Energy Homeostasis-Associated (Enho) mRNA Expression and Energy Homeostasis in the Acute Stress Versus Chronic Unpredictable Mild Stress Rat Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Procedures
2.2. Anthropometric Measures
2.3. Indirect Calorimetry
2.4. Blood Sampling and Corticosterone Measurement
2.5. Tissue Sample Preparation
2.6. Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Body Weight Change
3.2. Indirect Calorimetry Change
3.3. Enho Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stratakis, C.A.; Gold, P.W.; Chrousos, G.P. Neuroendocrinology of stress: Implications for growth and development. Horm. Res. Paediatr. 1995, 43, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Raber, J. Detrimental effects of chronic hypothalamic-pituitary-adrenal axis activation. From obesity to memory deficits. Mol. Neurobiol. 1998, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Harris Ruth, B.S. Chronic and acute effects of stress on energy balance: Are their appropriate animal models? Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 308, R250–R265. [Google Scholar] [CrossRef]
- American Psychological Association. Stress in America, Paying with Our Health. 2014. Available online: http://www.apa.org/news/press/releases/stress/2014/stress-report.pdf (accessed on 1 June 2022).
- Von Kanel, R. Psychosocial stress, and cardiovascular risk: Current opinion. Swiss. Med. Wkly. 2012, 142, w13502. [Google Scholar]
- Markov, D.D.; Novosadova, E.V. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology 2022, 11, 1621. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.G.; Trevaskis, J.L.; Lam, D.D.; Sutton, G.M.; Koza, R.A.; Chouljenko, V.N.; Kousoulas, K.G.; Rogers, P.M.; Kesterson, R.A.; Thearle, M.; et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab. 2008, 8, 468–481. [Google Scholar] [CrossRef]
- Jasaszwili, M.; Billert, M.; Strowski, M.Z.; Nowak, K.W.; Skrzypski, M. Adropin as a fat-burning hormone with multiple functions—Review of a decade of research. Molecules 2020, 25, 549. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Q.; Lin, X.; Chen, M.; Liu, Q. A review of adropin as the medium of dialogue between energy regulation and immune regulation. Oxidative Med. Cell. Longev. 2020, 2020, 3947806. [Google Scholar] [CrossRef]
- Lovren, F.; Pan, Y.; Quan, A.; Singh, K.K.; Shukla, P.C.; Gupta, M.; Al-Omran, M.; Teoh, H.; Verma, S. Adropin is a novel regulator of endothelial function. Circulation 2010, 122, S185–S192. [Google Scholar] [CrossRef]
- Abulmeaty, M.M.A.; Almajwal, A.M.; Alam, I.; Razak, S.; ElSadek, M.F.; Aljuraiban, G.S.; Hussein, K.S.; Malash, A.M. Relationship of Vitamin D-deficient Diet and Irisin, and Their Impact on Energy Homeostasis in Rats. Front. Physiol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Kuti, D.; Winkler, Z.; Horváth, K.; Juhász, B.; Szilvásy-Szabó, A.; Fekete, C.; Ferenczi, S.; Kovács, K.J. The metabolic stress response: Adaptation to acute-, repeated- and chronic challenges in mice. iScience 2022, 25, 104693. [Google Scholar] [CrossRef] [PubMed]
- Vales, L.D.F.M.; Fukuda, M.T.H.; Almeida, S.S. Effects of acute stress on learning and memory processes of malnourished rats. Psicol. Reflex. Crít. 2014, 27, 784–793. [Google Scholar] [CrossRef]
