsheshtawy et al., 2011 [89] | Egypt | 32/32 | 4.0 ± 0.8/4.1 ± 0.8 | 8/24; 8/24 | Hair | ICP-MS | 3.2 ± 0.2/0.55 ± 0.06 |
Whole Blood | µg/L | |||||||
1. | Adams et al., 2013 [90] | USA | 44/55 | 11.0 ± 3.1/10.0 ± 3.1 | 5/39; 6/49 | Blood | ICP-MS | 0.87 ± 0.76/0.75 ± 0.67 |
2. | Li et al., 2018 [91] | China | 184/180 | 6.12 ± 1.69/5.06 ± 1.37 | 38/146; 30/150 | Blood | AAS | 13.47 ± 17.24/55.59 ± 52.56 |
3. | Macedoni-Lukšić et al., 2015 [92] | Slovenia | 22/52 | 6.6. ± 3.7/6.2 ± 3.0 | 11/11; 6/46 | Blood | AAS | 1.55 ± 0.56/1.90 ± 0.97 |
4. | Zhao et al., 2023 [93] | China | 30/30 | 4.2 ± 1.5/3.8 ± 1.3 | 15/15; 9/21 | Blood | ICP-MS | 0.685 ± 0.196/0.796 ± 0.198 |
5. | Yassa, 2014 [94] | Egypt | 45/45 | 12.40 ± 2.04/11.30 ± 1.02 | 14/31; 13/32 | Blood | ICP-MS | 0.00 ± 0.00/4.02 ± 0.54 |
6. | Stamova et al., 2011 [95] | USA | 51/33 | 2.3–4.7/2.6–4.0 | 0/51; 0/33 | Blood | ICP-MS | 0.6 ± 0.82/0.46 ± 0.73 |
7. | Hertz-Picciotto et al., 2010 [96] | USA | 143/249 | 2–5/2–5 | 27/116; 28/221 | Blood | ICP-MS | 0.8 ± 1.3/0.49 ± 1.08 |
8. | Ip et al., 2004 [77] | Japan | 55/82 | 7.8 ± 0.4/7.0 ± 0.2 | 9/46; 9/73 | Blood | AAS | 19.53 ± 5.65/17.68 ± 2.48 |
9. | Rahbar et al., 2013 [97] | Jamaica | 65/65 | 2–8/2–8 | not specified | Blood | ICP-MS | 0.98 ± 0.79/0.83 ± 0.67 |
10. | Yau et al., 2014 [98] | USA, Mexico | 78/149 | 6.6 ± 3.7/6.2 ± 3.0 | 16/133; 10/68 | Blood | ICP-MS | 0.32 ± 0.01/0.48 ± 0.13 |
11. | McKean et al., 2015 [99] | USA | 58/164 | 2–8/2.8 | 22/36; 149/17 | Blood | ICP-MS | 4.29 ± 0.84/4.73 ± 0.85 |
12. | Albizzati et al., 2012 [85] | Italy | 20/17 | 10.41 ± 3.05/11.52 ± 3.20 | 6/14; 2/15 | Blood | ICP-MS | 0.57 ± 0.34/0.67 ± 0.31 |
13. | Mostafa and Al-Ayadhi, 2015 [100] | Saudi Arabia | 100/100 | 8.3 ± 1.6/8.1 ± 1.7 | 23/77; 22/78 | Blood | AAS | 0.43 ± 0.14/0.19 ± 0.62 |
14. | Mostafa et al., 2016 [101] | Saudi Arabia | 84/84 | 7.0 ± 1.8/6.8 ± 1.5 | 24/60; 22/62 | Blood | AAS | 0.50 ± 0.14/0.8 ± 0.34 |
15. | Mostafa and Refai., 2007 [102] | Egypt | 40/40 | 5.25 ± 1.80/5.38 ± 1.85 | 9/31; 9/31 | Blood | AAS | 3.9 ± 1.80/19.8 ± 13.9′ |
Plasma | µg/L | |||||||
1. | Chehbani et al., 2020 [103] | Tunisia | 70/89 | 7.81 ± 3.32/7.52 ± 3.02 | 29/41; 15/74 | Plasma | AAS | 0.77 ± 0.53/0.86 ± 1.24 |
2. | Khaled et al., 2016 [104] | Egypt | 40/40 | 5.23 ± 1.25/4.12 ± 0.94 | 12/28; 8/32 | Plasma | AAS | 12.08 ± 4.5/32.9 ± 16.4 |
