Urinary DNA as a Tool for Germline and Somatic Mutation Detection in Castration-Resistant Prostate Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Sample Collection and DNA Extraction
2.3. Quantitative PCR
2.4. Targeted Next-Generation Sequencing
2.5. Statistical Analysis
3. Results
3.1. DDR Mutations in Blood and Urine of mCRPC Patients
3.2. Urinary DDR Mutations and Clinical Response
3.3. Survival and Urinary DDR Mutations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Castro, E.; Eeles, R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J. Androl. 2012, 14, 409–414. [Google Scholar] [CrossRef]
- Dias, A.; Kote-Jarai, Z.; Mikropoulos, C.; Eeles, R. Prostate Cancer Germline Variations and Implications for Screening and Treatment. Cold Spring Harb. Perspect. Med. 2018, 8, a030379. [Google Scholar] [CrossRef]
- Rantapero, T.; Wahlfors, T.; Kähler, A.; Hultman, C.; Lindberg, J.; Tammela, T.L.J.; Nykter, M.; Schleutker, J.; Wiklund, F. Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer. Genes 2020, 11, 314. [Google Scholar] [CrossRef]
- Nicolosi, P.; Ledet, E.; Yang, S.; Michalski, S.; Freschi, B.; O’Leary, E.; Esplin, E.D.; Nussbaum, R.L.; Sartor, O. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol. 2019, 5, 523–528. [Google Scholar] [CrossRef]
- Leongamornlert, D.; Saunders, E.; Dadaev, T.; Tymrakiewicz, M.; Goh, C.; Jugurnauth-Little, S.; Kozarewa, I.; Fenwick, K.; Assiotis, I.; Barrowdale, D.; et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced Disease. Br. J. Cancer 2014, 110, 1663–1672. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; de Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef]
- Morgado, P.C.; Mateo, J. Clinical implications of homologous recombination repair mutations in prostate cancer. Prostate 2022, 82, 45–59. [Google Scholar] [CrossRef]
- NCCN Guidelines: Prostate Cancer Early Detection | National Comprehensive Cancer Network. Available online: https://www.nccn.org/ (accessed on 24 September 2021).
- EAU Guidelines: Prostate Cancer|Uroweb. Available online: https://uroweb.org/guideline/prostate-cancer/ (accessed on 24 September 2021).
- Russano, M.; Napolitano, A.; Ribelli, G.; Iuliani, M.; Simonetti, S.; Citarella, F.; Pantano, F.; Dell’aquila, E.; Anesi, C.; Silvestris, N.; et al. Liquid biopsy and tumor heterogeneity in metastatic solid tumors: The potentiality of blood samples. J. Exp. Clin. Cancer Res. 2020, 39, 95. [Google Scholar] [CrossRef]
- Eskra, J.N.; Rabizadeh, D.; Pavlovich, C.P.; Catalona, W.J.; Luo, J. Approaches to urinary detection of prostate cancer. Prostate Cancer Prostatic Dis. 2019, 22, 362–381. [Google Scholar] [CrossRef]
- Markowski, M.C.; Antonarakis, E.S. Germline genetic testing in prostate cancer—Further enrichment in variant histologies? Oncoscience 2018, 5, 62–64. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Luber, B.; Liang, C.; Wang, H.; Chen, Y.; Silberstein, J.L.; Piana, D.; Lai, Z.; Chen, Y.; et al. Germline DNA-repair Gene Mutations and Outcomes in Men with Metastatic Castration-resistant Prostate Cancer Receiving First-Line Abiraterone and Enzalutamide. Eur. Urol. Oncol. 2018, 74, 218–225. [Google Scholar] [CrossRef]
