Dynapenia, Muscle Quality, and Hepatic Steatosis in Patients with Obesity and Sarcopenic Obesity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunan, E.; Wright, C.L.; Semola, O.A.; Subramanian, M.; Balasubramanian, P.; Lovern, P.C.; Fancher, I.S.; Butcher, J.T. Obesity as a Premature Aging Phenotype—Implications for Sarcopenic Obesity. GeroScience 2022, 44, 1393–1405. [Google Scholar] [CrossRef]
- Zou, B.; Yeo, Y.H.; Nguyen, V.H.; Cheung, R.; Ingelsson, E.; Nguyen, M.H. Prevalence, Characteristics and Mortality Outcomes of Obese, Nonobese and Lean NAFLD in the United States, 1999–2016. J. Intern. Med. 2020, 288, 139–151. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Lubrano, C.; Gnessi, L.; Mariani, S.; Lenzi, A.; Donini, L.M. Fatty Liver Index Associates with Relative Sarcopenia and GH/ IGF- 1 Status in Obese Subjects. PLoS ONE 2016, 11, e0145811. [Google Scholar] [CrossRef]
- Gan, D.; Wang, L.; Jia, M.; Ru, Y.; Ma, Y.; Zheng, W.; Zhao, X.; Yang, F.; Wang, T.; Mu, Y.; et al. Low Muscle Mass and Low Muscle Strength Associate with Nonalcoholic Fatty Liver Disease. Clin. Nutr. 2020, 39, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Polyzos, S.A.; Chrysohoou, C.; Skoumas, J.; Pitsavos, C.S.; Panagiotakos, D.B.; Mantzoros, C.S. Skeletal Muscle Mass and Abdominal Obesity Are Independent Predictors of Hepatic Steatosis and Interact to Predict Ten-Year Cardiovascular Disease Incidence: Data from the ATTICA Cohort Study. Clin. Nutr. 2022, 41, 1281–1289. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Gray, S.R.; Forrest, E.; Welsh, P.; Sattar, N.; Celis-Morales, C.; Ho, F.K.; Pell, J.P. Associations of Muscle Mass and Grip Strength with Severe NAFLD: A Prospective Study of 333,295 UK Biobank Participants. J. Hepatol. 2022, 76, 1021–1029. [Google Scholar] [CrossRef]
- Charatcharoenwitthaya, P.; Karaketklang, K.; Aekplakorn, W. Muscle Strength, but Not Body Mass Index, Is Associated with Mortality in Patients with Non-Alcoholic Fatty Liver Disease. J. Cachexia. Sarcopenia. Muscle 2022, 13, 2393–2404. [Google Scholar] [CrossRef]
- Pasco, J.A.; Sui, S.X.; West, E.C.; Anderson, K.B.; Rufus-Membere, P.; Tembo, M.C.; Hyde, N.K.; Williams, L.J.; Liu, Z.S.J.; Kotowicz, M.A. Fatty Liver Index and Skeletal Muscle Density. Calcif. Tissue Int. 2022, 110, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Lee, S.H.; Kwak, M.K.; Isales, C.M.; Koh, J.M.; Hamrick, M.W. Inverse Relationship between Serum HsCRP Concentration and Hand Grip Strength in Older Adults: A Nationwide Population-Based Study. Aging 2018, 10, 2051–2061. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J. Gerontol. Ser. A 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of Skeletal Muscle Mass by Bioelectrical Impedance Analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M. Measuring and Estimating Insulin Resistance in Clinical and Research Settings. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 79–86. [Google Scholar] [CrossRef]
- Günther, C.M.; Bürger, A.; Rickert, M.; Crispin, A.; Schulz, C.U. Grip Strength in Healthy Caucasian Adults: Reference Values. J. Hand Surg. 2008, 33, 558–565. [Google Scholar] [CrossRef]
