Implementation, Dosimetric Assessment, and Treatment Validation of Knowledge-Based Planning (KBP) Models in VMAT Head and Neck Radiation Oncology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Model Creation
2.3. Model Verification
2.4. Model Validation
2.5. Dosimetric and Plan Deliverability Evaluation
3. Results
3.1. RapidPlan’s™ Success and Failure Rates
3.2. Dosimetric Evaluation
3.3. Plan Deliverability
4. Discussion
4.1. Dosimetric Evaluation
4.2. Plan Deliverability
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tepper, J.E.; Gunderson, L.L. Clinical Radiation Oncology, 3rd ed.; Elsevier Saunders: Philadelphia, PA, USA, 2015; pp. 130–131. [Google Scholar]
- Orton, C.G.; Bortfeld, T.R.; Niemierko, A.; Unkelbach, J. The role of medical physicists and the AAPM in the development of treatment planning and optimization. Med. Phys. 2008, 35, 4911–4923. [Google Scholar] [CrossRef]
- Olberg, S.; Green, O.; Cai, B.; Yang, D.; Rodriguez, V.; Zhang, H.; Kim, J.S.; Parikh, P.J.; Mutic, S.; Park, J.C. Optimization of treatment planning workflow and tumor coverage during daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT) of pancreatic cancer. Radiat. Oncol. 2018, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Rhee, D.J.; Jhingran, A.; Kisling, K.; Cardenas, C.; Simonds, H.; Court, L. Automated Radiation Treatment Planning for Cervical Cancer. Semin. Radiat. Oncol. 2020, 30, 340–347. [Google Scholar] [CrossRef]
- Hussein, M.; Heijmen, B.J.M.; Verellen, D.; Nisbet, A. Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations. Br. J. Radiol. 2018, 91, 20180270. [Google Scholar] [CrossRef]
- Scaggion, A.; Fusella, M.; Roggio, A.; Bacco, S.; Pivato, N.; Rossato, M.A.; Peña, L.M.A.; Paiusco, M. Reducing inter- and intra-planner variability in radiotherapy plan output with a commercial knowledge-based planning solution. Phys. Med. 2018, 53, 86–93. [Google Scholar] [CrossRef]
- Cao, W.; Hoffman, K.; Beadle, B.; Gronberg, M.; Cardenas, C.; Court, L.; Olanrewaju, A.; Whitaker, T.; Garden, A.; Skinner, H. Knowledge-based planning for the radiation therapy treatment plan quality assurance for patients with head and neck cancer. J. Appl. Clin. Med. Phys. 2022, 23, e13614. [Google Scholar] [CrossRef]
- Tol, J.P.; Dahele, M.; Delaney, A.R.; Slotman, B.J.; Verbakel, W.F.A.R. Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans? Radiat. Oncol. 2015, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Grocutt, L.; Paterson, C.; Valentine, R.M. Adaptive dose escalated radiotherapy in oropharyngeal cancers: A treatment planning feasibility study. Radiat. Oncol. 2022, 17, 24. [Google Scholar] [CrossRef]
- Varian Medical Systems. RapidPlan 15.5 Implementation; Varian Medical Systems: Palo Alto, CA, USA, 2018; pp. 46–186. [Google Scholar]
- Chatterjee, A.; Serban, M.; Faria, S.; Souhami, L.; Cury, F.; Seuntjens, J. Novel knowledge-based treatment planning model for hypofractionated radiotherapy of prostate cancer patients. Phys. Med. 2020, 69, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Hussein, M.; South, C.P.; Barry, M.A.; Adams, E.J.; Jordan, T.J.; Stewart, A.J.; Nisbet, A. Clinical validation and benchmarking of knowledge-based IMRT and VMAT treatment planning in pelvic anatomy. Radiother. Oncol. 2016, 120, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Fogliata, A.; Reggiori, G.; Stravato, A.; Lobefalo, F.; Franzese, C.; Franceschini, D.; Tomatis, S.; Mancosu, P.; Scorsetti, M.; Cozzi, L. RapidPlan head and neck model: The objectives and possible clinical benefit. Radiat. Oncol. 2017, 12, 73. [Google Scholar] [CrossRef]