- Isaacsson Velho, P.; Qazi, F.; Hassan, S.; Carducci, M.A.; Denmeade, S.R.; Markowski, M.C.; Thorek, D.L.; DeWeese, T.L.; Song, D.Y.; Tran, P.T.; et al. Efficacy of Radium-223 in Bone-metastatic Castration-resistant Prostate Cancer with and without Homologous Repair Gene Defects. Eur. Urol. 2019, 76, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Pritchard, C.C.; Boyd, T.; Nelson, P.S.; Montgomery, B. Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016, 69, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, M.M.; Spisák, S.; Jia, L.; Cronin, A.M.; Csabai, I.; Ledet, E.; Sartor, A.O.; Rainville, I.; O’Connor, E.P.; Herbert, Z.T.; et al. The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer 2017, 123, 3532–3539. [Google Scholar] [CrossRef] [PubMed]
- Zafeiriou, Z.; Bianchini, D.; Chandler, R.; Rescigno, P.; Yuan, W.; Carreira, S.; Barrero, M.; Petremolo, A.; Miranda, S.; Riisnaes, R.; et al. Genomic Analysis of Three Metastatic Prostate Cancer Patients with Exceptional Responses to Carboplatin Indicating Different Types of DNA Repair Deficiency. Eur. Urol. 2019, 75, 184–192. [Google Scholar] [CrossRef]
- Castro, E.; Romero-Laorden, N.; del Pozo, A.; Lozano, R.; Medina, A.; Puente, J.; Piulats, J.M.; Lorente, D.; Saez, M.I.; Morales-Barrera, R.; et al. Prorepair-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019, 37, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Annala, M.; Vandekerkhove, G.; Khalaf, D.; Taavitsainen, S.; Beja, K.; Warner, E.W.; Sunderland, K.; Kollmannsberger, C.; Eigl, B.J.; Finch, D.; et al. Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate Cancer. Cancer Discov. 2018, 8, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, N.; Sei, E.; Tsai, P.C.; Bai, S.; Zhao, Y.; Troncoso, P.; Corn, P.G.; Logothetis, C.; Zurita, A.J.; Navin, N.E. Decoding the evolutionary response to prostate cancer therapy by plasma genome sequencing. Genome Biol. 2020, 21, 162. [Google Scholar] [CrossRef]
- Kavalci, E.; Onder, A.U.; Brusgaard, K.; Bostanci, A.; Selhanoglu, M.Y.; Serakinci, N. Identification of genetic biomarkers in urine for early detection of prostate cancer. Curr. Probl. Cancer 2021, 45, 100616. [Google Scholar] [CrossRef]
- Bancroft, E.K.; Page, E.C.; Castro, E.; Lilja, H.; Vickers, A.; Sjoberg, D.; Assel, M.; Foster, C.S.; Mitchell, G.; Drew, K.; et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: Results from the initial screening round of the IMPACT Study. Eur. Urol. 2014, 66, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Na, R.; Zheng, S.L.; Han, M.; Yu, H.; Jiang, D.; Shah, S.; Ewing, C.M.; Zhang, L.; Novakovic, K.; Petkewicz, J.; et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur. Urol. 2017, 71, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Annala, M.; Struss, W.J.; Warner, E.W.; Beja, K.; Vandekerkhove, G.; Wong, A.; Khalaf, D.; Seppälä, I.L.; So, A.; Lo, G.; et al. Treatment Outcomes and Tumor Loss of Heterozygosity in Germline DNA Repair–deficient Prostate Cancer. Eur. Urol. 2017, 72, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.H.; Swift, S.L.; White, H.; Misso, K.; Kleijnen, J.; Quek, R.G.W. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int. J. Oncol. 