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Abstract: The aim of this study was to evaluate knowledge-based treatment planning (KBP) models in
terms of their dosimetry and deliverability and to investigate their clinical benefits. Three H&N KBP
models were built utilizing RapidPlan™, based on the dose prescription, which is given according to
the planning target volume (PTV). The training set for each model consisted of 43 clinically acceptable
volumetric modulated arc therapy (VMAT) plans. Model quality was assessed and compared to
the delivered treatment plans using the homogeneity index (HI), conformity index (CI), structure
dose difference (PTV, organ at risk—OAR), monitor units, MU factor, and complexity index. Model
deliverability was assessed through a patient-specific quality assurance (PSQA) gamma index-based
analysis. The dosimetric assessment showed better OAR sparing for the RapidPlan™ plans and for
the low- and high-risk PTV, and the HI, and CI were comparable between the clinical and RapidPlan™
plans, while for the intermediate-risk PTV, CI was better for clinical plans. The 2D gamma passing
rates for RapidPlan™ plans were similar or better than the clinical ones using the 3%/3 mm gamma-
index criterion. Monitor units, the MU factors, and complexity indices were found to be comparable
between RapidPlan™ and the clinical plans. Knowledge-based treatment plans can be safely adapted
into clinical routines, providing improved plan quality in a time efficient way while minimizing user
variability.

Keywords: knowledge-based planning; RapidPlan™; head and neck cancer; plan deliverability

1. Introduction

Intensity-modulated arc therapy (IMRT) and volumetric Modulated Arc Therapy
(VMAT) have become standard treatment approaches especially for complex irradiation
geometries such as the ones found in head and neck (H&N) carcinoma, in which a large
number of organs at risk (OARs) are close to the target volume [1]. In inverse treatment
planning, an optimization problem must be solved. The optimization problem involves
several constraints which must be fulfilled and an objective function that quantifies the
treatment plan quality [2]. The treatment planner is the one who steers the optimization
engine by searching for the trade-offs between applying an adequate dose to the tumor
and sparing the surrounding normal tissue [3]. Therefore, inverse treatment planning can
be a challenging trial and error process, and it is subjected to inter-planner variability as it
involves critical thinking [2].

Automation has gained interest in radiotherapy because it exploits state-of-the-art
technology and computer power to minimize inter-planner variability and improve plan
quality [4]. Knowledge-based planning (KBP) is considered an example of an automated
treatment planning solution in radiotherapy [5]. Knowledge is captured from libraries
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of high-quality treatment plans to train a model which predicts the range of the dose
volume histograms (DVHs) for the OARs (DVH estimates) for any new patient with similar
anatomical features. KBP is considered a part of automated treatment planning solutions,
as it automatically places optimization objectives, called line objectives, to predict the DVH
for the OARs. A prevalent commercial KBP tool is RapidPlan™ (Varian Medical Systems),
which was employed in this work.

There have been several studies considering various RapidPlan™-related aspects
starting from its efficacy in reducing inter-planner variability to its use as a quality as-
surance (QA) tool, especially for H&N carcinoma [6–8]. However, to our knowledge, no
studies focus on plan deliverability, a complexity assessment of RapidPlan™ plans, or their
correlation with H&N cancer cases. There is one work studying plan deliverability as a
part of an investigation of dose escalation according to the gross tumor volume (GTV) in
poor-prognosis oropharyngeal squamous cell cancer cases, combined with RapidPlan™
and multi-criteria optimization (MCO) [9]. However, Grocutt et al. [9] conducted a dose es-
calation study re-optimizing all clinical plans with RapidPlan™ and MCO, so a comparison
of plans optimized with and without RapidPlan™ was out of the scope of their study.

The aim of this study was to compare treatment plans optimized with RapidPlan™
with the clinical ones and to investigate the potential benefit of the introduction of Rapid-
Plan™ in clinical routines. To the best of our knowledge, this is the first study that, in
addition to focusing dosimetry, focuses on a plan deliverability evaluation of the Rapid-
Plan™ KBP tool for H&N cases, explores the factors which may affect plan complexity, and
investigates a possible correlation between them.

