Ligand-Receptor Interactions of Lamivudine: A View from Charge Density Study and QM/MM Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Collection, Reduction and Refinement
2.1.1. IAM Refinement
2.1.2. Multipole Refinement
2.2. QM/MM Calculations of Receptor–3TC Complexes
2.3. Voronoi Tessellation
3. Results
3.1. Molecular Structure of 3TC in Crystal and Ligand-Receptor Complex
3.2. Intermolecular Interactions of 3TC in Different Evironments
3.2.1. H-Bonding Patterns in a Different Environment
3.2.2. Intermolecular Interactions and Their Sum Energies in a Different Environment
3.3. NCI Analysis of Intermolecular Interactions in Crystal and Complexes A and B
3.4. Contribution of Various Types of Intermolecular Interactions to the Voronoi Surface of Lamivudine and Its Derivatives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Eron, J.J.; Benoit, S.L.; Jemsek, J.; MacArthur, R.D.; Santana, J.; Quinn, J.B.; Kuritzkes, D.R.; Fallon, M.A.; Rubin, M. Treatment with Lamivudine, Zidovudine, or Both in HIV-Positive Patients with 200 to 500 CD4+ Cells per Cubic Millimeter. N. Engl. J. Med. 1995, 333, 1662–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quercia, R.; Perno, C.-F.; Koteff, J.; Moore, K.; McCoig, C.; St. Clair, M.; Kuritzkes, D. Twenty-Five Years of Lamivudine: Current and Future Use for the Treatment of HIV-1 Infection. JAIDS 2018, 78, 125–135. [Google Scholar] [CrossRef]
- da Silva, C.C.; Martins, F.T. Multiple Conformations and Supramolecular Synthons in Almost Fifty Crystal Structures of the Anti-HIV/HBV Drug Lamivudine. J. Mol. Struct. 2019, 1181, 157–170. [Google Scholar] [CrossRef]
- Dutkiewicz, G.; Chidan Kumar, C.S.; Yathirajan, H.S.; Narayana, B.; Kubicki, M. 5-(4-Ammonio-2-Oxopyrimidine-1(2H)-Yl)-1,3-Oxathiolane-2-Carboxylate (Lamivudine Acid) Semihydrate: The Six-Fold Symmetry Created by Hydrogen Bond Network. J. Chem. Crystallogr. 2011, 41, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.T.; Doriguetto, A.C.; Ellena, J. From Rational Design of Drug Crystals to Understanding of Nucleic Acid Structures: Lamivudine Duplex. Cryst. Growth Des. 2010, 10, 676–684. [Google Scholar] [CrossRef]
- Wang, C.; Perumalla, S.R.; Sun, C.C. Anion Exchange Reaction for Preparing Acesulfame Solid Forms. Cryst. Growth Des. 2018, 18, 4215–4219. [Google Scholar] [CrossRef]
- Bhatt, P.M.; Azim, Y.; Thakur, T.S.; Desiraju, G.R. Co-Crystals of the Anti-HIV Drugs Lamivudine and Zidovudine. Cryst. Growth Des. 2009, 9, 951–957. [Google Scholar] [CrossRef]
- Martins, F.T.; Paparidis, N.; Doriguetto, A.C.; Ellena, J. Crystal Engineering of an Anti-HIV Drug Based on the Recognition of Assembling Molecular Frameworks. Cryst. Growth Des. 2009, 9, 5283–5292. [Google Scholar] [CrossRef]
