A Review of Bullous Dermatologic Adverse Events Associated with Anti-Cancer Therapy
Abstract
:1. Introduction
2. Literature Search Methods
3. Cutaneous Bullous Dermatologic Adverse Events
3.1. Vesiculobullous Eczema
3.2. Hand–Foot Skin Reaction (HFSR), Bullous Type
3.3. Toxic Erythema of Chemotherapy (TEC)
4. Systemic Bullous Dermatologic Adverse Events
4.1. Bullous Pemphigoid (BP)
4.2. Bullous Lichenoid Drug Eruptions (BLDE)
4.3. Lichen Planus Pemphigoides (LPP)
4.4. Pemphigus Vulgaris (PV)
4.5. Bullous Erythema Multiforme (BEM)
4.6. Linear IgA Bullous Dermatosis (LABD)
4.7. Bullous Lupus Erythematosus (BLE)
4.8. Stevens–Johnson Syndrome (SJS)/Toxic Epidermal Necrolysis (TEN) and SJS-Like Eruptions
4.9. Non-Specific Bullous Drug Eruption (NSBDE)
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Apalla, Z.; Lallas, A.; Delli, F.; Lazaridou, E.; Papalampou, S.; Apostolidou, S.; Gerochristou, M.; Rigopoulos, D.; Stratigos, A.; Nikolaou, V. Management of immune checkpoint inhibitor-induced bullous pemphigoid. J. Am. Acad. Dermatol. 2021, 84, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, A.; Leboeuf, N.R.; Lacouture, M.E.; McLellan, B.N. Dermatologic Adverse Events of Systemic Anticancer Therapies: Cytotoxic Chemotherapy, Targeted Therapy, and Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Rapoport, B.; Sibaud, V. Dermatologic immune-related adverse events: The toxicity spectrum and recommendations for management. Int. J. Womens Dermatol. 2021, 7, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.M.; Markova, A. High Grade Dermatologic Adverse Events Associated with Immune Checkpoint Blockade for Cancer. Front. Med. 2022, 9, 898790. [Google Scholar] [CrossRef] [PubMed]
- Jennings, E.; Huang, S.; Lee, J.B.; Cha, J.; Hsu, S. Toxic erythema of chemotherapy secondary to gemcitabine and paclitaxel. Dermatol. Online J. 2020, 26, 1–3. [Google Scholar] [CrossRef]
- Wouters, A.; Durieux, V.; Kolivras, A.; Meert, A.P.; Sculier, J.P. Bullous Lupus under Nivolumab Treatment for Lung Cancer: A Case Report with Systematic Literature Review. Anticancer Res. 2019, 39, 3003–3008. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Lin, W.C.; Chuang, C.K.; Chang, Y.C.; Pang, S.T.; Lin, Y.C.; Kuo, T.T.; Hsieh, J.J.; Chang, J.W. Hand-foot skin reaction in patients treated with sorafenib: A clinicopathological study of cutaneous manifestations due to multitargeted kinase inhibitor therapy. Br. J. Dermatol. 2008, 158, 592–596. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Hwang, S.J.E.; Consuegra, G.; Chou, S.; Fernandez-Peñas, P. Anti-programmed cell death-1 therapy-associated bullous disorders: A systematic review of the literature. Melanoma Res. 2018, 28, 491–501. [Google Scholar] [CrossRef]
- Boyle, M.M.; Ashi, S.; Puiu, T.; Reimer, D.; Sokumbi, O.; Soltani, K.; Onajin, O. Lichen Planus Pemphigoides Associated with PD-1 and PD-L1 Inhibitors: A Case Series and Review of the Literature. Am. J. Dermatopathol. 2022, 44, 360–367. [Google Scholar] [CrossRef]
- Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Falzone, L.; Salomone, S.; Libra, M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 2018, 9, 1300. [Google Scholar] [CrossRef] [Green Version]
- Padma, V.V. An overview of targeted cancer therapy. Biomedicine 2015, 5, 19. [Google Scholar] [CrossRef]
- Pettinato, M.C. Introduction to Antibody-Drug Conjugates. Antibodies 2021, 10, 42. [Google Scholar] [CrossRef]
- Baudino, T.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 2015, 12, 3–20. [Google Scholar] [CrossRef]
- Baldo, B.A.; Pham, N.H. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev. 2013, 32, 723–761. [Google Scholar] [CrossRef]
- Aldea, M.; Andre, F.; Marabelle, A.; Dogan, S.; Barlesi, F.; Soria, J.C. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov. 2021, 11, 874–899. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Eng. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Farooq, M.; Batool, M.; Kim, M.S.; Choi, S. Toll-Like Receptors as a Therapeutic Target in the Era of Immunotherapies. Front. Cell Dev. Biol. 2021, 9, 756315. [Google Scholar] [CrossRef]