2019, 55, 597–616. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Nava Rodrigues, D.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Teply, B.A.; Antonarakis, E.S. Treatment strategies for DNA repair-deficient prostate cancer. Expert Rev. Clin. Pharmacol. 2017, 10, 889–898. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Zappavigna, S.; Crocetto, F.; Giuliano, M.; Ribera, D.; Morra, R.; Scafuri, L.; Verde, A.; Bruzzese, D.; Iaccarino, S.; et al. Assessment of Total, PTEN-, and AR-V7+ Circulating Tumor Cell Count by Flow Cytometry in Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Enzalutamide. Clin. Genitourin. Cancer 2021, 19, e286–e298. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Luo, J.; Nanus, D.M.; Giannakakou, P.; Szmulewitz, R.Z.; Danila, D.C.; Healy, P.; Anand, M.; Berry, W.R.; Zhang, T.; et al. Prospective Multicenter Study of Circulating Tumor Cell AR-V7 and Taxane Versus Hormonal Treatment Outcomes in Metastatic Castration-Resistant Prostate Cancer. JCO Precis. Oncol. 2020, 28, 1285–1301. [Google Scholar] [CrossRef]
- Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2016, 2, 1441–1449. [Google Scholar] [CrossRef]
Leukocytes | Gene | Sample ID | Pathogenic Variants | Amino Acid | dbSNP, rs | Method | |||
Coding | Type | Variant | Exon | ||||||
BRCA1 | PN088; PN179 | c.4035delA | INDEL | frameshiftdel | 11 | p.Glu1346Lysfs | rs80357711 | qPCR | |
BRCA2 | PN082 | c.658_659delGT | INDEL | frameshiftdel | 8 | p.Val220Ilefs | rs80359604 | qPCR | |
PS001 | c.7879A > T | SNV | missense | 17 | p.Ile2627Phe | rs80359014 | NGS | ||
PN050 | c.3847_3848delGT | INDEL | frameshiftdel | 11 | p.Val1283fs | rs80359405 | NGS | ||
CHEK2 | PN004; PN022; PN034; PN051; PN055; PN073; PN107; PN108; PN125; PN136; PN143 | c.470T > C | SNV | missense | 4 | p.Ile157Thr | rs17879961 | qPCR | |
PN223 | c.1100delC | INDEL | frameshiftdel | 11 | p.Thr367Metfs | rs555607708 | qPCR | ||
NBN | PN132 | c.657_661delACAAA | INDEL | frameshiftdel | 6 | p.Lys219fs | rs587776650 | qPCR | |
ATM | PN029; PN175 | c.8122G > A | SNV | missense | 55 | p.Asp2708Asn | rs587782719 | NGS | |
PN044 | c.1339C > T | SNV | nonsense | 10 | p.Arg447Ter | rs587779815 | |||
PN090; PN206 | c.5932G > T | SNV | nonsense | 40 | p.Glu1978Ter | rs587779852 | |||
Gene | Sample ID | Variants of Unclear Clinical Significance | Amino Acid | dbSNP, rs | Method | ||||
Coding | Type | Variant | Exon | ||||||
BRCA2 | PN031 | c.8242_8244delGGT | INDEL | nonframeshiftdel | 18 | p.Gly2748del | – | NGS | |
NBN | PN199 | c.1445G > A | SNV | missense | 11 | p.Arg482Lys | rs775451862 | ||
ATM | PN048 | c.4631A > G | SNV | missense | 31 | p.Tyr1544Cys | rs779718362 | ||
Urine | Gene | Sample ID | Pathogenic Variant | Amino Acid | dbSNP, rs | Method | |||
Coding | Type | Variant | Exon | ||||||
BRCA1 | PN025 | c.3268C > T | SNV | nonsense | 10 | p.Gln1090Ter | rs80357402 | NGS | |
PN038 | c.5574G > A | SNV | nonsense | 24 | p.Trp1858Ter | rs80356914 | |||
PN088; PN179 | c.4035delA | INDEL | frameshiftdel | 11 | p.Glu1346Lysfs | rs80357711 | |||
BRCA2 | PN033 | c.1532C > A | SNV | nonsense | 10 | p.Ser511Ter | rs1555281935 | ||