- Younge, K.C.; Roberts, D.; Janes, L.A.; Anderson, C.; Moran, J.M.; Matuszak, M.M. Predicting deliverability of volumetric-modulated arc therapy (VMAT) plans using aperture complexity analysis. J. Appl. Clin. Med. Phys. 2016, 17, 124–131. [Google Scholar] [CrossRef]
- Younge, K.C.; Matuszak, M.M.; Moran, J.M.; McShan, D.L.; Fraass, B.A.; Roberts, D.A. Penalization of aperture complexity in inversely planned volumetric modulated arc therapy. Med. Phys. 2012, 39, 7160–7170. [Google Scholar] [CrossRef] [Green Version]
- Miften, M.; Olch, A.; Mihailidis, D.; Moran, J.; Pawlicki, T.; Molineu, A.; Li, H.; Wijesooriya, K.; Shi, J.; Xia, P.; et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med. Phys. 2018, 45, e53–e83. [Google Scholar] [CrossRef] [Green Version]
- Sun Nuclear Corporation. Reference Guide, ArcCHECK; Sun Nuclear Corporation: Melbourne, FL, USA, 2017; pp. 1–74. [Google Scholar]
- Tol, J.P.; Delaney, A.R.; Dahele, M.; Slotman, B.J.; Verbakel, W.F.A.R. Evaluation of a knowledge-based planning solution for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 612–620. [Google Scholar] [CrossRef]
- Kamima, T.; Ueda, Y.; Fukunaga, J.I.; Shimizu, Y.; Tamura, M.; Ishikawa, K.; Monzen, H. Multi-institutional evaluation of knowledge-based planning performance of volumetric modulated arc therapy (VMAT) for head and neck cancer. Phys. Med. 2019, 64, 174–181. [Google Scholar] [CrossRef]
- Frizzelle, M.; Pediaditaki, A.; Thomas, C.; South, C.; Vanderstraeten, R.; Wiessler, W.; Adams, E.; Jagadeesan, S.; Lalli, N. Using multi-centre data to train and validate a knowledge-based model for planning radiotherapy of the head and neck. Phys. Imaging Radiat. Oncol. 2022, 21, 18–23. [Google Scholar] [CrossRef]
- Kaderka, R.; Mundt, R.C.; Li, N.; Ziemer, B.; Bry, V.N.; Cornell, M.; Moore, K.L. Automated Closed- and Open-Loop Validation of Knowledge-Based Planning Routines Across Multiple Disease Sites. Pract. Radiat. Oncol. 2019, 9, 257–265. [Google Scholar] [CrossRef]
- Hirashima, H.; Nakamura, M.; Mukumoto, N.; Ashida, R.; Fujii, K.; Nakamura, K.; Nakajima, A.; Sakanaka, K.; Yoshimura, M.; Mizowaki, T. Reducing variability among treatment machines using knowledge-based planning for head and neck, pancreatic, and rectal cancer. J. Appl. Clin. Med. Phys. 2021, 22, 245–254. [Google Scholar] [CrossRef]
- Tol, J.P.; Dahele, M.; Gregoire, V.; Overgaard, J.; Slotman, B.J.; Verbakel, W.F.A.R. Analysis of EORTC-1219-DAHANCA-29 trial plans demonstrates the potential of knowledge-based planning to provide patient-specific treatment plan quality assurance. Radiother. Oncol. 2019, 130, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Giaddui, T.; Cheng, C.; Zhong, H.; Ryu, S.; Liao, Z.; Yin, F.F.; Gillin, M.; Mohan, R.; Xiao, Y. A comparison of two methodologies for radiotherapy treatment plan optimization and QA for clinical trials. J. Appl. Clin. Med. Phys. 2021, 22, 329–337. [Google Scholar] [CrossRef]
- Wall, P.D.H.; Fontenot, J.D. Evaluation of complexity and deliverability of prostate cancer treatment plans designed with a knowledge-based VMAT planning technique. J. Appl. Clin. Med. Phys. 2020, 21, 69–77. [Google Scholar] [CrossRef]