- Kennedy, L.B.; Salama, A.K.S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 2020, 70, 86–104. [Google Scholar] [CrossRef] [Green Version]
- Granier, C.; De Guillebon, E.; Blanc, C.; Roussel, H.; Badoual, C.; Colin, E.; Saldmann, A.; Gey, A.; Oudard, S.; Tartour, E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2017, 2, e000213. [Google Scholar] [CrossRef] [Green Version]
- Schön, M.P.; Schön, M. TLR7 and TLR8 as targets in cancer therapy. Oncogene 2008, 27, 190–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shear, N.; Dodiuk-Gad, R. Advances in Diagnosis and Management of Cutaneous Adverse Drug Reactions Current and Future Trends: Current and Future Trends; Adis: Singapore, 2019. [Google Scholar]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE), Version 5.0; U.S. Department of Health and Human Services: Washington, DC, USA, 2017. [Google Scholar]
- Phillips, G.S.; Wu, J.; Hellmann, M.D.; Postow, M.A.; Rizvi, N.A.; Freites-Martinez, A.; Chan, D.; Dusza, S.; Motzer, R.J.; Rosenberg, J.E.; et al. Treatment Outcomes of Immune-Related Cutaneous Adverse Events. J. Clin. Oncol. 2019, 37, 2746–2758. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, X.; Lou, X.; Chen, M.; Luo, P.; He, Q. Vascular endothelial growth factor (VEGF) antibody significantly increases the risk of hand-foot skin reaction to multikinase inhibitors (MKIs): A systematic literature review and meta-analysis. Clin. Exp. Pharmacol. Physiol. 2018, 45, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Yan, H.; Chen, X.; Zhang, Y.; Zhao, Z.; Cao, J.; Zhu, Y.; Du, J.; Xu, Z.; Zhang, X.; et al. s-HBEGF/SIRT1 circuit-dictated crosstalk between vascular endothelial cells and keratinocytes mediates sorafenib-induced hand–foot skin reaction that can be reversed by nicotinamide. Cell Res. 2020, 30, 779–793. [Google Scholar] [CrossRef] [Green Version]
- Eaby-Sandy, B.; Grande, C.; Viale, P.H. Dermatologic toxicities in epidermal growth factor receptor and multikinase inhibitors. J. Adv. Pract. Oncol. 2012, 3, 138–150. [Google Scholar] [CrossRef]
- Belum, V.R.; Serna-Tamayo, C.; Wu, S.; Lacouture, M.E. Incidence and risk of hand-foot skin reaction with cabozantinib, a novel multikinase inhibitor: A meta-analysis. Clin. Exp. Dermatol. 2016, 41, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Sibaud, V.; Delord, J.P.; Chevreau, C. Sorafenib-induced hand-foot skin reaction: A Koebner phenomenon? Target Oncol. 2009, 4, 307–310. [Google Scholar] [CrossRef]
- Chauhan, P.; Gupta, A.; Kumar, S.; Bishnu, A.; Nityanand, S. Palmar-plantar erythrodysesthesia associated with high-dose methotrexate: Case report. Cancer Rep. 2020, 3, e1270. [Google Scholar] [CrossRef]
- Penny, C.L.; Quow, K.; Rundle, C.W.; Al-Rohil, R.N.; Cardones, A.R.; Kheterpal, M.K.; Fresco, A.I. Clinical and direct immunofluorescence characteristics of cutaneous toxicity associated with enfortumab vedotin. Br. J. Dermatol. 2022, 187, 126–127. [Google Scholar] [CrossRef]
- Krause, T.; Bonnekoh, H.; Dilling, A.; Nast, A.; Metz, M. A distinctive bullous skin reaction associated with enfortumab vedotin-ejfv treatment for metastatic urothelial cancer: A case report. J. Dtsch. Dermatol. Ges. 2021, 19, 1781–1783. [Google Scholar] [CrossRef]
- Ellis, S.R.; Vierra, A.T.; Millsop, J.W.; Lacouture, M.E.; Kiuru, M. Dermatologic toxicities to immune checkpoint inhibitor therapy: A review of histopathologic features. J. Am. Acad. Dermatol. 2020, 83, 1130–1143. [Google Scholar] [CrossRef]
- Siegel, J.; Totonchy, M.; Damsky, W.; Berk-Krauss, J.; Castiglione, F., Jr.; Sznol, M.; Petrylak, D.P.; Fischbach, N.; Goldberg, S.B.; Decker, R.H.; et al. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J. Am. Acad. Dermatol. 2018, 79, 1081–1088. [Google Scholar] [CrossRef]