- Martins, F.T.; Corrêa, R.S.; Batista, A.A.; Ellena, J. Quasi-Enantiomeric Single-Nucleoside and Quasi-Racemic Two-Nucleoside Hydrochloride Salts and Ruthenium Complexes of Cytidine and 2′,3′-Dideoxycytidine Analogs Unveiling the Negligible Structure-Driving Role of the 2′,3′-Moieties. CrystEngComm 2014, 16, 7013–7022. [Google Scholar] [CrossRef]
- Capeletti da Silva, C.; Coelho, R.R.; de Lima Cirqueira, M.; Campos de Melo, A.C.; Landre Rosa, I.M.; Ellena, J.; Martins, F.T. Salts of the Anti-HIV Drug Lamivudine with Phthalic and Salicylic Acids. CrystEngComm 2012, 14, 4562. [Google Scholar] [CrossRef]
- da Silva, C.C.; Martins, F.T. The Enantiopreference in the Solid State Probed in Lamivudine Crystal Forms with Mandelic Acid. RSC Adv. 2015, 5, 20486–20490. [Google Scholar] [CrossRef]
- Schlesinger, C.; Tapmeyer, L.; Gumbert, S.D.; Prill, D.; Bolte, M.; Schmidt, M.U.; Saal, C. Absolute Configuration of Pharmaceutical Research Compounds Determined by X-Ray Powder Diffraction. Angew. Chem. Int. Ed. 2018, 57, 9150–9153. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, C.; Bolte, M.; Schmidt, M.U. Challenging Structure Determination from Powder Diffraction Data: Two Pharmaceutical Salts and One Cocrystal with Z′ = 2. Z. Kristallogr. Cryst. Mat. 2019, 234, 257–268. [Google Scholar] [CrossRef]
- Ellena, J.; Paparidis, N.; Martins, F.T. Toward Supramolecular Architectures of the Anti-HIV Drug Lamivudine: Understanding the Effect of the Inclusion of Water in a Hydrochloride Form. CrystEngComm 2012, 14, 2373. [Google Scholar] [CrossRef]
- Tenorio Clavijo, J.C.; Guimarães, F.F.; Ellena, J.; Martins, F.T. Isostructurality and the Conformational Role of the 2′,3′-Moieties in the Diversity of Lamivudine Crystal Forms Probed in Halide Salts. CrystEngComm 2015, 17, 5187–5194. [Google Scholar] [CrossRef]
- da Silva, C.C.; Valdo, A.K.; do Nascimento Neto, J.A.; Ribeiro, L.; Sarotti, A.M.; Martins, F.T. Why Lamivudine Assembles into Double-Stranded Helices in Crystals: Salt Heterosynthon versus Base-Pairing Homosynthon. CrystEngComm 2018, 20, 3049–3057. [Google Scholar] [CrossRef]
- Ellena, J.; Bocelli, M.D.; Honorato, S.B.; Ayala, A.P.; Doriguetto, A.C.; Martins, F.T. Base-Paired and Base-Stacked Structures of the Anti-HIV Drug Lamivudine: A Nucleoside DNA-Mimicry with Unprecedented Topology. Cryst. Growth Des. 2012, 12, 5138–5147. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Roy, B.N.; Singh, G.P.; Srivastava, D.; Mukherjee, A.K. Lamivudine Hemihydrate. Acta Crystallogr. Sect. C 2010, 66, o329–o333. [Google Scholar] [CrossRef]
- da Silva, C.C.; de Cirqueira, M.L.; Martins, F.T. Lamivudine Salts with 1,2-Dicarboxylic Acids: A New and a Rare Synthon with Double Pairing Motif Fine-Tuning Their Solubility. CrystEngComm 2013, 15, 6311. [Google Scholar] [CrossRef]
- Harris, R.K.; Yeung, R.R.; Lamont, R.B.; Lancaster, R.W.; Lynn, S.M.; Staniforth, S.E. ‘Polymorphism’ in a Novel Anti-Viral Agent: Lamivudine. J. Chem. Soc. Perkin Trans. 2 1997, 1997, 2653–2660. [Google Scholar] [CrossRef]