- Haidar, S.G.; Kumar, D.; Bassi, R.S.; Deshmukh, S.C. Average versus Maximum Grip Strength: Which Is More Consistent? J. Hand Surg. 2017, 29, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Poggiogalle, E.; Lubrano, C.; Gnessi, L.; Mariani, S.; di Martino, M.; Catalano, C.; Lenzi, A.; Donini, L.M. The Decline in Muscle Strength and Muscle Quality in Relation to Metabolic Derangements in Adult Women with Obesity. Clin. Nutr. 2019, 38, 2430–2435. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Rolland, Y.; Zamboni, M.; Aubertin-Leheudre, M. How to Assess Functional Status: A New Muscle Quality Index. J. Nutr. Health Aging 2012, 16, 67–77. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Rolland, Y.; Vellas, B.; Aubertin-Leheudre, M. Muscle Quantity Is Not Synonymous with Muscle Quality. J. Am. Med. Dir. Assoc. 2013, 14, 852.e1–852.e7. [Google Scholar] [CrossRef]
- Booth, M. Assessment of Physical Activity: An International Perspective. Res. Q. Exerc. Sport 2015, 71, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, But Not Muscle Mass, Is Associated with Mortality in the Health, Aging and Body Composition Study Cohort. J. Gerontol. Ser. A 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Yoda, M.; Inaba, M.; Okuno, S.; Yoda, K.; Yamada, S.; Imanishi, Y.; Mori, K.; Shoji, T.; Ishimura, E.; Yamakawa, T.; et al. Poor Muscle Quality as a Predictor of High Mortality Independent of Diabetes in Hemodialysis Patients. Biomed. Pharmacother. 2012, 66, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Haggerty, C.L.; Goodpaster, B.; Harris, T.; Kritchevsky, S.; Nevitt, M.; Miles, T.P.; Visser, M. Strength and Muscle Quality in a Well-Functioning Cohort of Older Adults: The Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2003, 51, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.H.; Eissa, M.; Bluth, E.I.; Gulotta, P.M.; Davis, N.K. Hepatorenal Index as an Accurate, Simple, and Effective Tool in Screening for Steatosis. Am. J. Roentgenol. 2012, 199, 997–1002. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; Blunda, G.; Cammisa, N.; Campo, F.; et al. Visceral Adiposity IndexA Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Kahn, H.S. The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 1–7. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a Simple Noninvasive Index to Predict Significant Fibrosis in Patients with HIV/HCV Coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD Fibrosis Score: A Noninvasive System That Identifies Liver Fibrosis in Patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic Steatosis Index: A Simple Screening Tool Reflecting Nonalcoholic Fatty Liver Disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Farrell, G.C.; Larter, C.Z. Nonalcoholic Fatty Liver Disease: From Steatosis to Cirrhosis. Hepatology 2006, 43, S99–S112. [Google Scholar] [CrossRef] [PubMed]
- Poggiogalle, E.; Rossignon, F.; Carayon, A.; Capel, F.; Rigaudière, J.P.; de Saint Vincent, S.; Le-Bacquer, O.; Salles, J.; Giraudet, C.; Patrac, V.; et al. Deleterious Effect of High-Fat Diet on Skeletal Muscle Performance Is Prevented by High-Protein Intake in Adult Rats but Not in Old Rats. Front Physiol. 2022, 12, 2369. [Google Scholar] [CrossRef] [PubMed]
- Sénéchal, M.; Dionne, I.J.; Brochu, M. Dynapenic Abdominal Obesity and Metabolic Risk Factors in Adults 50 Years of Age and Older. J. Aging Health 2012, 24, 812–826. [Google Scholar] [CrossRef]
- Kowall, B. Lower Body Muscle Strength, Dynapenic Obesity and Risk of Type 2 Diabetes-Longitudinal Results on the Chair-Stand Test from the Survey of Health, Ageing and Retirement in Europe (SHARE). BMC Geriatr. 2022, 22, 924. [Google Scholar] [CrossRef] [PubMed]