- Schmidgen, M.I.; Butsch, F.; Schadmand-Fischer, S.; Steinbrink, K.; Grabbe, S.; Weidenthaler-Barth, B.; Loquai, C. Pembrolizumab-induced lichen planus pemphigoides in a patient with metastatic melanoma. J. Dtsch. Dermatol. Ges. 2017, 15, 742–745. [Google Scholar] [CrossRef]
- Naidoo, J.; Schindler, K.; Querfeld, C.; Busam, K.; Cunningham, J.; Page, D.B.; Postow, M.A.; Weinstein, A.; Lucas, A.S.; Ciccolini, K.T.; et al. Autoimmune Bullous Skin Disorders with Immune Checkpoint Inhibitors Targeting PD-1 and PD-L1. Cancer Immunol. Res. 2016, 4, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Liakopoulou, A.; Rallis, E. Bullous lichen planus—A review. J. Dermatol. Case Rep. 2017, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Reschke, R.; Mockenhaupt, M.; Simon, J.C.; Ziemer, M. Severe bullous skin eruptions on checkpoint inhibitor therapy—In most cases severe bullous lichenoid drug eruptions. J. Dtsch. Dermatol. Ges. 2019, 17, 942–948. [Google Scholar] [CrossRef]
- Strickley, J.D.; Vence, L.M.; Burton, S.K.; Callen, J.P. Nivolumab-induced lichen planus pemphigoides. Cutis 2019, 103, 224–226. [Google Scholar]
- Shah, R.R.; Bhate, C.; Hernandez, A.; Ho, C.H. Lichen planus pemphigoides: A unique form of bullous and lichenoid eruptions secondary to nivolumab. Dermatol. Ther. 2022, 35, e15432. [Google Scholar] [CrossRef]
- Buján Bonino, C.; López-Pardo Rico, M.; Moreiras Arias, N.; Suárez Peñaranda, J.M.; Casas Fernández, L. Checkpoint inhibitor-induced lichen planus pemphigoides: A case report and literature review of an unusually reported entity. Int. J. Dermatol. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Krammer, S.; Krammer, C.; Salzer, S.; Bağci, I.S.; French, L.E.; Hartmann, D. Recurrence of Pemphigus Vulgaris Under Nivolumab Therapy. Front. Med. 2019, 6, 262. [Google Scholar] [CrossRef] [Green Version]
- Utsunomiya, A.; Oyama, N.; Iino, S.; Baba, N.; Chino, T.; Utsunomiya, N.; Hasegawa, M. A Case of Erythema Multiforme Major Developed after Sequential Use of Two Immune Checkpoint Inhibitors, Nivolumab and Ipilimumab, for Advanced Melanoma: Possible Implication of Synergistic and/or Complementary Immunomodulatory Effects. Case Rep. Dermatol. 2018, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernett, C.N.; Fong, M.; Yadlapati, S.; Rosario-Collazo, J.A. Linear IGA Dermatosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chen, C.B.; Wu, M.Y.; Ng, C.Y.; Lu, C.W.; Wu, J.; Kao, P.H.; Yang, C.K.; Peng, M.T.; Huang, C.Y.; Chang, W.C.; et al. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies. Cancer Manag. Res. 2018, 10, 1259–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maloney, N.J.; Ravi, V.; Cheng, K.; Bach, D.Q.; Worswick, S. Stevens-Johnson syndrome and toxic epidermal necrolysis-like reactions to checkpoint inhibitors: A systematic review. Int. J. Dermatol. 2020, 59, e183–e188. [Google Scholar] [CrossRef] [PubMed]
- Guerrois, F.; Thibault, C.; Lheure, C.; Sohier, P.; Bensaid, B.; Ingen-Housz-Oro, S.; Dupin, N. Life-threatening skin reaction with Enfortumab Vedotin: Six cases. Eur. J. Cancer 2022, 167, 168–171. [Google Scholar] [CrossRef]
- Lacouture, M.E.; Patel, A.B.; Rosenberg, J.E.; O’Donnell, P.H. Management of Dermatologic Events Associated with the Nectin-4-directed Antibody-Drug Conjugate Enfortumab Vedotin. Oncologist 2022, 27, e223–e232. [Google Scholar] [CrossRef]
- Dobry, A.S.; Virgen, C.A.; Hosking, A.M.; Mar, N.; Doan, L.; Lee, B.; Smith, J. Cutaneous reactions with enfortumab vedotin: A case series and review of the literature. JAAD Case Rep. 2021, 14, 7–9. [Google Scholar] [CrossRef]
- Soler, D.C.; Bai, X.; Ortega, L.; Pethukova, T.; Nedorost, S.T.; Popkin, D.L.; Cooper, K.D.; McCormick, T.S. The key role of aquaporin 3 and aquaporin 10 in the pathogenesis of pompholyx. Med. Hypotheses 2015, 84, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Gomez, P.; Lacouture, M.E. Clinical presentation and management of hand-foot skin reaction associated with sorafenib in combination with cytotoxic chemotherapy: Experience in breast cancer. Oncologist 2011, 16, 1508–1519. [Google Scholar] [CrossRef] [Green Version]