3. | Qin et al., 2018 [62] | China | 38/34 | 4.29 ± 1.73/4.10 ± 0.81 | 17/21; 14/20 | Plasma | ICP-OES | 1.13 ± 1.05/3.89 ± 0.82 |
4. | Zhang et al., 2022 [105] | China | 30/30 | 4.21 ± 0.93/4.03 ± 1.12 | 6/24; 6/24 | Plasma | ICP-MS | 0.96 ± 0.2/0.81 ± 0.22 |
5. | Vergani et al., 2011 [106] | Italy | 32/28 | Not specified/2–6 | 12/20; 7/21 | Plasma | ICP-OES | 0.00 ± 0.00/3.21 ± 1.72 |
6. | Macedoni-Lukšić et al., 2015 [92] | Slovenia | 14/42 | 6.6 ± 3.7/6.2 ± 3.0 | 7/7; 5/37 | Serum | AAS | 1.55 ± 0.56/1.90 ± 0.97 |
RBCs | µg/L | |||||||
1. | El-Ansary et al., 2017 [37] | Saudi Arabia | 30/35 | 7.2 ± 2.14/7.0 ± 2.34 | Not specified | RBCs | AAS | 2.71 ± 0.57/3.66 ± 1.13 |
2. | Alabdali et al., 2014 [107] | Saudi Arabia | 32/100 | 7.2 ± 2.0/7.0 ± 2.34 | Not specified; 0/100 | RBCs | AAS | 5.12 ± 0.83/6.99 ± 0.94 |
3. | Geier et al., 2010 [108] | USA | 89/83 | 11.4 ± 2.2/7.3 ± 3.7 | 19/70; 5/58 | RBCs | Hg vaporimeter | 10.7 ± 4.3/22.2 ± 12.1 |
4. | Adams et al., 2013 [90] | USA | 44/55 | 11.0 ± 3.1/10.0 ± 3.1 | 5/39; 6/49 | RBCs | ICP-MS | 1.3 ± 1.2/1.2 ± 0.81 |
5. | El-Ansary., 2016 [109] | Saudi Arabia | 20/20 | 7.4/7.4 | Not specified | RBCs | AAS | 4.64 ± 0.68/6.93 ± 0.94 |
Urine | µg/g creatinine | |||||||
1. | Adams et al., 2013 [90] | USA | 44/55 | 11.0 ± 3.1/10.0 ± 3.1 | 5/39; 6/49 | Urine | ICP-MS | 2.58 ± 1.10/1.01 ± 3.90 |
2. | Blaurock-Bush et al., 2011 [67] | Saudi Arabia | 25/25 | 6.25 ± 2.31/5.29 ± 1.90 | 6/19; 3/22 | Urine | ICP-MS | 1.10 ± 0.63/2.48 ± 2.34 |
3. | Metwally et al., 2015 [110] | Egypt | 75/55 | 4.02 ± 4.01 | 18/57; 16/39 | Urine | ICP-MS | 2.22 ± 0.35/11.3 ± 6.63 |
4. | Wright et al., 2012 [111] | UK | 28/47 | 12.6 ± 3.5/9.6 ± 3.6 | 15/13; 10/37 | Urine | ICP-MS | 5.4 ± 5.07/4.97 ± 3.04 |
5. | Woods et al., 2010 [112] | USA | 59/59 | 6.39 ± 3.06/6.01 ± 2.14 | 0/59; 0/59 | Urine | ICP-MS | 0.29 ± 0.53/0.36 ± 0.62 |
6. | Bradstreet et al., 2003 [113] | USA | 18/221 | 8.85/6.25 | 4/14; 38/183 | Urine | ICP-MS | 1.29 ± 1.54/4.06 ± 8.59 |
7. | Albizzati et al., 2012 [85] | Italy | 20/17 | 10.41 ± 3.05/11.52 ± 3.2 | 6/14; 2/15 | Urine | ICP-MS | 0.69 ± 0.07/0.70 ± 0.07 |
8. | Nabgha-e-Amen et al., 2020 [78] | Pakistan | 76/90 | 3–11/3–11 | 22/54; 20/70 | Urine | ICP-MS | 1.0 ± 0.31/1.3 ± 0.27 |
9. | Gil-Hernandez et al., 2020 [76] | Spain | 54/54 | Not specified | Not specified | Urine | AAS | 0.33 ± 0.42/0.54 ± 0.78 |
Study | Selection | Comparability | Outcome | Score | |||||
---|---|---|---|---|---|---|---|---|---|