2. Materials and Methods
2.1. Patient Selection

The high-quality clinically acceptable treatment plans for 65 patients with H&N cancer
who were treated with the VMAT technique between March 2019 and October 2021 in
our department were included in this study. The H&N cancer patients were classified as
larynx, nasopharynx, and oropharynx cases according to the guidelines of the radiation
oncologists in our department. Three RapidPlan™ models were created based on the
dose prescriptions for the planning target volumes (PTV), namely 54 Gy, 60 Gy, and
70 Gy (using 2 Gy per fraction). A total of 43 patients (129 treatment plans in total) was
considered the input for the training process of the RapidPlan™ models (model creation).
The closed-loop validation set consisted of 10 patients out of the ones in the training set.
The remaining 22 patients (66 treatment plans in total) were considered in the open-loop
validation set. A commercial KBP tool named RapidPlan™, released in 2014 by Varian
Medical Systems, and compatible with version 15.1 of the eclipse treatment planning system
(TPS) available at our institution, was used to generate the H&N models, according to
manufacturer guidelines [10]. RapidPlan™ is a KBP tool that uses machine learning to
consider a patient’s anatomy and planning goals. As an output, it provides the user with a
prediction of the DVH for the OARs and the optimization objectives for any new patient
with similar anatomical features to those patients used for model training.

2.2. Model Creation

To create each model, the selected VMAT treatment plans from our institution’s
database were uploaded into the model configuration module of the RapidPlan™ software.
Each OAR structure from each uploaded plan was matched with the corresponding OAR
code from the RapidPlan™ database. The RapidPlan™ algorithm splits each OAR into
the following segments: the out-of-filed region (where no primary radiation is received
by this part of the OAR, only a scattered dose), the leaf transmission region (where the
radiation passes through the closed multi-leaf collimator (MLC) leaves, and where the jaws
do not stop this radiation), the in-field region (where a part of the OAR is located inside the
primary beam), and the target overlap region (where a part of the OAR overlaps with the
PTV). RapidPlan’s™ algorithm (a DVH estimation algorithm) uses principal component
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analysis and regression methods to predict the DVH and the optimization objectives for
the OARs in order to train the model [10].

According to manufacturer suggestions, the matched OARs should not overlap with
the PTV. As a result, 453 Boolean structures were created to exclude the overlap region, for
all patients included in the training set (Figure 1). Therefore, the non-involved region of
OARs was considered during optimization with the RapidPlan™ models.
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(PTV).

2.3. Model Verification

Once the creation of the RapidPlan™ model was complete, a model verification was
conducted to assess the quality of the RapidPlan™ model from a mathematical/statistical
point of view. A model’s goodness-of-fit may be compromised by plans which are consid-
ered outliers. The potential outliers were identified using statistical parameters, originating
from the training phase of the RapidPlan™ models.

The potential outliers were classified as follows: influential points, geometric outliers,
and dosimetric outliers. The influential point (treatment plan) pulls along the regression
line, and the model does not represent the majority of the training data. The geometric
outliers are treatment plans in which one or more OAR structures have different geometrical
features compared to the rest of the training plans. The dosimetric outliers are treatment
plans in which one or more OAR structures differ dosimetrically from the other treatment
plans. The dosimetric outliers may be divided into two categories positive dosimetric
outliers and negative dosimetric outliers [11]. Positive dosimetric outliers are the treatment
plans whose clinical DVH is better than the predicted DVH estimate from RapidPlan™.
The negative dosimetric outliers are the treatment plans whose clinical DVH is worse than
the predicted DVH estimate from RapidPlan™. The implementation guide of RapidPlan™
recommends the re-planning of the negative dosimetric outliers [10]. However, re-planning
negative dosimetric outliers is a very time-intensive process, and it was not implemented
in this study.