- McLellan, B.; Ciardiello, F.; Lacouture, M.E.; Segaert, S.; Van Cutsem, E. Regorafenib-associated hand-foot skin reaction: Practical advice on diagnosis, prevention, and management. Ann. Oncol. 2015, 26, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, O.; Fouad, M. Risk of mucocutaneous toxicities in patients with solid tumors treated with sunitinib: A critical review and meta analysis. Expert Rev. Anticancer Ther. 2015, 15, 129–141. [Google Scholar] [CrossRef]
- Anwaier, A.; Chen, J.; Zhou, H.; Zhao, X.; Zheng, S.; Li, X.; Qu, Y.; Shi, G.; Zhang, H.; Wu, J.; et al. Real-world data on the efficacy and safety of pazopanib in IMDC favorable- and intermediate-risk metastatic renal cell carcinoma: A multicenter retrospective cohort study of Chinese patients. Transl. Androl. Urol. 2022, 11, 694–709. [Google Scholar] [CrossRef]
- Baize, N.; Abakar-Mahamat, A.; Mounier, N.; Berthier, F.; Caroli-Bosc, F.X. Phase II study of paclitaxel combined with capecitabine as second-line treatment for advanced gastric carcinoma after failure of cisplatin-based regimens. Cancer Chemother. Pharmacol. 2009, 64, 549–555. [Google Scholar] [CrossRef]
- Kwakman, J.J.M.; Elshot, Y.S.; Punt, C.J.A.; Koopman, M. Management of cytotoxic chemotherapy-induced hand-foot syndrome. Oncol. Rev. 2020, 14, 442. [Google Scholar] [CrossRef]
- Lacouture, M.E. Dermatologic Principles and Practice in Oncology: Conditions of the Skin, Hair, and Nails in Cancer Patients; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lu, A.; Endicott, A.; Tan, S.Y.; Klufas, D.M.; Merrill, E.; Arakaki, R.; LeBoit, P.E.; Fox, L.; Haemel, A. Toxic epidermal necrolysis-like toxic erythema of chemotherapy: 2 illustrative cases. JAAD Case Rep. 2021, 15, 56–59. [Google Scholar] [CrossRef]
- Bolognia, J.L.; Cooper, D.L.; Glusac, E.J. Toxic erythema of chemotherapy: A useful clinical term. J. Am. Acad. Dermatol. 2008, 59, 524–529. [Google Scholar] [CrossRef]
- Parker, T.L.; Cooper, D.L.; Seropian, S.E.; Bolognia, J.L. Toxic erythema of chemotherapy following i.v. BU plus fludarabine for allogeneic PBSC transplant. Bone Marrow Transpl. 2013, 48, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Webster-Gandy, J.D.; How, C.; Harrold, K. Palmar-plantar erythrodysesthesia (PPE): A literature review with commentary on experience in a cancer centre. Eur. J. Oncol. Nurs. 2007, 11, 238–246. [Google Scholar] [CrossRef]
- Imen, A.; Amal, K.; Ines, Z.; Sameh el, F.; Fethi el, M.; Habib, G. Bullous dermatosis associated with gemcitabine therapy for non-small-cell lung carcinoma. Respir. Med. 2006, 100, 1463–1465. [Google Scholar] [CrossRef] [Green Version]
- Birmingham, S.W.; Moon, D.J.; Kraus, C.N.; Lee, B.A. Enfortumab Vedotin-Associated Toxic Epidermal Necrolysis-like Toxic Erythema of Chemotherapy. Am. J. Dermatopathol. 2022, 44, 933–935. [Google Scholar] [CrossRef]
- Smith, S.M.; Milam, P.B.; Fabbro, S.K.; Gru, A.A.; Kaffenberger, B.H. Malignant intertrigo: A subset of toxic erythema of chemotherapy requiring recognition. JAAD Case Rep. 2016, 2, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.N.; Reyes, M.; Jones, S.C. Postmarketing Cases of Enfortumab Vedotin-Associated Skin Reactions Reported as Stevens-Johnson Syndrome or Toxic Epidermal Necrolysis. JAMA Dermatol. 2021, 157, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Viscuse, P.V.; Marques-Piubelli, M.L.; Heberton, M.M.; Parra, E.R.; Shah, A.Y.; Siefker-Radtke, A.; Gao, J.; Goswami, S.; Ivan, D.; Curry, J.L.; et al. Case Report: Enfortumab Vedotin for Metastatic Urothelial Carcinoma: A Case Series on the Clinical and Histopathologic Spectrum of Adverse Cutaneous Reactions From Fatal Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis to Dermal Hypersensitivity Reaction. Front. Oncol. 2021, 11, 621591. [Google Scholar] [CrossRef]