Representativeness | Size | Non Respondents | Exposure Determination | Design/ Analysis | Determination of Outcome | Statist. Test | For Sample Type Average | ||
Hair | |||||||||
Al-Ayadhi, 2005 [65] | a | a | b | a | a | b | a | 5 | |
Aljumaili et al., 2021 [66] | a | a | b | a | a | b | a | 5 | |
Blaurock-Bush et al., 2011 [67] | a | a | a | a | a | b | a | 6 | |
Mohamed et al., 2015 [68] | a | a | a | a | a | a | a | 7 | |
Ouisselsat et al., 2023 [69] | a | a | a | a | a | a | a | 7 | |
Skalny et al., 2017 [70] | a | a | b | a | a | a | a | 6 | |
Tinkov et al., 2019 [71] | a | a | b | a | a | a | a | 6 | |
Zhai et al., 2019 [72] | a | a | a | a | a | a | a | 7 | |
Adams et al., 2006 [73] | a | a | a | a | a | a | a | 7 | |
De Palma et al., 2012 [74] | a | a | a | a | a | a | a | 7 | |
El-Baz et al., 2010 [75] | a | a | a | a | a | a | a | 7 | |
Gil-Hernandez et al., 2020 [76] | a | a | c | a | a | b | a | 4 | |
Ip et al., 2004 [77] | a | a | a | a | a | b | a | 6 | |
Nabgha-e-Amen et al., 2020 [78] | a | a | a | a | a | b | a | 6 | |
Wecker et al., 1985 [79] | a | a | a | a | a | b | a | 6 | |
Skalny et al., 2017 [80] | a | a | c | a | a | a | a | 5 | |
Hodgson et al., 2014 [81] | a | a | a | a | a | a | a | 7 | |
Lakshmi and Geetha., 2011 [82] | a | a | c | a | a | a | a | 5 | |
Holmes et al., 2003 [83] | a | a | a | a | a | a | a | 7 | |
Fido and Al-Saad, 2005 [84] | a | a | b | a | a | a | a | 6 | |
Albizzati et al., 2012 [85] | a | a | a | a | a | a | a | 7 | |
Kern et al., 2007 [86] | a | a | a | a | a | a | a | 7 | |
Adams et al., 2008 [87] | a | a | a | a | a | b | a | 6 | |
Majewska et al., 2010 [88] | a | a | a | a | a | b | a | 6 | |
Elsheshtawy et al., 2011 [89] | a | a | a | a | a | a | a | 7 | 6.20 |
Whole blood | |||||||||
Adams et al., 2013 [90] | a | a | a | a | a | a | a | 7 | |
Li et al., 2018 [91] | a | a | a | a | a | b | a | 6 | |
Macedoni-Lukšić et al., 2015 [92] | a | a | a | a | a | b | a | 6 | |
Zhao et al., 2023 [93] | a | a | a | a | a | a | a | 7 | |
Yassa, 2014 [94] | a | a | a | a | a | a | a | 7 | |
Stamova et al., 2011 [95] | a | a | a | a | a | b | a | 6 | |
Hertz-Picciotto et al., 2010 [96] | a | a | b | a | a | a | a | 6 | |
Ip et al., 2004 [77] | a | a | a | a | a | a | a | 7 | |
Rahbar et al., 2013 [97] | a | a | a | a | a | a | a | 7 | |
Yau et al., 2014 [98] | a | a | b | a | a | a | a | 6 | |
McKean et al., 2015 [99] | a | a | a | a | a | a | a | 7 | |
