Regulation of Renin Expression by Β1-Integrin in As4.1 Juxtaglomerular Line Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Gene Knockdown Experiments
2.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.4. Western Blotting
2.5. Statistical Analyses
3. Results
3.1. Activation/Inhibition of Protein Kinase Cε Reproduced the Negative Correlation between Threonine-788/789-Phosphorylated Β1-Integrin and the Renin Expression In Vitro
3.2. Knockdown of the Β1-Integrin Expression Results in the Uncontrolled Expression of Renin, as Does Knockdown of the CX40 Expression
3.3. The Renin Gene Expression under Air Pressure with/without Β1-Integrin Knockdown
3.4. The Renin Gene Expression in Hypotonic Medium with/without Β1-Integrin Knockdown
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloomgarden, Z.T. Blood pressure and diabetic nephropathy. Diabetes Care 2010, 33, e30–e35. [Google Scholar] [PubMed]
- Patel, D.M.; Bose, M.; Cooper, M.E. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 2218–2249. [Google Scholar] [PubMed]
- Carmines, P.K. The renal vascular response to diabetes. Curr. Opin. Nephrol. Hypertens. 2010, 19, 85–90. [Google Scholar] [CrossRef]
- Lopes de Faria, J.B.; Silva, K.C.; Lopes de Faria, J.M. The contribution of hypertension to diabetic nephropathy and retinopathy: The role of inflammation and oxidative stress. Hypertens. Res. 2011, 34, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.C. Diabetic Kidney Disease and Hypertension. Exp. Clin. Endocrinol. Diabetes 2016, 124, 93–98. [Google Scholar] [PubMed]
- Cheung, B.M.; Li, C. Diabetes and hypertension: Is there a common metabolic pathway? Curr. Atheroscler. Rep. 2012, 14, 160–166. [Google Scholar]
- Hayashi, K.; Epstein, M.; Loutzenhiser, R.; Forster, H. Impaired myogenic responsiveness of the afferent arteriole in streptozotocin-induced diabetic rats: Role of eicosanoid derangements. J. Am. Soc. Nephrol. 1992, 2, 1578–1586. [Google Scholar]
- Hayashi, K.; Kanda, T.; Homma, K.; Tokuyama, H.; Okubo, K.; Takamatsu, I.; Tatematsu, S.; Kumagai, H.; Saruta, T. Altered renal microvascular response in Zucker obese rats. Metab. Clin. Exp. 2002, 51, 1553–1561. [Google Scholar] [CrossRef]
- Vallon, V.; Blantz, R.C.; Thomson, S. Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am. J. Physiol. 1995, 269, F876–F883. [Google Scholar] [CrossRef]
- Price, D.A.; De’Oliveira, J.M.; Fisher, N.D.; Williams, G.H.; Hollenberg, N.K. The state and responsiveness of the renin-angiotensin-aldosterone system in patients with type II diabetes mellitus. Am. J. Hypertens. 1999, 12, 348–355. [Google Scholar]
- Donatelli, M.; Colletti, I.; Bucalo, M.L.; Russo, V.; Verga, S. Plasma endothelin levels in NIDDM patients with macroangiopathy. Diabetes Res. 1994, 25, 159–164. [Google Scholar] [PubMed]
- Koyama, H.; Tabata, T.; Nishzawa, Y.; Inoue, T.; Morii, H.; Yamaji, T. Plasma endothelin levels in patients with uraemia. Lancet 1989, 1, 991–992. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Kurz, S.; Münzel, T.; Tarpey, M.; Freeman, B.A.; Griendling, K.K.; Harrison, D.G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Investig. 1996, 97, 1916–1923. [Google Scholar] [PubMed]
- Prabhakar, S.S. Role of nitric oxide in diabetic nephropathy. Semin. Nephrol. 2004, 24, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.M.; Brands, M.W. Nitric oxide may be required to prevent hypertension at the onset of diabetes. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E762–E768. [Google Scholar] [PubMed]
- Friis, U.G.; Madsen, K.; Stubbe, J.; Hansen, P.B.; Svenningsen, P.; Bie, P.; Skøtt, O.; Jensen, B.L. Regulation of renin secretion by renal juxtaglomerular cells. Pflügers Arch. Eur. J. Physiol. 2013, 465, 25–37. [Google Scholar]
- Persson, P.B. Renin: Origin, secretion and synthesis. J. Physiol. 2003, 552, 667–671. [Google Scholar] [CrossRef]
- Schweda, F.; Friis, U.; Wagner, C.; Skott, O.; Kurtz, A. Renin release. Physiology 2007, 22, 310–319. [Google Scholar] [CrossRef]
- Bock, H.A.; Hermle, M.; Brunner, F.P.; Thiel, G. Pressure dependent modulation of renin release in isolated perfused glomeruli. Kidney Int. 1992, 41, 275–280. [Google Scholar] [CrossRef]