- Tamura, M.; Monzen, H.; Matsumoto, K.; Kubo, K.; Otsuka, M.; Inada, M.; Doi, H.; Ishikawa, K.; Nakamatsu, K.; Sumida, I.; et al. Mechanical performance of a commercial knowledge-based VMAT planning for prostate cancer. Radiat. Oncol. 2018, 13, 163. [Google Scholar] [CrossRef]
- Masi, L.; Doro, R.; Favuzza, V.; Cipressi, S.; Livi, L. Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med. Phys. 2013, 40, 71718. [Google Scholar] [CrossRef]
- Hundvin, J.A.; Fjellanger, K.; Pettersen, H.E.S.; Nygaard, B.; Revheim, K.; Sulen, T.H.; Ekanger, C.; Hysing, L.B. Clinical iterative model development improves knowledge-based plan quality for high-risk prostate cancer with four integrated dose levels. Acta Oncol. 2021, 60, 237–244. [Google Scholar] [CrossRef]
- Kubo, K.; Monzen, H.; Ishii, K.; Tamura, M.; Kawamorita, R.; Sumida, I.; Mizuno, H.; Nishimura, Y. Dosimetric comparison of RapidPlan and manually optimized plans in volumetric modulated arc therapy for prostate cancer. Phys. Medica 2017, 44, 199–204. [Google Scholar] [CrossRef]
- Tsuru, H.; Ueda, Y.; Tamura, M.; Monzen, H.; Ohira, S.; Masaoka, A.; Inui, S.; Konishi, K.; Fukunaga, J.; Mizuno, H.; et al. Effects of Mechanical Performance on Deliverability and Dose Distribution by Comparing Multi Institutions’ Knowledge-based Models for Prostate Cancer in Volumetric Modulated Arc Therapy. In Vivo 2022, 36, 687–693. [Google Scholar] [CrossRef]
- Boutilier, J.J.; Craig, T.; Sharpe, M.B.; Chan, T.C.Y. Sample size requirements for knowledge-based treatment planning. Med. Phys. 2016, 43, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Fogliata, A.; Cozzi, L.; Reggiori, G.; Stravato, A.; Lobefalo, F.; Franzese, C.; Franceschini, D.; Tomatis, S.; Scorsetti, M. RapidPlan knowledge based planning: Iterative learning process and model ability to steer planning strategies. Radiat. Oncol. 2019, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Miguel-Chumacero, E.; Currie, G.; Johnston, A.; Currie, S. Effectiveness of Multi-Criteria Optimization-based Trade-Off exploration in combination with RapidPlan for head & neck radiotherapy planning. Radiat. Oncol. 2018, 13, 229. [Google Scholar] [CrossRef] [Green Version]
Success and Failure Rates | Open-Loop | Closed-Loop |
---|---|---|
Success on 1st optimization | 54.5% | 80% |
Success on 2nd optimization | 90% | 100% |
Failure on 1st optimization | 45.5% | 20% |
Failure on 2nd optimization | 10% | 0% |
PTV | Dosimetric Endpoint | Relative Difference | p-Value |
---|---|---|---|
Low-risk PTV (54 Gy) | HI | −1.07 [−35, 29.9] | 0.549 |
CI | 0.57 [−3.62, 5.76] | 0.259 | |
2.34 [−4.9, 19.5] | 0.082 | ||
Intermediate-risk PTV (60 Gy) | HI | −5.46 [−83.3, 57.1] | 0.776 |
CI | 3.00 [−2.73, 11] | 0.001 1 | |
2.68 [−5.67, 12.9] | 0.027 1 | ||
High-risk PTV (70 Gy) | HI | −4.58 [100, 55.6] | 0.358 |
CI | −0.30 [−16.8, 4.86] | 0.394 | |
−8.73 [−400, 100] | 0.041 1 |
OAR | Dosimetric Endpoint | Relative Difference | p-Value |
---|---|---|---|
Brainstem | Dmax 1 | 14.1 [−3.19, 40.6] | 0.001 2 |
PRV 6 Brainstem | Dmax 1 | 10.7 [−7.83, 38.6] | 0.001 2 |
Esophagus | 4 | 16.6 [−350, 78.8] | <0.001 2 |
Lens L | Dmax 1 | 16.7 [−7.56, 66.7] | 0.069 |
Lens R | Dmax 1 | 17.8 [−1.53, 65.5] | 0.036 2 |
Lips | Dmean 3 | 10.2 [−71.4, 38.7] | 0.006 2 |
Mandible | Dmax 1 | 4.58 [−6.14, 21] | 0.003 2 |