PN050; PN143 | c.3847_3848delGT | INDEL | frameshiftdel | 11 | p.Val1283fs | rs80359405 | |||
PN082 | c.658_659delGT | INDEL | frameshiftdel | 8 | p.Val220Ilefs | rs80359604 | |||
CHEK2 | PN034 PN051; PN055; PN073; PN107; PN108; PN125; PN136; PN143 | c.470T > C | SNV | missense | 4 | p.Ile157Thr | rs17879961 | ||
PN033; PN223 | c.1100delC | INDEL | frameshiftdel | 11 | p.Thr367Metfs | rs555607708 | |||
NBN | PN132 | c.657_661delACAAA | INDEL | frameshiftdel | 6 | p.Lys219fs | rs587776650 | ||
ATM | PN029; PN175 | c.8122G > A | SNV | missense | 55 | p.Asp2708Asn | rs587782719 | ||
PN044 | c.1339C > T | SNV | nonsense | 10 | p.Arg447Ter | rs587779815 | |||
PN090 | c.5932G > T | SNV | nonsense | 40 | p.Glu1978Ter | rs587779852 | |||
PN025 | c.3663G > A | SNV | nonsense | 25 | p.Trp1221Ter | rs864622490 | |||
PN072 | c.6006 + 1G > C | SNV | unknown | 40 | p.? | rs786202016 |
Variable | DDR(+) (n = 20) | DDR(−) (n = 117) | p Value |
---|---|---|---|
Age at PCa diagnosis, years | 0.27 | ||
Median (IQR) | 63.5 (57.7–71.5) | 66.4 (61.5–71.1) | |
Age at mCRPC diagnosis, years | 0.27 | ||
Median (IQR) | 63.5 (57.7–71.5) | 66.4 (61.5–71.1) | |
PSA level at PCa diagnosis, ng/mL | 0.09 | ||
<10; n (%) | 3 (15.0) | 36 (30.7) | |
10–20; n (%) | 3 (15.0) | 25 (21.4) | |
>20; n (%) | 14 (70.0) | 53 (45.4) | |
cISUP grade group | 0.71 | ||
1; n (%) | 7 (35.0) | 48 (41.0) | |
2; n (%) | 4 (20.0) | 18 (15.4) | |
3; n (%) | 2 (10.0) | 14 (12.0) | |
4; n (%) | 5 (25.0) | 16 (13.7) | |
5; n (%) | 1 (5.0) | 12 (10.3) | |
cT stage | 0.62 | ||
≤T2; n (%) | 6 (30.0) | 43 (36.8) | |
≥T3; n (%) | 14 (70.0) | 67 (57.3) | |
Radical treatment | 0.27 | ||
Radical prostatectomy; n (%) | 3 (15.0) | 9 (7.7) | |
Radiation therapy; n (%) | 9 (45.0) | 42 (35.9) | |
None; n (%) | 8 (40.0) | 66 (6.4) | |
Abiraterone acetate therapy for mCRPC | 0.07 | ||
First-line; n (%) | 11 (55.0) | 88 (75.2) | |
Second-line; n (%) | 8 (40.0) | 26 (22.2) | |
Other; n (%) | 3 (15.0) | 3 (2.5) | |
Docetaxel therapy for mCRPC | 0.77 | ||
First-line; n (%) | 9 (45.0) | 28 (23.9) | |
Second-line; n (%) | 3 (15.0) | 13 (11.1) | |
Other; n (%) | 3 (15.0) | 11 (9.4) | |
Deceased | 0.32 | ||
Yes; n (%) | 15 (75.0) | 73 (62.4) | |
No; n (%) | 5 (25.0) | 44 (37.6) |
Analysed by DDR(+) | Analysed by DDR(+)A | |||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
HR with 95% CI | p Value | HR with 95% CI | p Value | HR with 95% CI | p Value | HR with 95% CI | p Value | |
PFS for ADT | ||||||||
DDR genetic alteration | 1.04 (0.64–1.71) | 0.86 | 1.18 (0.71–1.96) | 0.53 | 2.11 (1.12–4.01) | 0.022 | 2.17 (1.14–4.13) | 0.019 |
Age | 1.01 (0.98–1.04) | 0.34 | - | 0.99 (0.97–1.03) | 0.94 | - | ||
cISUP | 2.07 (1.43–3.00) | <0.001 | 2.09 (1.44–3.04) | <0.001 | 1.87 (1.28–2.74) | 0.001 | 1.88 (1.28–2.75) | 0.001 |
RT | 1.00 (0.71–1.43) | 0.97 | - | 1.23 (0.86–1.76) | 0.26 | - | ||
PSA0 | - | - | ||||||
M vs. L | 0.95 (0.58–1.56) | 0.85 | 0.99 (0.60–1.64) | 0.99 | ||||
H vs. L | 1.11 (0.74–1.66) | 0.62 | 1.14 (0.76–1.73) | 0.53 | ||||
PFS for mCRPC first-line treatment | ||||||||
DDR genetic alteration | 2.17 (1.31–3.59) | 0.003 | 2.22 (1.34–3.69) | 0.002 | 2.47 (1.32–4.62) | 0.005 | 2.53 (1.34–4.77) | 0.004 |