- Salomonsson, M.; Skøtt, O.; Persson, A.E. Influence of intraluminal arterial pressure on renin release. Acta Physiol. Scand. 1991, 141, 285–286. [Google Scholar] [PubMed]
- Wagner, C.; de Wit, C.; Kurtz, L.; Grünberger, C.; Kurtz, A.; Schweda, F. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ. Res. 2007, 100, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, T.H.; Watanabe, H.; Kaur, R.; Belyea, B.C.; Walker, P.D.; Gomez, R.A.; Sequeira-Lopez, M.L.S. Renin-expressing cells require β1-integrin for survival and for development and maintenance of the renal vasculature. Hypertension 2020, 76, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Belyea, B.C.; Paxton, R.L.; Li, M.; Dzamba, B.J.; DeSimone, D.W.; Gomez, R.A.; Sequeira-Lopez, M.L.S. Renin Cell Baroreceptor, a Nuclear Mechanotransducer Central for Homeostasis. Circ. Res. 2021, 129, 262–276. [Google Scholar] [PubMed]
- Korhonen, M.; Ylanne, J.; Laitinen, L.; Virtanen, I. Distribution of beta 1 and beta 3 integrins in human fetal and adult kidney. Lab. Investig. J. Tech. Methods Pathol. 1990, 62, 616–625. [Google Scholar]
- Saito, N.; Toyoda, M.; Ono, M.; Kondo, M.; Moriya, H.; Kimura, M.; Sawada, K.; Fukagawa, M. Regulation of blood pressure and phosphorylation of β1-integrin in renal tissue in a rat model of diabetic nephropathy. Tokai J. Exp. Clin. Med. 2021, 46, 172–179. [Google Scholar]
- Sigmund, C.D.; Okuyama, K.; Ingelfinger, J.; Jones, C.A.; Mullins, J.J.; Kane, C.; Kim, U.; Wu, C.Z.; Kenny, L.; Rustum, Y. Isolation and characterization of renin-expressing cell lines from transgenic mice containing a renin-promoter viral oncogene fusion construct. J. Biol. Chem. 1990, 265, 19916–19922. [Google Scholar] [CrossRef]
- Tatsumi, R.; Komaba, H.; Kanai, G.; Miyakogawa, T.; Sawada, K.; Kakuta, T.; Fukagawa, M. Cinacalcet induces apoptosis in parathyroid cells in patients with secondary hyperparathyroidism: Histological and cytological analyses. Nephron Clin. Pract. 2013, 124, 224–231. [Google Scholar]
- Stawowy, P.; Margeta, C.; Blaschke, F.; Lindschau, C.; Spencer-Hänsch, C.; Leitges, M.; Biagini, G.; Fleck, E.; Graf, K. Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts. Cardiovasc. Res. 2005, 67, 50–59. [Google Scholar]
- Fransvea, E.; Mazzocca, A.; Antonaci, S.; Giannelli, G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 2009, 49, 839–850. [Google Scholar]
- Nilsson, S.; Kaniowska, D.; Brakebusch, C.; Fässler, R.; Johansson, S. Threonine 788 in integrin subunit beta1 regulates integrin activation. Exp. Cell Res. 2006, 312, 844–853. [Google Scholar] [PubMed]
- Grimm, T.M.; Dierdorf, N.I.; Betz, K.; Paone, C.; Hauck, C.R. PPM1F controls integrin activity via a conserved phospho-switch. J. Cell Biol. 2020, 219, e202001057. [Google Scholar] [PubMed]
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [PubMed]
- Kim, J.W.; Dang, C.V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006, 66, 8927–8930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, N.; Toyoda, M.; Kondo, M.; Abe, M.; Sanechika, N.; Kimura, M.; Sawada, K.; Fukagawa, M. Regulation of Renin Expression by Β1-Integrin in As4.1 Juxtaglomerular Line Cells. Biomedicines 2023, 11, 501. https://doi.org/10.3390/biomedicines11020501
Saito N, Toyoda M, Kondo M, Abe M, Sanechika N, Kimura M, Sawada K, Fukagawa M. Regulation of Renin Expression by Β1-Integrin in As4.1 Juxtaglomerular Line Cells. Biomedicines. 2023; 11(2):501. https://doi.org/10.3390/biomedicines11020501
Chicago/Turabian StyleSaito, Nobumichi, Masao Toyoda, Masumi Kondo, Makiko Abe, Noriyuki Sanechika, Moritsugu Kimura, Kaichiro Sawada, and Masafumi Fukagawa. 2023. "Regulation of Renin Expression by Β1-Integrin in As4.1 Juxtaglomerular Line Cells" Biomedicines 11, no. 2: 501. https://doi.org/10.3390/biomedicines11020501
APA StyleSaito, N., Toyoda, M., Kondo, M., Abe, M., Sanechika, N., Kimura, M., Sawada, K., & Fukagawa, M. (2023). Regulation of Renin Expression by Β1-Integrin in As4.1 Juxtaglomerular Line Cells. Biomedicines, 11(2), 501. https://doi.org/10.3390/biomedicines11020501