- da Silva, C.C.; Martins, F.T. Insights into the Opening of DNA-like Double-Stranded Helices in Lamivudine Duplex IV and the First Polymorph of This Drug. CrystEngComm 2016, 18, 8115–8124. [Google Scholar] [CrossRef]
- De Fonseca, J.C.; Tenorio Clavijo, J.C.; Alvarez, N.; Ellena, J.; Ayala, A.P. Novel Solid Solution of the Antiretroviral Drugs Lamivudine and Emtricitabine. Cryst. Growth Des. 2018, 18, 3441–3448. [Google Scholar] [CrossRef]
- Banerjee, R.; Bhatt, P.M.; Ravindra, N.V.; Desiraju, G.R. Saccharin Salts of Active Pharmaceutical Ingredients, Their Crystal Structures, and Increased Water Solubilities. Cryst. Growth Des. 2005, 5, 2299–2309. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ganguly, S.; Desiraju, G.R. Synthon Transferability Probed with IR Spectroscopy: Cytosine Salts as Models for Salts of Lamivudine. CrystEngComm 2014, 16, 4732–4741. [Google Scholar] [CrossRef]
- Bhatt, P.M.; Desiraju, G.R. Co-Crystal Formation and the Determination of Absolute Configuration. CrystEngComm 2008, 10, 1747. [Google Scholar] [CrossRef]
- Vasconcelos, A.T.; da Silva, C.C.; Queiroz Júnior, L.H.K.; Santana, M.J.; Ferreira, V.S.; Martins, F.T. Lamivudine as a Nucleoside Template To Engineer DNA-Like Double-Stranded Helices in Crystals. Cryst. Growth Des. 2014, 14, 4691–4702. [Google Scholar] [CrossRef]
- Ramkumaar, G.R.; Srinivasan, S.; Bhoopathy, T.J.; Gunasekaran, S. Quantum Chemical and Experimental Studies on Polymorphism of Antiviral Drug Lamivudine. Spectrochim. Acta A Mol. Biomol. Spectr. 2012, 98, 265–270. [Google Scholar] [CrossRef]
- Chakraborty, T.; Dhail, S. Theoretical Study of Lamivudine Derivatives Invoking DFT Based Descriptors. Int. J. Chemoinf. Chem. Eng. 2015, 4, 37–45. [Google Scholar] [CrossRef]
- Fidanza, N.G.; Suvire, F.D.; Sosa, G.L.; Lobayan, R.M.; Enriz, R.D.; Peruchena, N.M. A Search for C–H⋯O Type Hydrogen Bonds in Lamivudine (3TC). An Exploratory Conformational and Electronic Analysis. J. Mol. Struct. THEOCHEM 2001, 543, 185–193. [Google Scholar] [CrossRef]
- Tenorio, J.C.; Lehmann, C. Charge Density Analysis of Lamivudine Nitrate (3TC), an Anti-HIV Drug. In 25th Annual Conference of the German Crystallographic Society, March 27-30, 2017, Karlsruhe, Germany; De Gruyter: Berlin, Germany, 2017; p. 67. ISBN 978-3-11-054715-3. [Google Scholar]
- Sabini, E.; Hazra, S.; Konrad, M.; Burley, S.K.; Lavie, A. Structural Basis for Activation of the Therapeutic L-Nucleoside Analogs 3TC and Troxacitabine by Human Deoxycytidine Kinase. Nucl. Ac. Res. 2006, 35, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Vologzhanina, A.V.; Ushakov, I.E.; Korlyukov, A.A. Intermolecular Interactions in Crystal Structures of Imatinib-Containing Compounds. Int. J. Mol. Sci. 2020, 21, 8970. [Google Scholar] [CrossRef] [PubMed]