- Willner, P.; Towell, A.; Sampson, D.; Sophokleous, S.; Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 1987, 93, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Burstein, O.; Franko, M.; Gale, E.; Handelsman, A.; Barak, S.; Motsan, S.; Shamir, A.; Toledano, R.; Simhon, O.; Hirshler, Y.; et al. Escitalopram and NHT normalized stress-induced anhedonia and molecular neuroadaptations in a mouse model of depression. PLoS ONE 2017, 12, e0188043. [Google Scholar] [CrossRef] [PubMed]
- Novelli, E.L.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.; Rodrigues, H.G.; Mani, F.; Fernandes, A.A.; Cicogna, A.C.; Novelli Filho, J.L. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef]
- Even, P.C.; Nadkarni, N.A. Indirect calorimetry in laboratory mice and rats: Principles, practical considerations, interpretation, and perspectives. American Journal of Physiology. Regul. Integer. Comp. Physiol. 2012, 303, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Van de Heijning, B.J.M.; Oosting, A.; Kegler, D.; Van der Beek, E.M. An Increased Dietary Supply of Medium-Chain Fatty Acids during Early Weaning in Rodents Prevents Excessive Fat Accumulation in Adulthood. Nutrients 2017, 9, 631. [Google Scholar] [CrossRef]
- Ghneim, H.K. The effect of Echis coloratus venom on biochemical and molecular markers of the antioxidant capacity in human fibroblasts. Libyan J. Med. 2017, 12, 13034515. [Google Scholar] [CrossRef]
- Kvetnansky, R.; Sabban, E.L.; Palkovits, M. Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiol. Rev. 2009, 89, 535–606. [Google Scholar] [CrossRef] [PubMed]
- Armario, A, The hypothalamic–pituitary–adrenal axis: What can it tell us about stressors? CNS Neurol. Disord. Drug Targets 2006, 5, 485–501. [CrossRef]
- Rabasa, C.; Dickson, S.L. Impact of stress on metabolism and energy balance. Curr. Opin. Behav. Sci. 2016, 9, 71–77. [Google Scholar] [CrossRef] [Green Version]
- De Souza, E.B.; Van Loon, G.R. Differential plasma beta-endorphin, beta-lipotropin, and adrenocorticotropin responses to stress in rats. Endocrinology 1985, 116, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.B.; Zhou, J.; Youngblood, B.D.; Rybkin, I.I.; Smagin, G.N.; Ryan, D.H. Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, R1928–R1938. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Kusnecov, A.W.; Shurin, M.R.; DePaoli, M.; Rabin, B.S. Exposure to physical and psychological stressors elevates plasma interleukin 6: Relationship to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology 1993, 133, 2523–2530. [Google Scholar] [CrossRef]
- Rueter, L.E.; Jacobs, B.L. A microdialysis examination of serotonin release in the rat forebrain induced by behavioral/environmental manipulations. Brain Res. 1996, 739, 57–69. [Google Scholar] [CrossRef]
- Dallman, M.F.; Akana, S.F.; Strack, A.M.; Hanson, E.S.; Sebastian, R.J. The neural network that regulates energy balance is responsive to glucocorticoids and insulin and also regulates HPA axis responsivity at a site proximal to CRF neurons. Ann. N. Y. Acad. Sci. 1995, 771, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.; Herzog, H.; Shi, Y.C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab. 2015, 26, 125–135. [Google Scholar] [CrossRef]
- Dal-Zotto, S.; Marti, O.; Delgado, R.; Armario, A. Potentiation of glucocorticoid release does not modify the long-term effects of a single exposure to immobilization stress. Psychopharmacology 2004, 177, 230–237. [Google Scholar] [CrossRef]
- Harris, R.B.; Palmondon, J.; Leshin, S.; Flatt, W.P.; Richard, D. Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stress. Horm. Behav. 2006, 49, 615–625. [Google Scholar] [CrossRef]