Optic Chiasm | Dmax 1 | −6.5 [−20.4, 28.7] | 0.063 |
Oral cavity | Dmean 3 | 5.32 [−22.7, 15.9] | 0.064 |
Parotid L | Dmean 3 | 9.07 [−32.4, 37.3] | 0.030 2 |
Parotid R | Dmean 3 | 8.51 [−26.7, 33] | 0.013 2 |
Pharyngeal Constrictors | Dmean 3 | 4 [−10.2, 10.5] | 0.007 2 |
Spinal Cord | Dmax 1 | 5.9 [−21.8, 35.5] | 0.063 |
PRV 6 Spinal Cord | Dmax 1 | 3.69 [−23.8, 26] | 0.099 |
Spinal Canal | Dmax 1 | 2.57 [−20.5, 21.4] | 0.279 |
Submandibular gland L | Dmean 3 | −5.37 [−63.8, 10.3] | 0.476 |
Submandibular gland R | Dmean 3 | −6.94 [−55.7, 8.84] | 0.904 |
Thyroid | 5 | 1.93 [0, 14.9] | 0.018 2 |
Phase | Criterion | p-Value | |||
---|---|---|---|---|---|
54 Gy | 3%/3 mm | 99.4 ± 0.6 | 99.3 ± 0.8 | 0.07 | 0.962 |
3%/2 mm | 98.6 ± 1.4 | 98.9 ± 1.3 | −0.29 | 0.314 | |
2%/3 mm | 98.5 ± 1.6 | 98.2 ± 1.8 | 0.28 | 0.856 | |
60 Gy | 3%/3 mm | 98.9 ± 1.1 | 99.3 ± 0.6 | −0.31 | 0.231 |
3%/2 mm | 97.6 ± 1.9 | 98.6 ± 1.1 | −0.95 | 0.027 1 | |
2%/3 mm | 97.3 ± 1.7 | 98.3 ± 1.1 | −0.93 | 0.018 1 | |
70 Gy | 3%/3 mm | 98.0 ± 1.7 | 99.0 ± 1.0 | −1.07 | 0.038 1 |
3%/2 mm | 96.1 ± 3.1 | 98.2 ± 1.7 | −2.12 | 0.019 1 | |
2%/3 mm | 96.3 ± 2.6 | 97.8 ± 1.7 | −1.51 | 0.048 1 |
Parameter | Number of ARCs | Phase | Clinical | RapidPlan™ | p-Value |
---|---|---|---|---|---|
MU | 47 | 54 Gy | 243 ± 112 | 240 ± 110 | 0.525 |
34 | 60 Gy | 321 ± 153 | 322 ± 146 | 0.784 | |
28 | 70 Gy | 373 ± 165 | 360 ± 151 | 0.577 | |
109 | total | 300 ± 149 | 296 ± 141 | 0.469 | |
MU factor | 47 | 54 Gy | 4.49 ± 2.07 | 4.44 ± 2.03 | 0.525 |
34 | 60 Gy | 53.5 ± 25.6 | 53.6 ± 24.3 | 0.778 | |
28 | 70 Gy | 37.3 ± 16.5 | 36.0 ± 15.1 | 0.577 | |
109 | total | 28.2 ± 27.1 | 27.9 ± 26.5 | 0.394 | |
complexity index [mm−1] | 47 | 54 Gy | 0.120 ± 0.028 | 0.120 ± 0.023 | 0.498 |
34 | 60 Gy | 0.132 ± 0.029 | 0.138 ± 0.032 | 0.135 | |
28 | 70 Gy | 0.152 ± 0.029 | 0.153 ± 0.029 | 0.785 | |
109 | total | 0.132 ± 0.031 | 0.134 ± 0.031 | 0.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanou, A.-M.; Patatoukas, G.; Chalkia, M.; Kollaros, N.; Kougioumtzopoulou, A.; Kouloulias, V.; Platoni, K. Implementation, Dosimetric Assessment, and Treatment Validation of Knowledge-Based Planning (KBP) Models in VMAT Head and Neck Radiation Oncology. Biomedicines 2023, 11, 762. https://doi.org/10.3390/biomedicines11030762
Fanou A-M, Patatoukas G, Chalkia M, Kollaros N, Kougioumtzopoulou A, Kouloulias V, Platoni K. Implementation, Dosimetric Assessment, and Treatment Validation of Knowledge-Based Planning (KBP) Models in VMAT Head and Neck Radiation Oncology. Biomedicines. 2023; 11(3):762. https://doi.org/10.3390/biomedicines11030762
Chicago/Turabian StyleFanou, Anna-Maria, Georgios Patatoukas, Marina Chalkia, Nikolaos Kollaros, Andromachi Kougioumtzopoulou, Vassilis Kouloulias, and Kalliopi Platoni. 2023. "Implementation, Dosimetric Assessment, and Treatment Validation of Knowledge-Based Planning (KBP) Models in VMAT Head and Neck Radiation Oncology" Biomedicines 11, no. 3: 762. https://doi.org/10.3390/biomedicines11030762
APA StyleFanou, A. -M., Patatoukas, G., Chalkia, M., Kollaros, N., Kougioumtzopoulou, A., Kouloulias, V., & Platoni, K. (2023). Implementation, Dosimetric Assessment, and Treatment Validation of Knowledge-Based Planning (KBP) Models in VMAT Head and Neck Radiation Oncology. Biomedicines, 11(3), 762. https://doi.org/10.3390/biomedicines11030762