- Korlyukov, A.A.; Malinska, M.; Vologzhanina, A.V.; Goizman, M.S.; Trzybinski, D.; Wozniak, K. Charge Density View on Bicalutamide Molecular Interactions in the Monoclinic Polymorph and Androgen Receptor Binding Pocket. IUCrJ 2020, 7, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Korlyukov, A.A.; Vologzhanina, A.V.; Trzybinski, D.; Malinska, M.; Wozniak, K. Charge Density Analysis of Abiraterone Acetate. Acta Crystallogr. Sect. B 2020, 76, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- CrysAlisPRO; Oxford Diffraction/Agilent Technologies UK Ltd.: Yarnton, UK, 2021.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Hansen, N.K.; Coppens, P. Testing Aspherical Atom Refinements on Small-Molecule Data Sets. Acta Cryst. Sect. A 1978, 34, 909–921. [Google Scholar] [CrossRef]
- Volkov, A.; Macchi, P.; Farrugia, L.J.; Gatti, C.; Mallinson, P.; Richter, T.; Koritzansky, T. XD2006–A Computer Program for Multipole Refinement, Topological Analysis and Evaluation of Intermolecular Energies from Experimental and Theoretical Structure Factors; University at Buffalo: Buffalo, NY, USA, 2006. [Google Scholar]
- Allen, F.H.; Bruno, I.J. Bond Lengths in Organic and Metal-Organic Compounds Revisited: X—H Bond Lengths from Neutron Diffraction Data. Acta Cryst. Sect. B 2010, 66, 380–386. [Google Scholar] [CrossRef]
- Madsen, A.Ø. SHADE Web Server for Estimation of Hydrogen Anisotropic Displacement Parameters. J. Appl. Cryst. 2006, 39, 757–758. [Google Scholar] [CrossRef] [Green Version]
- Meindl, K.; Henn, J. Foundations of Residual-Density Analysis. Acta Cryst. Sect. A 2008, 64, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Henn, J.; Meindl, K. More about Systematic Errors in Charge-Density Studies. Acta Cryst. Sect. A 2014, 70, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Bader, R.W.F. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein–Ligand Docking Using GOLD. Proteins Struct. Funct. Bioinf. 2003, 52, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Galek, P.T.A.; Allen, F.H.; Fábián, L.; Feeder, N. Knowledge-Based H-Bond Prediction to Aid Experimental Polymorph Screening. CrystEngComm 2009, 11, 2634–2639. [Google Scholar] [CrossRef]
- Vologzhanina, A.V. Intermolecular Interactions in Functional Crystalline Materials: From Data to Knowledge. Crystals 2019, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- van Bergen, L.A.H.; Alonso, M.; Palló, A.; Nilsson, L.; De Proft, F.; Messens, J. Revisiting Sulfur H-Bonds in Proteins: The Example of Peroxiredoxin AhpE. Sci. Rep. 2016, 6, 30369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peresypkina, E.V.; Blatov, V.A. Molecular Coordination Numbers in Crystal structures of Organic Compounds. Acta Cryst. Sect. B 2000, 56, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Lyssenko, K.A.; Vologzhanina, A.V.; Torubaev, Y.V.; Nelyubina, Y.V. A Comparative Study of a Mixed-Ligand Copper(II) Complex by the Theory of Atoms in Molecules and the Voronoi Tessellation. Mend. Commun. 2014, 24, 216–218. [Google Scholar] [CrossRef]