Age | 1.02 (0.99–1.05) | 0.17 | 1.01 (0.98–1.04) | 0.38 | 1.02 (0.99–1.05) | 0.19 | 1.01 (0.99–1.04) | 0.34 |
cISUP | 1.26 (0.83–1.92) | 0.27 | - | 1.22 (0.79–1.89) | 0.37 | - | ||
RT | 0.77 (0.52–1.15) | 0.19 | 0.84 (0.55–1.29) | 0.43 | 0.77 (0.51–1.17) | 0.22 | - | |
PSA1 | 1.001 (1.000–1.002) | 0.004 | 1.001 (1.000–1.002) | 0.011 | 1.001 (1.000–1.002) | 0.005 | 1.001 (1.000–1.002) | 0.004 |
PFS for mCRPC first-line AA treatment | ||||||||
DDR genetic alteration | 2.72 (1.39–5.33) | 0.003 | 2.43 (1.23–4.83) | 0.011 | 2.72 (1.14–6.50) | 0.025 | 2.25 (0.92–5.49) | 0.076 |
Age | 1.03 (0.99–1.06) | 0.08 | 1.02 (0.99–1.06) | 0.24 | 1.03 (0.99–1.07) | 0.06 | 1.03 (0.99–1.07) | 0.18 |
cISUP | 1.13 (0.64–2.02) | 0.67 | - | 1.05 (0.57–1.93) | 0.88 | - | ||
RT | 0.67 (0.41–1.10) | 0.11 | 0.84 (0.48–1.46) | 0.53 | 0.65 (0.39–1.10) | 0.11 | 0.85 (0.48–1.49) | 0.57 |
PSA1 | 1.001 (1.001–1.002) | 0.011 | 1.001 (1.000–1.002) | 0.007 | 1.001 (1.001–1.002) | 0.001 | 1.001 (1.000–1.002) | 0.002 |
Overall survival | ||||||||
DDR genetic alteration | 1.07 (0.60–1.90) | 0.82 | 1.62 (0.87–3.02) | 0.126 | 1.47 (0.73–2.95) | 0.28 | 2.02 (0.98–4.17) | 0.058 |
Age | 1.06 (1.03–1.09) | <0.001 | 1.03 (0.99–1.06) | 0.128 | 1.05 (1.02–1.09) | 0.004 | 1.02 (0.99–1.06) | 0.22 |
cISUP | 3.15 (1.97–5.02) | <0.001 | 3.16 (1.93–5.15) | <0.001 | 2.83 (1.76–4.55) | <0.001 | 3.01 (1.83–4.94) | <0.001 |
RT | 0.34 (0.21–0.54) | <0.001 | 0.39 (0.23–0.67) | 0.001 | 0.39 (0.24–0.63) | <0.001 | 0.40 (0.23–0.69) | <0.001 |
PSA1 | 1.001 (1.000–1.002) | 0.022 | 1.000 (0.999–1.001) | 0.614 | 1.001 (1.000–1.002) | 0.047 | 1.000 (0.99–1,001) | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januskevicius, T.; Sabaliauskaite, R.; Dabkeviciene, D.; Vaicekauskaite, I.; Kulikiene, I.; Sestokaite, A.; Vidrinskaite, A.; Bakavicius, A.; Jankevicius, F.; Ulys, A.; et al. Urinary DNA as a Tool for Germline and Somatic Mutation Detection in Castration-Resistant Prostate Cancer Patients. Biomedicines 2023, 11, 761. https://doi.org/10.3390/biomedicines11030761
Januskevicius T, Sabaliauskaite R, Dabkeviciene D, Vaicekauskaite I, Kulikiene I, Sestokaite A, Vidrinskaite A, Bakavicius A, Jankevicius F, Ulys A, et al. Urinary DNA as a Tool for Germline and Somatic Mutation Detection in Castration-Resistant Prostate Cancer Patients. Biomedicines. 2023; 11(3):761. https://doi.org/10.3390/biomedicines11030761
Chicago/Turabian StyleJanuskevicius, Tomas, Rasa Sabaliauskaite, Daiva Dabkeviciene, Ieva Vaicekauskaite, Ilona Kulikiene, Agne Sestokaite, Asta Vidrinskaite, Arnas Bakavicius, Feliksas Jankevicius, Albertas Ulys, and et al. 2023. "Urinary DNA as a Tool for Germline and Somatic Mutation Detection in Castration-Resistant Prostate Cancer Patients" Biomedicines 11, no. 3: 761. https://doi.org/10.3390/biomedicines11030761
APA StyleJanuskevicius, T., Sabaliauskaite, R., Dabkeviciene, D., Vaicekauskaite, I., Kulikiene, I., Sestokaite, A., Vidrinskaite, A., Bakavicius, A., Jankevicius, F., Ulys, A., & Jarmalaite, S. (2023). Urinary DNA as a Tool for Germline and Somatic Mutation Detection in Castration-Resistant Prostate Cancer Patients. Biomedicines, 11(3), 761. https://doi.org/10.3390/biomedicines11030761