- Francis, A.; Jimenez, A.; Sundaresan, S.; Kelly, B. A rare presentation of enfortumab vedotin-induced toxic epidermal necrolysis. JAAD Case Rep. 2021, 7, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, F.; Farag, S.; Williams-Sharkey, C.; Collingwood, C.; Chen, L.; Mansukhani, S.; Engelmann, B.; Al-Muderis, O.; Chauhan, D.; Thway, K.; et al. Toxicity management of regorafenib in patients with gastro-intestinal stromal tumour (GIST) in a tertiary cancer centre. Clin. Sarcoma Res. 2020, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Bodea, J.; Caldwell, K.J.; Federico, S.M. Bevacizumab, with Sorafenib and Cyclophosphamide Provides Clinical Benefit for Recurrent or Refractory Osseous Sarcomas in Children and Young Adults. Front. Oncol. 2022, 12, 864790. [Google Scholar] [CrossRef]
- Karol, S.E.; Yang, W.; Smith, C.; Cheng, C.; Stewart, C.F.; Baker, S.D.; Sandlund, J.T.; Rubnitz, J.E.; Bishop, M.W.; Pappo, A.S.; et al. Palmar-plantar erythrodysesthesia syndrome following treatment with high-dose methotrexate or high-dose cytarabine. Cancer 2017, 123, 3602–3608. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.; Carlos, G.; Chou, S.; Wakade, D.; Carlino, M.S.; Fernandez-Penas, P. Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies. Melanoma Res. 2016, 26, 413–416. [Google Scholar] [CrossRef]
- Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.M.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune checkpoint inhibitor-related dermatologic adverse events. J. Am. Acad. Dermatol. 2020, 83, 1255–1268. [Google Scholar] [CrossRef]
- Lopez, A.T.; Khanna, T.; Antonov, N.; Audrey-Bayan, C.; Geskin, L. A review of bullous pemphigoid associated with PD-1 and PD-L1 inhibitors. Int. J. Dermatol. 2018, 57, 664–669. [Google Scholar] [CrossRef]
- Wang, L.; Ge, J.; Lan, Y.; Shi, Y.; Luo, Y.; Tan, Y.; Liang, M.; Deng, S.; Zhang, X.; Wang, W.; et al. Tumor mutational burden is associated with poor outcomes in diffuse glioma. BMC Cancer 2020, 20, 213. [Google Scholar] [CrossRef]
- Molina, G.E.; Reynolds, K.L.; Chen, S.T. Diagnostic and therapeutic differences between immune checkpoint inhibitor-induced and idiopathic bullous pemphigoid: A cross-sectional study. Br. J. Dermatol. 2020, 183, 1126–1128. [Google Scholar] [CrossRef]
- Juzot, C.; Sibaud, V.; Amatore, F.; Mansard, S.; Seta, V.; Jeudy, G.; Pham-Ledard, A.; Benzaquen, M.; Peuvrel, L.; Le Corre, Y.; et al. Clinical, biological and histological characteristics of bullous pemphigoid associated with anti-PD-1/PD-L1 therapy: A national retrospective study. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e511–e514. [Google Scholar] [CrossRef]
- Clapé, A.; Muller, C.; Gatouillat, G.; Le Jan, S.; Barbe, C.; Pham, B.N.; Antonicelli, F.; Bernard, P. Mucosal Involvement in Bullous Pemphigoid Is Mostly Associated with Disease Severity and to Absence of Anti-BP230 Autoantibody. Front. Immunol. 2018, 9, 479. [Google Scholar] [CrossRef]
- Delgado, J.C.; Turbay, D.; Yunis, E.J.; Yunis, J.J.; Morton, E.D.; Bhol, K.; Norman, R.; Alper, C.A.; Good, R.A.; Ahmed, R. A common major histocompatibility complex class II allele HLA-DQB1* 0301 is present in clinical variants of pemphigoid. Proc. Natl. Acad. Sci. USA 1996, 93, 8569–8571. [Google Scholar] [CrossRef] [Green Version]
- Nelson, C.A.; Singer, S.; Chen, T.; Puleo, A.E.; Lian, C.G.; Wei, E.X.; Giobbie-Hurder, A.; Mostaghimi, A.; LeBoeuf, N.R. Bullous pemphigoid after anti-PD-1 therapy: A retrospective case-control study evaluating impact on tumor response and survival outcomes. J. Am. Acad. Dermatol. 2020, 87, 1400–1402. [Google Scholar] [CrossRef]