As a double check, the Model Analytics software was utilized. Model Analytics (Varian
Medical Systems) is a cloud application in which the user can upload a RapidPlan™ model
to get statistical information and recommendations about the potential outliers. Figure 2
summarizes the workflow applied in this study for the investigation of the outliers.
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2.4. Model Validation

Model Validation indicated if the model could be applied in clinical practice. The
validation consisted of two steps: closed-loop and open-loop validation. Closed-loop
validation aims to test the reproducibility of the RapidPlan™ model. During closed-loop
validation, some of the plans used for model’s training were re-optimized with RapidPlan™
models and compared to the clinical ones. During open-loop validation, the plans not
included in the training set were re-optimized with RapidPlan™ models and compared to
the clinical ones. Open-loop validation aims to check a model’s ability to predict accurately
the DVH and the optimization objectives for any new patient.

A copy of the clinical plan was created for each treatment plan to keep the beam config-
uration constant. The copy of the clinical plan was re-optimized with the correspondingly
trained RapidPlan™ model, depending on dose prescription.

Firstly, clinically acceptable RapidPlan™ optimized plans with a single RapidPlan™
-based optimization, without any intervention from the planner in the optimization objec-
tives, were created. If the first optimization was insufficient to create a clinically acceptable
plan, a second optimization with the RapidPlan™ model was performed, where the planner
could modify the optimization objectives.
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At the beginning of the validation process, a template with the optimization objectives
and the corresponding priorities should be defined for each KBP model. The optimization
objective templates were created based on the quantitative analysis of normal tissue effects
in the clinic (QUANTEC) dose constraints. At first, three templates were created for
the optimization objectives, one for larynx cases, one for nasopharynx cases, and one
for oropharynx cases, but to conclude to the three final templates, a refinement of the
optimization objectives and iterative checks on a group of patients took place, in accordance
with the literature [12,13].

Both the clinical- and RapidPlan™-optimized plans of the validation set were gen-
erated with Eclipse TPS version 15.1 (Varian Medical Systems) and the photon optimizer
(PO) available at our department. Version 15.1.51 of the anisotropic analytical algorithm
(AAA) was adopted for the dose calculation with a dose resolution grid of 2.5 mm. One
to four VMAT arcs with a 6 MV beam were used to create the clinical and RapidPlan™
treatment plans. VitalBeam linear accelerators (Varian Medical Systems) were used to
deliver the plans for the validation process. All the clinical plans were approved by a
radiation oncologist and a medical physics expert, according to our institution’s protocols.

2.5. Dosimetric and Plan Deliverability Evaluation

Dose statistics derived from the DVHs were analyzed to study if the RapidPlan™-
optimized plans satisfy the OAR dose constraints and the desired coverage of the PTV. The
dose statistics for the OARs were extracted from the DVHs of the plan sum. Concerning
the dosimetric evaluation of the PTV, the homogeneity index (HI), conformity index (CI),
and the volume of the PTV covered by 107% of the prescription isodose curve (V107%) were
recorded.

HI is defined as shown in Equation (1):

HI =
D2% − D98%

Dp
(1)

where D2% is the near-maximum dose, D98% is the near-minimum dose, and DP is the
prescription dose received by the PTV.

CI is defined as shown in Equation (2):

CI =
V95%

VPTV
(2)

where V95% is the volume of the PTV covered by 95% of the prescription isodose level, and
VPTV is the volume of the PTV.

The number of monitor units (MU) per plan, the modulation factor—MU factor
(Equation (3))—and the complexity index [14,15] (Equation (4)) were evaluated. The MU
was extracted from the TPS of the corresponding treatment plan, and the complexity index
was calculated using a script. The code of the complexity script utilized in this study was
written in Python and it was used in the work of Younge et al. [15]. The DICOM RT plan
files exported from the TPS for each plan were uploaded to the complexity script to derive
the complexity indices. Moreover, Python and Anaconda 3 were used to run the script.