- Vologzhanina, A.V.; Kats, S.V.; Penkova, L.V.; Pavlenko, V.A.; Efimov, N.N.; Minin, V.V.; Eremenko, I.L. Combined Analysis of Chemical Bonding in a CuII Dimer Using QTAIM, Voronoi Tessellation and Hirshfeld Surface Approaches. Acta Cryst. Sect. B 2015, 71, 543–554. [Google Scholar] [CrossRef]
- Vologzhanina, A.V.; Buikin, P.A.; Korlyukov, A.A. Peculiarities of Br⋯Br Bonding in Crystal Structures of Polybromides and Bromine Solvates. CrystEngComm 2020, 22, 7361–7370. [Google Scholar] [CrossRef]
- Vologzhanina, A.V.; Savchenkov, A.V.; Dmitrienko, A.O.; Korlyukov, A.A.; Bushmarinov, I.S.; Pushkin, D.V.; Serezhkina, L.B. Electronic Structure of Cesium Butyratouranylate(VI) as Derived from DFT-Assisted Powder X-Ray Diffraction Data. J. Phys. Chem. A 2014, 118, 9745–9752. [Google Scholar] [CrossRef]
- Smol’yakov, A.F.; Korlyukov, A.A.; Dolgushin, F.M.; Balagurova, E.V.; Chizhevsky, I.T.; Vologzhanina, A.V. Studies of Multicenter and Intermolecular Dihydrogen B–H···H–C Bonding in [4,8,8′-Exo-PPh3Cu-4,8,8′-(μ-H)3-Commo-3,3′-Co(1,2-C2B9H9)(1′,2′-C2B9H10)]. Eur. J. Inorg. Chem. 2015, 2015, 5847–5855. [Google Scholar] [CrossRef]
- Carugo, O.; Blatova, O.A.; Medrish, E.O.; Blatov, V.A.; Proserpio, D.M. Packing Topology in Crystals of Proteins and Small Molecules: A Comparison. Sci. Rep. 2017, 7, 13209. [Google Scholar] [CrossRef] [Green Version]
- Richards, F.M. The Interpretation of Protein Structures: Total Volume, Group Volume Distributions and Packing Density. J. Mol. Biol. 1974, 82, 1–14. [Google Scholar] [CrossRef]
- Soyer, A.; Chomilier, J.; Mornon, J.-P.; Jullien, R.; Sadoc, J.-F. Voronoi Tessellation Reveals the Condensed Matter Character of Folded Proteins. Phys. Rev. Lett. 2000, 85, 3532–3535. [Google Scholar] [CrossRef]
- Olechnovič, K.; Venclovas, Č. VoroMQA: Assessment of Protein Structure Quality Using Interatomic Contact Areas. Proteins Struct. Funct. Bioinform. 2017, 85, 1131–1145. [Google Scholar] [CrossRef] [PubMed]
- Retureau, R.; Oguey, C.; Mauffret, O.; Hartmann, B. Structural Explorations of NCp7–Nucleic Acid Complexes Give Keys to Decipher the Binding Process. J. Mol. Biol. 2019, 431, 1966–1980. [Google Scholar] [CrossRef] [PubMed]
Parameter | 3TC | |
---|---|---|
IAM 1 on F2 | MM 1 on F/F2 | |
Chemical formula | C8H11N3O3S | |
Mr | 229.26 | |
Crystal system, space group | P43212 | |
a, c (Å) | 8.65125(3), 26.39191(18) | |
V (Å3) | 1975.280(19) | |
Z | 8 | |
μ (cm−1) | 0.319 | |
Crystal size, mm | 0.479 × 0.379 × 0.272 | |
Tmin, Tmax | 0.335, 1.000 | |
No. of meas., indep. and obs. [I > 2σ(I)] refls | 275,252, 11,917, 10,708 | |
Rint | 0.0753 | |
(sin θ/λ)max (Å−1) | 1.13 | |
Flack | 0.001(9) | |
No. of parameters | 180 | 796 |
Goodness-of-fit | 1.033 | 1.097 |
R1 [all data] | 0.0305 | 0.0218/0.0187 |
wR2 [all data] | 0.069 | |
R1 [I > 2σ(I)] | 0.0253 | 0.0154/0.0178 |
wR2 [I > 2σ(I)] | 0.0671 | 0.031/0.029 |
Δρmax, Δρmin (e Å−3) | 0.47, −0.25 | 0.24, −0.25 |