- Kuo, A.M.; Kraehenbuehl, L.; King, S.; Leung, D.Y.M.; Goleva, E.; Moy, A.P.; Lacouture, M.E.; Shah, N.J.; Faleck, D.M. Contribution of the Skin-Gut Axis to Immune-Related Adverse Events with Multi-System Involvement. Cancers 2022, 14, 2995. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Yu, K.K.; Crew, A.B.; Messingham, K.A.; Fairley, J.A.; Woodley, D.T. Omalizumab therapy for bullous pemphigoid. J. Am. Acad. Dermatol. 2014, 71, 468–474. [Google Scholar] [CrossRef]
- Klepper, E.M.; Robinson, H.N. Dupilumab for the treatment of nivolumab-induced bullous pemphigoid: A case report and review of the literature. Dermatol. Online J. 2021, 27, 1–6. [Google Scholar] [CrossRef]
- Li, N.; Culton, D.; Diaz, L.A.; Liu, Z. Modes of Action of Intravenous Immunoglobulin in Bullous Pemphigoid. J. Investig. Dermatol. 2018, 138, 1249–1251. [Google Scholar] [CrossRef] [Green Version]
- Schauer, F.; Rafei-Shamsabadi, D.; Mai, S.; Mai, Y.; Izumi, K.; Meiss, F.; Kiritsi, D. Hemidesmosomal Reactivity and Treatment Recommendations in Immune Checkpoint Inhibitor-Induced Bullous Pemphigoid-A Retrospective, Monocentric Study. Front. Immunol. 2022, 13, 953546. [Google Scholar] [CrossRef] [PubMed]
- Povilaityte, E.; Gellrich, F.F.; Beissert, S.; Abraham, S.; Meier, F.; Günther, C. Treatment-resistant bullous pemphigoid developing during therapy with immune checkpoint inhibitors. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e591–e593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Q.; Chen, L.; Chen, J.; Zhang, J.; Zou, Y.; Gong, T.; Ji, C. Efficacy and Safety of Dupilumab in Moderate-to-Severe Bullous Pemphigoid. Front. Immunol. 2021, 12, 738907. [Google Scholar] [CrossRef] [PubMed]
- Muntyanu, A.; Netchiporouk, E.; Gerstein, W.; Gniadecki, R.; Litvinov, I.V. Cutaneous Immune-Related Adverse Events (irAEs) to Immune Checkpoint Inhibitors: A Dermatology Perspective on Management [Formula: See text]. J. Cutan Med. Surg. 2021, 25, 59–76. [Google Scholar] [CrossRef]
- Simonsen, A.B.; Kaae, J.; Ellebaek, E.; Svane, I.M.; Zachariae, C. Cutaneous adverse reactions to anti-PD-1 treatment-A systematic review. J. Am. Acad. Dermatol. 2020, 83, 1415–1424. [Google Scholar] [CrossRef]
- Wakade, D.V.; Carlos, G.; Hwang, S.J.; Chou, S.; Hui, R.; Fernandez-Peñas, P. PD-1 inhibitors induced bullous lichen planus-like reactions: A rare presentation and report of three cases. Melanoma Res. 2016, 26, 421–424. [Google Scholar] [CrossRef]
- Biolo, G.; Caroppo, F.; Salmaso, R.; Alaibac, M. Linear bullous lichen planus associated with nivolumab. Clin. Exp. Dermatol. 2019, 44, 67–68. [Google Scholar] [CrossRef] [Green Version]
- De Lorenzi, C.; André, R.; Vuilleumier, A.; Kaya, G.; Abosaleh, M. Bullous lichen planus and anti-programmed cell death-1 therapy: Case report and literature review. Ann. Dermatol. Venereol. 2020, 147, 221–227. [Google Scholar] [CrossRef]
- Ito, M.; Hoashi, T.; Endo, Y.; Kimura, G.; Kondo, Y.; Ishii, N.; Hashimoto, T.; Funasaka, Y.; Saeki, H. Atypical pemphigus developed in a patient with urothelial carcinoma treated with nivolumab. J. Dermatol. 2019, 46, e90–e92. [Google Scholar] [CrossRef]
- Jour, G.; Glitza, I.C.; Ellis, R.M.; Torres-Cabala, C.A.; Tetzlaff, M.T.; Li, J.Y.; Nagarajan, P.; Huen, A.; Aung, P.P.; Ivan, D.; et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: A report on bullous skin eruptions. J. Cutan Pathol. 2016, 43, 688–696. [Google Scholar] [CrossRef]
- Wang, L.L.; Patel, G.; Chiesa-Fuxench, Z.C.; McGettigan, S.; Schuchter, L.; Mitchell, T.C.; Ming, M.E.; Chu, E.Y. Timing of onset of adverse cutaneous reactions associated with programmed cell death protein 1 inhibitor therapy. JAMA Dermatol. 2018, 154, 1057–1061. [Google Scholar] [CrossRef]
- Hashimoto, H.; Ito, T.; Ichiki, T.; Yamada, Y.; Oda, Y.; Furue, M. The Clinical and Histopathological Features of Cutaneous Immune-Related Adverse Events and Their Outcomes. J. Clin. Med. 2021, 10, 728. [Google Scholar] [CrossRef]
- Sundaresan, S.; Nguyen, K.T.; Nelson, K.C.; Ivan, D.; Patel, A.B. Erythema multiforme major in a patient with metastatic melanoma treated with nivolumab. Dermatol. Online J. 2017, 23, 1–3. [Google Scholar] [CrossRef]