The MU factor is defined as shown in Equation (3):

MU factor =
Monitor Units (MUs) per phase

Dose prescription per phase
(3)

The complexity index is defined as shown in Equation (4):

complexity index =
1

MU ∑N
i=1 MUi ×

yi
Ai

[
mm−1

]
(4)
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where MU is the total number of monitor units in the plan, MUi is the number of monitor
units delivered through aperture i, the sum of Σ comprises all the control points from 1 to
N, Ai is the open area of aperture I, and yi is the aperture perimeter excluding the MLC
leaf ends [14].

The complexity index is a robust metric against the dose in the plan and is relatively
independent of the treatment volume [14].

Regarding the dosimetric assessment of the OARs, 18 OARs were evaluated in this
study. The relative difference (∆relative) between the clinical and the RapidPlan™ plans
for these OARs is defined as shown in Equation (5):

∆relative =

(
clinical − RapidPlan

clinical

)
x 100% (5)

A Wilcoxon signed-rank test was used for the statistical analysis.
Patient-specific quality assurance (PSQA) is highly recommended by Task Group 218

(TG-218) of the American Association of Physicists in Medicine (AAPM) [16] to ensure that
the dose delivered to the patient is in accordance with the dose distribution calculated by
the TPS. In this work, PSQA was performed with ArcCHECK™ phantom [17] (Sun Nuclear
Corporation), and the obtained 2D gamma passing rates (2D GPRs (%)), using the gamma
criteria 3%/3 mm, 3%/2 mm, and 2%/3 mm for the RapidPlan™-optimized plans were
compared with those of the clinical ones.

The Wilcoxon signed-rank test was used to check if the differences in the 2D GPRs
(%), MUs, MU factor, and the complexity index between the RapidPlan™ and clinical
plans were statistically significant. A Spearman’s rho correlation coefficient was utilized
to determine if there was a correlation between the complexity index and MUs or the MU
factor and if there was also a correlation between the 2D GPRs (%) and the complexity
index, the Mus, or the MU factor.

3. Results
3.1. RapidPlan’s™ Success and Failure Rates

RapidPlan’s™ success and failure rates, provided in Table 1, defined RapidPlan’s™
ability or lack thereof to create a clinically acceptable treatment plan. In 54.5% of the
open-loop set of plans, a clinically acceptable plan was feasible with the first optimization,
without the intervention of the treatment planner. Upon the first optimization of the
open-loop set, failure was observed for 83.3% of the plans belonging to the nasopharynx
treatment site. For the closed loop, in 80% of plans a clinically acceptable treatment plan
was feasible with the first optimization. During the second optimization (where the planner
adapted the optimization objectives), RapidPlan’s™ success rate was at least 90% for both
the closed- and the open-loop sets.

Table 1. Success and failure rates for the open-loop and closed-loop validation sets.

Success and Failure Rates Open-Loop Closed-Loop

Success on 1st optimization 54.5% 80%
Success on 2nd optimization 90% 100%
Failure on 1st optimization 45.5% 20%
Failure on 2nd optimization 10% 0%

3.2. Dosimetric Evaluation

The results from the comparison (relative differences) between the clinical and Rapid-
Plan™ plans for the open-loop validation set are provided in Table 2. For the low-risk PTV,
the HI, CI, and V107% showed no statistically significant difference. For the intermediate-
risk PTV, V107% was 2.68%, which is significantly better for RapidPlan™, while the CI was
3%, which is significantly improved for the clinical plan. For the high-risk PTV, the CI and
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HI were comparable, but V107% was 8.73%, which is significantly worse for the RapidPlan™
plans.

Table 2. Relative differences between clinical and RapidPlan™ plans of the low-risk PTV,
intermediate-risk PTV, and high-risk PTV for the open-loop validation set.