Donor | Acceptor | Propensity 1 | Observed in Solid 3TC 2 | Observed in CSD 3 | Observed in PDB |
---|---|---|---|---|---|
Amine NH2 | −OOC | -/0.94 | Yes | Yes | |
H2O | -/0.62 | Yes | Yes | ||
O=C | 0.46/0.52 | Tetr, Tric | Yes | Yes | |
HO | 0.42/0.50 | Tetr | Yes | Yes | |
N2het | 0.40/0.48 | Tric | Yes | Yes | |
O2het | 0.14/0.19 | Yes | |||
Shet | 0.06/0.11 | ||||
OH | −OOC | -/0.90 | Yes | ||
H2O | -/0.48 | Yes | |||
O=C | 0.41/0.39 | Tric | Yes | ||
OH | 0.38/0.40 | Yes | |||
N2het | 0.36/0.38 | Tetr | Yes | ||
O2het | 0.12/0.13 | ||||
Shet | 0.05/0.06 | ||||
H2O | −OOC | -/0.95 | Yes | ||
H2O | -/0.65 | ||||
O=C | -/0.60 | Yes | Yes | ||
HO | -/0.55 | Yes | |||
N2het | -/0.55 | Yes | |||
O2het | -/0.23 | ||||
Shet | -/0.12 | Yes |
Ω, % | Interaction 2 | False Negative | Positive | False Positive |
---|---|---|---|---|
Tetragonal polymorph | ||||
5 | D–H…A | 0 | 4 | 0 |
C–H…A | 1 | 7 | 0 | |
H…H | 0 | 7 | 7 | |
C–H…π | 1 | 1 | 0 | |
Other | 0 | 1 | 0 | |
Overall | 2 | 19 | 7 | |
10 | D–H…A | 1 | 3 | 0 |
C–H…A | 5 | 3 | 0 | |
H…H | 4 | 10 | 0 | |
C–H…π | 2 | 0 | 0 | |
Other | 1 | 0 | 0 | |
Overall | 13 | 15 | 0 | |
Complex A | ||||
5 | D–H…A | 5 | 16 | 3 |
C–H…A | 0 | 5 | 3 | |
H…H | 0 | 9 | 28 | |
C–H…π | 0 | 2 | 0 | |
π…π | 3 | 0 | 0 | |
Overall | 8 | 32 | 34 | |
10 | D–H…A | 12 | 8 | 1 |
C–H…A | 2 | 2 | 3 | |
H…H | 1 | 7 | 4 | |
C–H…π | 2 | 3 | 0 | |
π…π | 3 | 0 | 0 | |
Overall | 20 | 20 | 8 | |
Complex B | ||||
5 | D–H…A | 3 | 15 | 3 |
C–H…A | 1 | 5 | 3 | |
H…H | 0 | 7 | 27 | |
C–H…π | 2 | 1 | 1 | |
π…π | 1 | 0 | 0 | |
Overall | 7 | 28 | 0 | |
10 | D–H…A | 9 | 9 | 2 |
C–H…A | 3 | 3 | 0 | |
H…H | 2 | 3 | 9 | |
C–H…π | 4 | 1 | 0 | |
π…π | 1 | 0 | 0 | |
Overall | 19 | 16 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korlyukov, A.A.; Stash, A.I.; Romanenko, A.R.; Trzybiński, D.; Woźniak, K.; Vologzhanina, A.V. Ligand-Receptor Interactions of Lamivudine: A View from Charge Density Study and QM/MM Calculations. Biomedicines 2023, 11, 743. https://doi.org/10.3390/biomedicines11030743
Korlyukov AA, Stash AI, Romanenko AR, Trzybiński D, Woźniak K, Vologzhanina AV. Ligand-Receptor Interactions of Lamivudine: A View from Charge Density Study and QM/MM Calculations. Biomedicines. 2023; 11(3):743. https://doi.org/10.3390/biomedicines11030743
Chicago/Turabian StyleKorlyukov, Alexander A., Adam. I. Stash, Alexander R. Romanenko, Damian Trzybiński, Krzysztof Woźniak, and Anna V. Vologzhanina. 2023. "Ligand-Receptor Interactions of Lamivudine: A View from Charge Density Study and QM/MM Calculations" Biomedicines 11, no. 3: 743. https://doi.org/10.3390/biomedicines11030743
APA StyleKorlyukov, A. A., Stash, A. I., Romanenko, A. R., Trzybiński, D., Woźniak, K., & Vologzhanina, A. V. (2023). Ligand-Receptor Interactions of Lamivudine: A View from Charge Density Study and QM/MM Calculations. Biomedicines, 11(3), 743. https://doi.org/10.3390/biomedicines11030743