Albizzati et al., 2012 [85] | a | a | a | a | a | a | a | 7 | |
Mostafa and Al-Ayadhi, 2015 [100] | a | a | a | a | a | b | a | 6 | |
Mostafa et al., 2016 [101] | a | a | a | a | a | b | a | 6 | |
Mostafa and Refai., 2007 [102] | a | a | a | a | a | b | a | 6 | 6.47 |
Plasma | |||||||||
Chehbani et al., 2020 [103] | a | a | a | a | a | b | a | 6 | |
Khaled et al., 2016 [104] | a | a | a | a | a | b | a | 6 | |
Qin et al., 2018 [62] | a | a | a | a | a | b | a | 6 | |
Zhang et al., 2022 [105] | a | a | a | a | a | a | a | 7 | |
Vergani et al., 2011 [106] | a | a | b | a | a | a | a | 6 | |
Macedoni-Lukšić et al., 2015 [92] | a | a | a | a | b | b | a | 5 | 6.00 |
RBCs | |||||||||
El-Ansary et al., 2017 [37] | a | a | b | a | a | b | a | 5 | |
Alabdali et al., 2014 [107] | a | a | b | a | a | b | a | 5 | |
Geier et al., 2010 [108] | a | a | a | a | a | a | a | 7 | |
Adams et al., 2013 [90] | a | a | a | a | a | a | a | 7 | |
El-Ansary., 2016 [109] | a | a | c | a | a | b | a | 4 | 5.60 |
Urine | |||||||||
Adams et al., 2013 [90] | a | a | a | a | a | a | a | 7 | |
Blaurock-Bush et al., 2011 [67] | a | a | a | a | a | a | a | 7 | |
Metwally et al., 2015 [110] | a | a | a | a | a | a | a | 7 | |
Wright et al., 2012 [111] | a | a | a | a | a | a | a | 7 | |
Woods et al., 2010 [112] | a | a | b | a | a | a | a | 6 | |
Bradstreet et al., 2003 [113] | a | a | a | a | a | a | a | 7 | |
Albizzati et al., 2012 [85] | a | a | a | a | a | a | a | 7 | |
Nabgha-e-Amen et al., 2020 [78] | a | a | a | a | a | a | a | 7 | |
Gil-Hernandez et al., 2020 [76] | a | a | c | a | a | b | a | 4 | 6.56 |
6.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojsavljević, A.; Lakićević, N.; Pavlović, S. Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines 2023, 11, 3344. https://doi.org/10.3390/biomedicines11123344
Stojsavljević A, Lakićević N, Pavlović S. Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines. 2023; 11(12):3344. https://doi.org/10.3390/biomedicines11123344
Chicago/Turabian StyleStojsavljević, Aleksandar, Novak Lakićević, and Slađan Pavlović. 2023. "Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis" Biomedicines 11, no. 12: 3344. https://doi.org/10.3390/biomedicines11123344
APA StyleStojsavljević, A., Lakićević, N., & Pavlović, S. (2023). Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines, 11(12), 3344. https://doi.org/10.3390/biomedicines11123344