PTV Dosimetric Endpoint
Relative Difference(

clinical−RapidPlan
clinical

)
×100%

Mean [Range] (%)
p-Value

Low-risk PTV (54 Gy)
HI −1.07 [−35, 29.9] 0.549
CI 0.57 [−3.62, 5.76] 0.259

V107% 2.34 [−4.9, 19.5] 0.082

Intermediate-risk PTV (60 Gy)
HI −5.46 [−83.3, 57.1] 0.776
CI 3.00 [−2.73, 11] 0.001 1

V107% 2.68 [−5.67, 12.9] 0.027 1

High-risk PTV (70 Gy)
HI −4.58 [100, 55.6] 0.358
CI −0.30 [−16.8, 4.86] 0.394

V107% −8.73 [−400, 100] 0.041 1

1: statistically significant result (0.05 level of significance).

Table 3 shows the relative difference between the clinical plans and the RapidPlan™-
generated plans for the 18 OARs assessed in this work.

Table 3. Relative differences between clinical and RapidPlan™ plans of the 18 OARs for the open-loop
validation set.

OAR Dosimetric Endpoint
Relative Difference(

clinical−RapidPlan
clinical

)
×100%

Mean [Range] (%)
p-Value

Brainstem Dmax 1 14.1 [−3.19, 40.6] 0.001 2

PRV 6 Brainstem Dmax 1 10.7 [−7.83, 38.6] 0.001 2

Esophagus V45Gy
4 16.6 [−350, 78.8] <0.001 2

Lens L Dmax 1 16.7 [−7.56, 66.7] 0.069
Lens R Dmax 1 17.8 [−1.53, 65.5] 0.036 2

Lips Dmean 3 10.2 [−71.4, 38.7] 0.006 2

Mandible Dmax 1 4.58 [−6.14, 21] 0.003 2

Optic Chiasm Dmax 1 −6.5 [−20.4, 28.7] 0.063
Oral cavity Dmean 3 5.32 [−22.7, 15.9] 0.064
Parotid L Dmean 3 9.07 [−32.4, 37.3] 0.030 2

Parotid R Dmean 3 8.51 [−26.7, 33] 0.013 2

Pharyngeal Constrictors Dmean 3 4 [−10.2, 10.5] 0.007 2

Spinal Cord Dmax 1 5.9 [−21.8, 35.5] 0.063
PRV 6 Spinal Cord Dmax 1 3.69 [−23.8, 26] 0.099

Spinal Canal Dmax 1 2.57 [−20.5, 21.4] 0.279
Submandibular gland L Dmean 3 −5.37 [−63.8, 10.3] 0.476
Submandibular gland R Dmean 3 −6.94 [−55.7, 8.84] 0.904

Thyroid V26Gy
5 1.93 [0, 14.9] 0.018 2

1: Dmax is the maximum dose received by the OAR. 2: Statistically significant result (0.05 level of significance).
3: Dmean is the mean dose received by the OAR. 4: V45Gy is the volume of the esophagus receiving 45. 5: V26Gy is
the volume of the thyroid receiving 26 Gy. 6: PRV is the volume of the planning organ at risk.

The RapidPlan™-generated plans achieved statistically significant lower doses in
58.3% of the OARs. For example, the maximum quantity for the brainstem, the right lens,
as well as V54Gy for the esophagus improved significantly above 14% with RapidPlan™. As
a result, RapidPlan™ performed equally to or better than the clinical plan for the dosimetric
endpoints of the OAR structures evaluated in this study.
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3.3. Plan Deliverability

The results for the mean 2D GPRs (%) of the open-loop validation set are presented
in Table 4. For the 3%/3 mm criterion, RapidPlan’s™ mean 2D GPRs (%) were higher
than the clinical ones for phase 70 Gy (99% versus 98%), while they showed no statistically
significant difference in phases 54 Gy and 60 Gy. For the 3%/2 mm and 2%/3 mm criteria,
RapidPlan’s™ mean 2D GPRs (%) were higher for phases 60 Gy and 70 Gy, while they were
comparable for phase 54 Gy.

Table 4. Mean 2D gamma passing rates (GPR(%)) of the clinical and RapidPlan™ plans in the
open-loop validation set.