- Tanimura, S.M.; Watts, A.G. Corticosterone modulation of ACTH secretogogue gene expression in the paraventricular nucleus. Peptides 2001, 22, 775–783. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Dallman, M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 1998, 84, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Coffman, J.A. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. Future Neurol. 2020, 15, FNL39. [Google Scholar] [CrossRef]
- Westberry, J.M.; Sadosky, P.W.; Hubler, T.R.; Gross, K.L.; Scammell, J.G. Glucocorticoid resistance in squirrel monkeys results from a combination of a transcriptionally incompetent glucocorticoid receptor and overexpression of the glucocorticoid receptor co-chaperon FKBP51. J. Steroid Biochem. Mol. Biol. 2006, 100, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Chinenov, Y.; Coppo, M.; Gupte, R.; Sacta, M.A.; Rogatsky, I. Glucocorticoid receptor coordinates transcription factor-dominated regulatory network in macrophages. BMC Genom. 2014, 15, 656. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.I.; D’Souza, C.; Singh, J.; Adeghate, E. Adropin’s Role in Energy Homeostasis and Metabolic Disorders. Int. J. Mol. Sci. 2022, 23, 8318. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Q.; Huang, Z.; Jiang, Q. Adropin inhibited tilapia hepatic glucose output and triglyceride accumulation via AMPK activation. J. Endocrinol. 2020, 246, 109–122. [Google Scholar] [CrossRef]
- Jasaszwili, M.; Wojciechowicz, T.; Billert, M.; Strowski, M.Z.; Nowak, K.W.; Skrzypski, M. Effects of adropin on proliferation and differentiation of 3T3-L1 cells and rat primary preadipocytes. Mol. Cell. Endocrinol. 2019, 496, 110532. [Google Scholar] [CrossRef]
- De Souza, D.B.; Silva, D.; Slva, C.M.C.; Sampaio, F.J.B.; Costa, W.S.C.; Cortez, C.M. Effects of immobilization stress on kidneys of Wistar male rats: A morphometrical and stereological analysis. Kidney Blood Press. Res. 2011, 34, 424–429. [Google Scholar] [CrossRef]
- Gao, S.; Ghoshal, S.; Zhang, L.; Stevens, J.R.; McCommis, K.S.; Finck, B.N.; Lopaschuk, G.D.; Butler, A.A. The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. J. Biol. Chem. 2019, 294, 13366–13377. [Google Scholar] [CrossRef]
- Amen, T.; Kaganovich, D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Rep. 2021, 35, 109237. [Google Scholar] [CrossRef]
- Han, W.; Zhang, C.; Wang, H.; Yang, H.; Guo, Y.; Li, G.; Zhang, H.; Wang, C.; Chen, D.; Geng, C.; et al. Alterations of irisin, adropin, preptin and BDNF concentrations in coronary heart disease patients comorbid with depression. Ann. Transl. Med. 2019, 7, 298. Available online: https://atm.amegroups.com/article/view/26214 (accessed on 1 January 2023). [CrossRef] [PubMed]
Day | Week 1 | Week 2 | Week 3 | Week 4 |
---|---|---|---|---|
Sunday | Cage tilting 24 h | Social defeat 30 min | Cage tilting 24 h | Social defeat 30 min |
Monday | Shaking at 150 rpm for 1 h | Restraint for 1 h | Shaking at 150 rpm for 1 h | Restraint for 1 h |
Tuesday | Restraint for 1 h | Hot air for 10 min | Restraint for 1 h | Hot air for 10 min |
Wednesday | Hot air for 10 min | Tail pinch 2 min | Hot air for 10 min | Tail pinch 2 min |
Thursday | Continuous light 12 h | Wet bedding 24 h | Continuous light 12 | Wet bedding 24 h |
Friday | Food derivation 24 h | Continuous light 12 | Wet bedding 24 h | Continuous light 12 |
Saturday | Water derivation 24 h | Food derivation 24 h | Food derivation 24 h | Water derivation 24 h |