- Lammer, J.; Hein, R.; Roenneberg, S.; Biedermann, T.; Volz, T. Drug-induced Linear IgA Bullous Dermatosis: A Case Report and Review of the Literature. Acta Derm. Venereol. 2019, 99, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Del Pozo, J.; Martínez, W.; Yebra-Pimentel, M.T.; Almagro, M.; Peña-Penabad, C.; Fonseca, E. Linear immunoglobulin A bullous dermatosis induced by gemcitabine. Ann. Pharmacother. 2001, 35, 891–893. [Google Scholar] [CrossRef]
- Aguilar-Duran, S.; Mee, J.; Popat, S.; Heelan, K. Atezolizumab-induced linear IgA bullous dermatosis. Br. J. Dermatol. 2022, 187, e193. [Google Scholar] [CrossRef]
- Garcia-Mouronte, E.; Dominguez-Santas, M.; Bueno-Sacristan, D.; Azcarraga-Llobet, C.; Berna-Rico, E.D.; de Nicolas-Ruanes, M.B.; Moreno Garcia-Del Real, C. Linear IgA bullous dermatosis secondary to piperacillin-tazobactam. Dermatol. Ther. 2022, 35, e15232. [Google Scholar] [CrossRef]
- Tappel, A.C.; Tiwari, N.; Saavedra, A. Terbinafine-Induced Relapse of Bullous Lupus Erythematosus. J. Clin. Rheumatol. 2021, 27, S607–S609. [Google Scholar] [CrossRef]
- Sommers, K.R.; Kong, K.M.; Bui, D.T.; Fruehauf, J.P.; Holcombe, R.F. Stevens-Johnson syndrome/toxic epidermal necrolysis in a patient receiving concurrent radiation and gemcitabine. Anticancer Drugs 2003, 14, 659–662. [Google Scholar] [CrossRef]
- Cuthbert, R.J.; Craig, J.I.; Ludlam, C.A. Stevens-Johnson syndrome associated with methotrexate treatment for non-Hodgkin’s lymphoma. Ulster Med. J. 1993, 62, 95–97. [Google Scholar]
- Primka, E.J., 3rd; Camisa, C. Methotrexate-induced toxic epidermal necrolysis in a patient with psoriasis. J. Am. Acad. Dermatol. 1997, 36, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Moriconi, L.; Torino, F.; Romano, A.; Gargovich, A. Unusual reaction to chlorambucil: A case report. Cancer Lett. 1990, 54, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, S.B.; Stirling, A.L. Thalidomide-induced toxic epidermal necrolysis. Pharmacotherapy 1999, 19, 1177–1180. [Google Scholar] [CrossRef] [PubMed]
- Dourakis, S.P.; Sevastianos, V.A.; Alexopoulou, A.; Deutsch, M.; Stavrianeas, N. Treatment side effects. Case 2. Toxic, epidermal, necrolysis-like reaction associated with docetaxel chemotherapy. J. Clin. Oncol. 2002, 20, 3030–3032. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, A.; Apak, H.; Celkan, T.; Yüksel, L.; Yildiz, I. Toxic epidermal necrolysis after the use of high-dose cytosine arabinoside. Pediatr. Dermatol. 2001, 18, 38–40. [Google Scholar] [CrossRef]
- Figueiredo, M.S.; Yamamoto, M.; Kerbauy, J. Toxic epidermal necrolysis after the use of intermediate dose of cytosine arabinoside. Rev. Assoc. Med. Bras. (1992) 1998, 44, 53–55. [Google Scholar] [CrossRef]
- Ingen-Housz-Oro, S.; Milpied, B.; Badrignans, M.; Carrera, C.; Elshot, Y.S.; Bensaid, B.; Segura, S.; Apalla, Z.; Markova, A.; Staumont-Sallé, D.; et al. Severe blistering eruptions induced by immune checkpoint inhibitors: A multicentre international study of 32 cases. Melanoma Res. 2022, 32, 205–210. [Google Scholar] [CrossRef]
- Owen, C.E.; Jones, J.M. Recognition and Management of Severe Cutaneous Adverse Drug Reactions (Including Drug Reaction with Eosinophilia and Systemic Symptoms, Stevens-Johnson Syndrome, and Toxic Epidermal Necrolysis). Med. Clin. N. Am. 2021, 105, 577–597. [Google Scholar] [CrossRef]
- Clark, A.E.; Fook-Chong, S.; Choo, K.; Oh, C.C.; Yeo, Y.W.; Pang, S.M.; Lee, H.Y. Delayed admission to a specialist referral center for Stevens-Johnson syndrome and toxic epidermal necrolysis is associated with increased mortality: A retrospective cohort study. JAAD Int. 2021, 4, 10–12. [Google Scholar] [CrossRef]
- Kridin, K.; Brüggen, M.C.; Chua, S.L.; Bygum, A.; Walsh, S.; Nägeli, M.C.; Kucinskiene, V.; French, L.; Tétart, F.; Didona, B.; et al. Assessment of Treatment Approaches and Outcomes in Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: Insights from a Pan-European Multicenter Study. JAMA Dermatol. 2021, 157, 1182–1190. [Google Scholar] [CrossRef]