Phase Criterion GPR(%)±SD
Clinical

GPR(%)±SD
RapidPlan™ ∆GPR(%) p-Value

54 Gy
3%/3 mm 99.4 ± 0.6 99.3 ± 0.8 0.07 0.962
3%/2 mm 98.6 ± 1.4 98.9 ± 1.3 −0.29 0.314
2%/3 mm 98.5 ± 1.6 98.2 ± 1.8 0.28 0.856

60 Gy
3%/3 mm 98.9 ± 1.1 99.3 ± 0.6 −0.31 0.231
3%/2 mm 97.6 ± 1.9 98.6 ± 1.1 −0.95 0.027 1

2%/3 mm 97.3 ± 1.7 98.3 ± 1.1 −0.93 0.018 1

70 Gy
3%/3 mm 98.0 ± 1.7 99.0 ± 1.0 −1.07 0.038 1

3%/2 mm 96.1 ± 3.1 98.2 ± 1.7 −2.12 0.019 1

2%/3 mm 96.3 ± 2.6 97.8 ± 1.7 −1.51 0.048 1

1: statistically significant result (0.05 level of significance).

Regarding MUs, the MU factor, and the complexity index, for the open-loop validation
group, the plans showed no statistically significant difference (Table 5).

Table 5. Monitor units (MUs), modulation factor (MU factor), and the complexity index for clinical
plans against RapidPlan™ plans in the open-loop validation set.

Parameter Number of ARCs Phase Clinical RapidPlan™ p-Value

MU

47 54 Gy 243 ± 112 240 ± 110 0.525
34 60 Gy 321 ± 153 322 ± 146 0.784
28 70 Gy 373 ± 165 360 ± 151 0.577

109 total 300 ± 149 296 ± 141 0.469

MU factor

47 54 Gy 4.49 ± 2.07 4.44 ± 2.03 0.525
34 60 Gy 53.5 ± 25.6 53.6 ± 24.3 0.778
28 70 Gy 37.3 ± 16.5 36.0 ± 15.1 0.577

109 total 28.2 ± 27.1 27.9 ± 26.5 0.394

complexity index
[mm−1]

47 54 Gy 0.120 ± 0.028 0.120 ± 0.023 0.498
34 60 Gy 0.132 ± 0.029 0.138 ± 0.032 0.135
28 70 Gy 0.152 ± 0.029 0.153 ± 0.029 0.785

109 total 0.132 ± 0.031 0.134 ± 0.031 0.185

The complexity index for both clinical and RapidPlan™ generated plans was found to
be weakly to moderately correlated with the MUs and the MU factor for phases 54 Gy and
60 Gy, and no correlation was observed for phase 70 Gy.

In Figure 3a,b, the complexity index is presented against the MUs for phases 54 Gy and
60 Gy of the clinical and RapidPlan™ plans in which a statistically significant correlation
was observed. It can be seen that the complexity index is correlated moderately with the
MUs for both phases and both plan categories.
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Figure 3. (a). Complexity index against monitor units for phase 54 Gy, and for clinical and Rapid-
Plan™ plans in the open-loop validation set. (b) Complexity index against monitor units for phase
60 Gy for clinical and RapidPlan™ plans in the open-loop validation set.

For the RapidPlan™ plans, no correlation between the 2D GPRs (%) and the MUs, MU
factor, or the complexity index was found. For the clinical plans, a moderate correlation was
observed for phase 70 Gy between the 2D GPRs (%) and the MUs, and between the 2D GPRs
(%) and the MU factor, applying the 3%/2 mm and 2%/3 mm criteria with Spearman’s rho
values of −0.483 (p-value = 0.027) and −0.437 (p-value = 0.048), respectively.