Variables | A-NC Group Mean ± SD (n = 8) | AS Group Mean ± SD (n = 8) | p-Value | C-NC Group Mean ± SD (n = 8) | CUMS Group Mean ± SD (n = 8) | p-Value | p-Value |
---|---|---|---|---|---|---|---|
Rat length (cm) | 20.85 ± 0.25 | 20.91 ± 0.66 | 0.778 | 20.83 ± 0.26 | 20.92 ± 0.66 | 0.778 | 0.983 |
Baseline weight (g) | 211.33 ± 14.79 | 209.17 ± 16.34 | 0.868 | 213.50 ± 15.63 | 215.00 ± 35.51 | 0.908 | 0.971 |
Final weight (g) * | 201.00 ± 14.45 | 194.50 ± 18.52 | 0.569 | 220.83 ± 21.75 | 189.83 ± 22.08 | 0.012 | 0.057 |
Baseline BMI (g/cm2) | 0.49 ± 0.03 | 0.48 ± 0.04 | 0.831 | 0.50 ± 0.04 | 0.49 ± 0.08 | 0.831 | 0.925 |
Final BMI (g/cm2) | 0.46 ± 0.03 | 0.44 ± 0.04 | 0.501 | 0.51 ± 0.05 | 0.45 ± 0.07 | 0.042 | 0.110 |
Weight gain (g) | −10.33 ± 21.03 | −14.67 ± 20.01 | 0.871 | 7.33 ± 6.59 | −25.17 ± 24.46 | 0.050 | 0.166 |
Variables | A-NC Group Mean ± SD (n = 8) | AS Group Mean ± SD (n = 8) | p-Value | C-NC Group Mean ± SD (n = 8) | CUMS Group Mean ± SD (n = 8) | p-Value | p-Value † |
---|---|---|---|---|---|---|---|
VO2 (mL/h/kg) | 2365.84 ± 406.16 | 2032.67 ± 205.48 | 0.071 | 2369.13 ± 388.11 | 2369.95 ± 93.75 | 0.996 | 0.172 |
VO2 (mL/h/kg LBM) | 1561.63 ± 272.83 | 1333.36 ± 141.96 | 0.069 | 1553.27 ± 264.28 | 1599.14 ± 67.71 * | 0.703 | 0.137 |
VO2 (mL/h/rat) | 450.60 ± 91.52 | 376.68 ± 47.58 | 0.090 | 451.44 ± 88.05 | 493.22 ± 47.99 * | 0.326 | 0.071 |
VCO2 (mL/h/kg) | 1810.26 ± 427.08 | 1489.90 ± 240.49 | 0.105 | 1802.95 ± 416.54 | 1886.21 ± 114.44 * | 0.664 | 0.192 |
VCO2 (mL/h/kg LBM) | 1195.56 ± 286.16 | 977.72 ± 161.83 | 0.101 | 1191.53 ± 279.58 | 1272.86 ± 80.81 * | 0.528 | 0.146 |
VCO2 (mL/h/rat) | 345.53 ± 91.33 | 276.54 ± 49.81 | 0.112 | 345.78 ± 89.24 | 392.71 ± 43.61 * | 0.272 | 0.076 |
RQ | 0.76 ± 0.07 | 0.73 ± 0.05 | 0.366 | 0.76 ± 0.05 | 0.79 ± 0.02 * | 0.225 | 0.222 |
TEE (kcal/h/kg) | 11.33 ± 2.07 | 9.66 ± 1.08 | 0.087 | 11.29 ± 2.01 | 11.43 ± 0.50 | 0.881 | 0.184 |
TEE (kcal/h/kg LBM) | 7.48 ± 1.39 | 6.34 ± 0.74 | 0.077 | 7.49 ± 1.36 | 7.71 ± 0.36 * | 0.718 | 0.138 |
TEE (kcal/h/rat) | 2.16 ± 0.46 | 1.79 ± 0.24 | 0.092 | 2.13 ± 0.43 | 2.38 ± 0.24 * | 0.252 | 0.071 |
Food intake (g/rat) | 22.95 ± 4.37 | 16.60 ± 2.69 | 0.027 | 20.65 ± 5.47 | 28.69 ± 5.34 * | 0.007 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abulmeaty, M.M.A.; Almajwal, A.M.; Razak, S.; Al-Ramadhan, F.R.; Wahid, R.M. Energy Homeostasis-Associated (Enho) mRNA Expression and Energy Homeostasis in the Acute Stress Versus Chronic Unpredictable Mild Stress Rat Models. Biomedicines 2023, 11, 440. https://doi.org/10.3390/biomedicines11020440
Abulmeaty MMA, Almajwal AM, Razak S, Al-Ramadhan FR, Wahid RM. Energy Homeostasis-Associated (Enho) mRNA Expression and Energy Homeostasis in the Acute Stress Versus Chronic Unpredictable Mild Stress Rat Models. Biomedicines. 2023; 11(2):440. https://doi.org/10.3390/biomedicines11020440
Chicago/Turabian StyleAbulmeaty, Mahmoud M. A., Ali M. Almajwal, Suhail Razak, Fatimah R. Al-Ramadhan, and Reham M. Wahid. 2023. "Energy Homeostasis-Associated (Enho) mRNA Expression and Energy Homeostasis in the Acute Stress Versus Chronic Unpredictable Mild Stress Rat Models" Biomedicines 11, no. 2: 440. https://doi.org/10.3390/biomedicines11020440
APA StyleAbulmeaty, M. M. A., Almajwal, A. M., Razak, S., Al-Ramadhan, F. R., & Wahid, R. M. (2023). Energy Homeostasis-Associated (Enho) mRNA Expression and Energy Homeostasis in the Acute Stress Versus Chronic Unpredictable Mild Stress Rat Models. Biomedicines, 11(2), 440. https://doi.org/10.3390/biomedicines11020440