- Kitade, H.; Chen, G.; Ni, Y.; Ota, T. Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments. Nutrients 2017, 9, 387. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; Moscatiello, S.; Ciaravella, M.F.; Marchesini, G. Insulin Resistance in Nonalcoholic Fatty Liver Disease. Curr. Pharm. Des. 2010, 16, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Chen, Z.; Baudier, R.L.; Krousel-Wood, M.; Anderson, A.H.; Fonseca, V.A.; Mauvais-Jarvis, F. Sex Differences in the Progression of Metabolic Risk Factors in Diabetes Development. JAMA Netw. Open 2022, 5, e2222070. [Google Scholar] [CrossRef]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J.; Abrams, S.; Arceo, D.; Espinosa, D.; Fairly, L.; et al. Comparison of Noninvasive Markers of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Cusi, K.; Isaacs, S.; Barb, D.; Basu, R.; Caprio, S.; Garvey, W.T.; Kashyap, S.; Mechanick, J.I.; Mouzaki, M.; Nadolsky, K.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr. Pract. 2022, 28, 528–562. [Google Scholar] [CrossRef]
Variable (Units) | NSO Subjects (n = 49) | SO Subjects (n = 22) | p-Value | |
---|---|---|---|---|
Demographics | Age (years) | 52.2 (8) | 56.2 (5.9) | * |
Females (N, %) | 29, 59.2% | 18, 81.8% | 0.074 | |
Menopause (N, %) | 18, 62.1% | 15, 83.3% | ns | |
Anthropometry and body composition | Weight (kg) | 97.6 (88.1–107.0) | 88.1 (74.6–106.3) | * |
BMI (kg/m2) | 35.32 (32.86–38.30) | 34.64 (31.93–40.16) | ns | |
Waist (cm) | 111.7 (104.2–122.3) | 107.8 (97.9–118.5) | ns | |
WHtR | 0.95 (0.91–1.02) | 0.93 (0.92–0.98) | ns | |
FM (kg) | 41.6 (35.8–49.7) | 41.3 (35.3–48.3) | ns | |
Body fat (%) | 42.6 (39.4–47.9) | 48.6 (44.9–50.0) | ** | |
FFM (kg) | 54.8 (47.3–65.8) | 45.2 (38.3–52.5) | ** | |
Total SMM (kg) | 21.9 (24.5–32.5) | 19.7 (17.7–24.8) | ** | |
Total SMM/weight | 0.266 (0.236–0.305) | 0.239 (0.219–0.262) | * | |
Muscle strength and derived indices | Left HGS (kg) | 28.6 (20.8–33.7) | 13.7 (12.4–16.4) | ** |
Right HGS (kg) | 28.1 (21.1–35.0) | 15.6 (12.6–16.8) | ** | |
Left MQI | 16.5 (15.3–19.4) | 11.4 (10.2–12.7) | ** | |
Right MQI | 17.5 (15.5–20.0) | 12.0 (10.5–14.5) | ** | |
Glucose–insulin metabolism | Glu0′ (mg/dL) | 94 (86–103) | 95 (86–106) | ns |
Glu120′ (mg/dL) | 105 (82–126) | 95 (67–110) | 0.075 | |
Ins0′ (mUI/mL) | 16.0 (11.4–23.5) | 13.4 (10.1–20.2) | ns | |
Ins120′ (mUI/mL) | 90.6 (40.8–145.6) | 60.8 (20.2–96.2) | ns | |
HbA1c (mmol/mol) | 35.0 (33.8–38.0) | 37.0 (36.0–39.5) | * | |
Disposition index | 49.1 (35.5–74.0) | 48.1 (35.1–76.1) | ns | |
Lipid profile and visceral adiposity indices | TOT-C (mg/dL) | 189 (175–213) | 229 (192–252) | ** |
LDL-C (mg/dL) | 121 (100–135) | 146 (128–173) | * | |
HDL-C (mg/dL) | 49 (41–59) | 53 (46–67) | 0.051 | |
TG (mg/dL) | 118 (72–154) | 112 (87–133) | ns | |
LAP | 61.0 (39.1–94.1) | 60.0 (44.8–72.3) | ns | |
VAI | 94.2 (61.8–144.8) | 107.4 (78.6–136.0) | ns | |
Clinical biochemistry | AST (U/L) | 19 (16–24) | 19 (15–20) | ns |
ALT (U/L) | 19.5 (14.3–37.5) | 16.5 (13.3–22.0) | * | |
γGT (U/L) | 18.5 (13.8–35.3) | 18.5 (13.8–35.3) | * | |
Creatinine (mg/dL) | 0.86 (0.74–0.97) | 0.80 (0.78–0.92) | ns | |
Urate (mmol/L) | 5.0 (1.4–5.7) | 5.5 (4.8–6.0) | * | |
Liver steatosis and fibrosis indices | FLI | 85.6 (69.3–94.0) | 73.7 (43.4–94.0) | ns |
FIB-4 | 0.92 (0.68–1.27) | 0.97 (0.77–1.21) | ns | |
NFS | −1.02 (−1.9, −0.08) | −0.68 (−2.0, −0.12) | ns | |
Liver steatosis | N, % | 34, 69.4% | 10, 45.5% | 0.098 |
Physical activity level | Low (N, %) | 25, 51.0% | 11, 50.0% | ns |