4. Discussion

The introduction of RapidPlan™ H&N models seems to be of clinical importance, since
our dosimetry assessment revealed better OAR sparing in 58.3% of the OARs without com-
promising plan deliverability (with comparable or better 2D GPRs (%)) with comparable
MUs and a comparable complexity index. Concerning the PTV dosimetric assessment, for
the low-risk PTV, no statically significant difference was observed between the RapidPlan™
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and clinical plans. For the intermediate-risk PTV, the CI was better for the clinical plans
while V107% was better for the RapidPlan™ plans, and for the high-risk PTV, the CI and HI
showed no statically significant difference, but V107% was better for the RapidPlan™ plans.
Considering the fact that the H&N are complex treatment sites, the results found in this
study are encouraging and show that RapidPlan™ could assist medical physicists in the
optimization of treatment plans even in demanding irradiation geometries.

4.1. Dosimetric Evaluation

The dosimetric results showed that the sparing of the OARs was better and that the
PTV coverage was comparable between clinical and RapidPlan™ plans. Specifically for the
OARs, the brainstem, the esophagus, the left parotid gland, and the right parotid gland
received lower doses at an average of 3.7 Gy, 7.8 Gy, 1.9 Gy, and 2.3 Gy with RapidPlan™
(a statistically significant outcome). It is worth mentioning that in this study the focus was
placed on the open-loop validation results because only open-loop validation will provide
the user with the confidence that the model can be applied clinically. Other studies report
comparable or improved PTV coverage and OAR sparing with RapidPlan™ for H&N
models [13,18–20]. Kaderka et al. trained a RapidPlan™ model with 52 H&N patients and
found statistically significant lower doses in the left and right cochlea, cricopharyngeus,
esophagus, larynx, and the parotid glands [21]. Another study evaluated the dosimetric
indices of RapidPlan™ plans on Varian LINACS, and for the H&N model they concluded
that the dosimetric indices for the PTV and OARs were comparable regardless of energies
and MLC types [22]. Moreover, it has been demonstrated that knowledge-based DVH pre-
dictions generated from RapidPlan™ H&N models can be used for plan quality assurance
purposes, especially for the plans intended for use in clinical trials [7,8,23,24]. Therefore, the
suitability of RapidPlan™ as a QA tool reveals not only the good plan quality achieved via
RapidPlan™ but also that accurate DVH predictions (DVH estimates) can be obtained [8].

4.2. Plan Deliverability

In this study, for the 3%/2 mm and 2%/3 mm criteria, the 2D GPRs (%) were better for
RapidPlan™ compared to the clinical ones for phases 60 Gy and 70 Gy, while a statistically
significant difference was not observed for phase 54 Gy. This might be attributed to the fact
that the PTV volume is usually bigger and closer to some OARs in phase 54 Gy (low-risk
PTV) compared to phases 60 Gy (intermediate-risk PTV) or 70 Gy (high-risk PTV). This fact
could make it more difficult during optimization to find the optimal trade-off between PTV
coverage and OAR sparing, and it could probably lead to smaller 2D GPRs (%) for phase
54 Gy plans. Moreover, the MUs, the MU factor, and the complexity index for RapidPlan™
were similar to those of the clinical ones. The results showed a statistically significant
moderate correlation between the complexity index and the MUs for clinical as well as
RapidPlan™ plans. In this work, it was revealed that optimizing VMAT H&N plans with
RapidPlan™ does not increase the Mus nor the complexity of the plans, which is a positive
outcome for plan deliverability.

It should be noted that this is the first study investigating the correlation between
the MUs, MU factors, and 2D GPRs (%) with the complexity index in RapidPlan™ plans
for H&N cases. This study confirms that plan complexity is affected by the MUs in both
the RapidPlan™ and clinical plans for phases 54 Gy and 60 Gy. There was no correlation
between the 2D GPRs (%) and the MUs, MU factor, or complexity for RapidPlan™ plans.
On the contrary, a study focusing on prostate cancer cases, using an in-house KBP algorithm,
observed that the 2D GPRs (%) were correlated weakly to moderately with complexity
metrics [25]. Therefore, more research is needed to draw safe conclusions concerning the
correlation of 2D GPRs (%)with plan complexity for KBP H&N treatment plans.