- Han, J.J.; Creadore, A.; Seminario-Vidal, L.; Micheletti, R.; Noe, M.H.; Mostaghimi, A. Medical management of Stevens-Johnson syndrome/toxic epidermal necrolysis among North American dermatologists. J. Am. Acad. Dermatol. 2022, 87, 429–431. [Google Scholar] [CrossRef]
- Dodiuk-Gad, R.P.; Chung, W.H.; Valeyrie-Allanore, L.; Shear, N.H. Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: An Update. Am. J. Clin. Dermatol. 2015, 16, 475–493. [Google Scholar] [CrossRef]
- Khan, N.A.J.; Alsharedi, M. Bullous Skin Rash: A Rare Case of Palbociclib-Induced Dermatological Toxicity. Cureus 2020, 12, e10229. [Google Scholar] [CrossRef]
Drugs | Clinical Features | Histopathology | |
---|---|---|---|
Cutaneous Bullous DAE | |||
Vesiculobullous Eczema | Immune Checkpoint Inhibitors |
|
|
Hand–Foot Skin Reaction | Cytotoxic chemotherapy, targeted therapy |
|
|
Bullous Toxic Erythema of Chemotherapy | Chemotherapy and targeted therapy |
|
|
Systemic Bullous DAE | |||
Bullous Pemphigoid | Immune Checkpoint Inhibitors |
|
|
Lichen Planus Pemphigoides | Immune Checkpoint Inhibitors |
|
|
Pemphigus Vulgaris | Immune Checkpoint Inhibitors |
|
|
Bullous Erythema Multiforme | Immune Checkpoint Inhibitors |
|
|
Linear IgA Bullous Dermatosis | Immune Checkpoint Inhibitors and antimetabolite chemotherapy |
|
|
Bullous Lupus Erythematosus | Immune Checkpoint Inhibitors |
|
|
Stevens–Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN), and SJS/TEN-like Reactions | Chemotherapy, targeted therapy, and immune checkpoint inhibitors |
|
|
Bullous Lichenoid Drug Eruption | Chemotherapy and immune checkpoint inhibitors |
|
|
Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | |
---|---|---|---|---|---|
Eczema |
|
|
| - | - |
Toxic Erythema of Chemotherapy |
|
|
| - | - |
Erythema Multiforme |
|
|
|
|
|
Bullous Dermatitis, such as Hand–Foot Skin Reaction,Bullous Lupus Erythematosus, Bullous Pemphigoid, Bullous Lichenoid Drug Eruption, Lichen Planus Pemphigoides, Pemphigus Vulgaris, Linear IgA Bullous Dermatosis |
|
|
|
|
|
Stevens–Johnson syndrome(SJS) and SJS-Like Eruptions | - | - |
|
|
|
Toxic Epidermal Necrolysis | - | - | - |
|
|
Type of DAE | Pathogenesis | References |
---|---|---|
Cutaneous Bullous DAE | ||
Vesiculobullous eczema |
| [23] |
Hand–Foot Skin Reaction |
| [26,27,28,29,30] |
Bullous Toxic Erythema of Chemotherapy (TEC) |
| [31,32,33]. |
Systemic Bullous DAE | ||
Bullous Pemphigoid (BP) |
| [3,8,34,35,36,37] |
Bullous Lichenoid Drug Eruption (BLDE) |
| [38,39] |
Lichen Planus Pemphigoides |
| [40,41,42] |
Pemphigus Vulgaris (PV) |
| [43] |
Bullous Erythema Multiforme (BEM) |
| [44] |
Linear IgA Bullous Dermatosis (LABD) |
| [45] |
Bullous Lupus Erythematosus |
| |
Stevens–Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) |
| [8,39,46,47] |
SJS/TEN-like Reactions |
| [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, R.; Shah, H.; Shear, N.H.; Ziv, M.; Markova, A.; Dodiuk-Gad, R.P. A Review of Bullous Dermatologic Adverse Events Associated with Anti-Cancer Therapy. Biomedicines 2023, 11, 323. https://doi.org/10.3390/biomedicines11020323
Parisi R, Shah H, Shear NH, Ziv M, Markova A, Dodiuk-Gad RP. A Review of Bullous Dermatologic Adverse Events Associated with Anti-Cancer Therapy. Biomedicines. 2023; 11(2):323. https://doi.org/10.3390/biomedicines11020323
Chicago/Turabian StyleParisi, Rose, Hemali Shah, Neil H. Shear, Michael Ziv, Alina Markova, and Roni P. Dodiuk-Gad. 2023. "A Review of Bullous Dermatologic Adverse Events Associated with Anti-Cancer Therapy" Biomedicines 11, no. 2: 323. https://doi.org/10.3390/biomedicines11020323
APA StyleParisi, R., Shah, H., Shear, N. H., Ziv, M., Markova, A., & Dodiuk-Gad, R. P. (2023). A Review of Bullous Dermatologic Adverse Events Associated with Anti-Cancer Therapy. Biomedicines, 11(2), 323. https://doi.org/10.3390/biomedicines11020323