Moderate (N, %) | 16, 32.7% | 9, 40.9% | ns | |
High (N, %) | 8, 16.3% | 2, 9.1% | ns | |
Medications | Antihypertensive N, % | 17, 35.4% | 9, 40.9% | ns |
Hypolipidemic N, % | 8, 16.7% | 1, 4.5% | ns |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95% C.I. for B | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | LLC | ULC | ||||
1 | Intercept | 10.902 | 5.781 | 1.886 | 0.067 | −0.822 | 22.626 | |
Body fat | −0.008 | 0.116 | −0.011 | −0.071 | 0.944 | −0.244 | 0.228 | |
Menopause | −1.056 | 1.119 | −0.142 | −0.944 | 0.352 | −3.324 | 1.213 | |
Disposition index | 0.059 | 0.02 | 0.425 | 2.927 | 0.006 | 0.018 | 0.100 | |
Hepatic steatosis | 1.911 | 1.002 | 0.279 | 1.907 | 0.064 | −0.121 | 3.943 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95.0% C.I. for B | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | LLC | ULC | ||||
2 | Intercept | 11.134 | 6.075 | 1.833 | 0.076 | −1.256 | 23.523 | |
Body fat | 0.021 | 0.128 | 0.027 | 0.163 | 0.872 | −0.241 | 0.283 | |
Menopause | −1.797 | 1.340 | −0.235 | −1.341 | 0.190 | −4.529 | 0.936 | |
Disposition index | 0.065 | 0.023 | 0.469 | 2.853 | 0.008 | 0.019 | 0.112 | |
γGT | −0.015 | 0.043 | −0.063 | −0.352 | 0.727 | −0.104 | 0.073 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95% C.I. for B | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | LLC | ULC | ||||
3 | Intercept | 11.384 | 6.204 | 1.835 | 0.076 | −1.252 | 24.021 | |
Body fat | −0.027 | 0.122 | −0.035 | −0.224 | 0.824 | −0.275 | 0.220 | |
Menopause | −1.230 | 1.258 | −0.155 | −0.978 | 0.336 | −3.792 | 1.332 | |
Disposition index | 0.069 | 0.022 | 0.496 | 3.144 | 0.004 | 0.024 | 0.114 | |
ALT | 0.061 | 0.057 | 0.170 | 1.076 | 0.290 | −0.055 | 0.177 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95% C.I for B | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | LLC | ULC | ||||
4 | Intercept | 17.538 | 5.961 | 2.942 | 0.006 | 5.469 | 29.606 | |
Body fat | −0.043 | 0.127 | −0.056 | −0.338 | 0.738 | −0.300 | 0.214 | |
Menopause | −1.455 | 1.228 | −0.195 | −1.185 | 0.243 | −3.942 | 1.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frigerio, F.; De Marinis, M.; Camardella, F.; Cantisani, V.; Pinto, A.; Bernardi, M.; Lubrano, C.; Gnessi, L.; Federici, M.; Donini, L.M.; et al. Dynapenia, Muscle Quality, and Hepatic Steatosis in Patients with Obesity and Sarcopenic Obesity. Biomedicines 2023, 11, 472. https://doi.org/10.3390/biomedicines11020472
Frigerio F, De Marinis M, Camardella F, Cantisani V, Pinto A, Bernardi M, Lubrano C, Gnessi L, Federici M, Donini LM, et al. Dynapenia, Muscle Quality, and Hepatic Steatosis in Patients with Obesity and Sarcopenic Obesity. Biomedicines. 2023; 11(2):472. https://doi.org/10.3390/biomedicines11020472
Chicago/Turabian StyleFrigerio, Francesco, Maria De Marinis, Francesca Camardella, Vito Cantisani, Alessandro Pinto, Marco Bernardi, Carla Lubrano, Lucio Gnessi, Massimo Federici, Lorenzo Maria Donini, and et al. 2023. "Dynapenia, Muscle Quality, and Hepatic Steatosis in Patients with Obesity and Sarcopenic Obesity" Biomedicines 11, no. 2: 472. https://doi.org/10.3390/biomedicines11020472
APA StyleFrigerio, F., De Marinis, M., Camardella, F., Cantisani, V., Pinto, A., Bernardi, M., Lubrano, C., Gnessi, L., Federici, M., Donini, L. M., & Poggiogalle, E. (2023). Dynapenia, Muscle Quality, and Hepatic Steatosis in Patients with Obesity and Sarcopenic Obesity. Biomedicines, 11(2), 472. https://doi.org/10.3390/biomedicines11020472