To our knowledge, this is the first study focusing on the evaluation of the plan deliv-
erability of H&N RapidPlan™ models. Therefore, the current results may be comparable
to studies referring to other treatment sites such as prostate cases. Tamura et al. found
similar results for both PSQA outcomes (in terms of GPR) and MUs between clinical and
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RapidPlan™ plans for prostate cancer cases, an outcome which is in line with those of this
study [26]. Hussein et al. did not find any statistically significant difference between Rapid-
Plan™ and clinical plans in the MUs or the modulation complexity score [27] (similar to the
complexity index used in this study) for prostate cancer cases, whereas RapidPlan™ plans
had more MUs compared to the clinical ones for cervical cases [12]. Hundvin et al. showed
that the MUs were similar between RapidPlan™ plans and clinical ones for prostate cancer
cases [28]. On the other hand, Kubo et al. found increased MUs and more complicated
MLC sequences compared to the clinical ones for prostate cancer patients [29]. Another
study assessed the deliverability of VMAT plans for prostate cancer patients from three
different institutions, and they concluded that, despite the statically significant differences
in MUs or the modulation complexity score among the centers, the RapidPlan™ plans were
deliverable [30].

4.3. Limitations and Future Directions

In terms of limitations, the training set size of the H&N 54 Gy, 60 Gy, and 70 Gy models
(41, 43, and 40 plans, respectively) should be larger provided that these models are general
scope and refer to larynx, nasopharynx, and oropharynx cases. The creation of a model
which is specific requires a smaller training set compared to a general model, but specific
models are susceptible to overfitting. Overfitting can lead to too-specific class solutions that
exclude general cases. For instance, a specific larynx model could create optimal treatment
plans for larynx cases, but it is likely to fail in an oropharynx case due to overfitting. The
creation of a general model which could be implemented on a variety of treatment sites
could be more practical for clinical routines. However, a general model requires a bigger
training set using a suitable number of cases for each treatment site subgroup. There is
one study which investigated the training set size requirements of the KBP models, and
they concluded that 20 cases were enough to accurately predict the DVH for the rectum
compared to the 75 cases required to predict the DVH for the bladder [31]. The training
set size also depends on the number of available treatment plans for each treatment site in
the department. Therefore, for either a general or specific-scope model, the results of the
validation process will reveal if the model could be implemented in clinical settings.

In this study, the brain, eyes, optic chiasm, and optic nerves were OARs that remained
untrained in all models, because the minimum of 20 treatment plans in which these OARs
should belong in the in-field region was not reached. As a result, this issue may have
an impact on nasopharynx cases, and the planner should pay attention and add manual
optimization objectives for these structures. The training of the help structures was not
considered, but might help the optimization process and the dose distribution. Moreover,
we did not check the impact of multi-criteria optimization (MCO) in combination with
RapidPlan™ because MCO was not available in our institution.

Concerning future directions, the training of the help structures, such as the ‘rings’
that aided the optimization process, could be performed. This may improve the quality
of future RapidPlan™ models. The experience gained from this study will be useful for
the creation of RapidPlan™ models for other treatment sites in our institution. Moreover,
model creation which takes as an input plans generated from a RapidPlan™ model is a
process that is described in the literature as ‘iterative learning’, and the results concerning
plans’ quality are promising [28,32]. There are two studies available in the literature that
combine the use of multi-criteria optimization (MCO) and RapidPlan™, and they are
limited to one treatment site (H&N carcinoma) [9,33]. As a result, there is room to explore
the combination of MCO with KBP for various treatment sites.

5. Conclusions

The training and validation process of H&N RapidPlan™ models is a time intensive
process and needs attention to be safely introduced in a clinical setting. However, the
results showed that there is a clinical benefit in terms of dosimetry, especially for the OARs,
plan deliverability, and plan complexity with the use of RapidPlan™ for H&N cancer cases.
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In conclusion, knowledge-based treatment plans can be safely adapted into clinical routines,
providing improved plan quality in a time-efficient way while minimizing user variability,
creating a new standard for radiation oncology.
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