Morpho-Functional Effect of a New Collagen-Based Medical Device on Human Gingival Fibroblasts: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Collagen Coating with Dental SKIN BioRegulation
2.3. Cell Culture
2.4. Calcein AM Cell Viability Assay
2.5. Scratch Assay
2.6. Flow Cytometry Analysis
2.7. Statistical Analysis
3. Results
3.1. Analysis and Characterization of hGF and Cell Morphology
3.2. Dental SKIN BioRegulation Effect on Cell Viability
3.3. Wound Healing Assay
3.4. Effect of Dental SKIN BioRegulation on FAK, YAP/TAZ Activation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhang, Y.; Miron, R.J. Health, Maintenance, and Recovery of Soft Tissues around Implants. Clin. Implant. Dent. Relat. Res. 2016, 18, 618–634. [Google Scholar] [CrossRef]
- Iezzi, G.; di Lillo, F.; Furlani, M.; Degidi, M.; Piattelli, A.; Giuliani, A. The Symmetric 3d Organization of Connective Tissue around Implant Abutment: A Key-Issue to Prevent Bone Resorption. Symmetry 2021, 13, 1126. [Google Scholar] [CrossRef]
- Galarraga-Vinueza, M.E.; Tavelli, L. Soft Tissue Features of Peri-Implant Diseases and Related Treatment. Clin. Implant Dent. Relat. Res. 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Könönen, E.; Gursoy, M.; Gursoy, U.K. Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J. Clin. Med. 2019, 8, 1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halperin-Sternfeld, M.; Zigdon-Giladi, H.; Machtei, E.E. The Association between Shallow Vestibular Depth and Peri-Implant Parameters: A Retrospective 6 Years Longitudinal Study. J. Clin. Periodontol. 2016, 43, 305–310. [Google Scholar] [CrossRef]
- Lim, H.C.; An, S.C.; Lee, D.W. A Retrospective Comparison of Three Modalities for Vestibuloplasty in the Posterior Mandible: Apically Positioned Flap Only vs. Free Gingival Graft vs. Collagen Matrix. Clin. Oral Investig. 2018, 22, 2121–2128. [Google Scholar] [CrossRef]
- Thoma, D.S.; Naenni, N.; Figuero, E.; Hämmerle, C.H.F.; Schwarz, F.; Jung, R.E.; Sanz-Sánchez, I. Effects of Soft Tissue Augmentation Procedures on Peri-Implant Health or Disease: A Systematic Review and Meta-Analysis. Clin. Oral Implant. Res. 2018, 29, 32–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouri, A.; Bissada, N.; Al-Zahrani, M.S.; Faddoul, F.; Nouneh, I. Width of Keratinized Gingiva and the Health Status of the Supporting Tissues around Dental Implants. Int. J. Oral Maxillofac. Implant. 2008, 23, 323–326. [Google Scholar]
- Brito, C.; Tenenbaum, H.C.; Wong, B.K.C.; Schmitt, C.; Nogueira-Filho, G. Is Keratinized Mucosa Indispensable to Maintain Peri-Implant Health? A Systematic Review of the Literature. J. Biomed. Mater. Res. B Appl. Biomater 2014, 102, 643–650. [Google Scholar] [CrossRef]
- Lin, G.-H.; Chan, H.-L.; Wang, H.-L. The Significance of Keratinized Mucosa on Implant Health: A Systematic Review. J. Periodontol 2013, 84, 1755–1767. [Google Scholar] [CrossRef]
- Lorenzo, R.; García, V.; Orsini, M.; Martin, C.; Sanz, M. Clinical Efficacy of a Xenogeneic Collagen Matrix in Augmenting Keratinized Mucosa around Implants: A Randomized Controlled Prospective Clinical Trial. Clin. Oral Implant. Res. 2012, 23, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Gobbato, L.; Avila-Ortiz, G.; Sohrabi, K.; Wang, C.-W.; Karimbux, N. The Effect of Keratinized Mucosa Width on Peri-Implant Health: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2013, 28, 1536–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenstein, G.; Cavallaro, J. The Clinical Significance of Keratinized Gingiva around Dental Implants. Compend. Contin. Educ. Dent. 2011, 32, 24–31. [Google Scholar] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound Repair and Regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.I.; Fuller, J.M.; Willett, N.J.; Goudy, S.L. Oral Wound Healing Models and Emerging Regenerative Therapies. Transl. Res. 2021, 236, 17–34. [Google Scholar] [CrossRef]
- Desjardins-Park, H.E.; Foster, D.S.; Longaker, M.T. Fibroblasts and Wound Healing: An Update. Regen. Med. 2018, 13, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Häkkinen, L.; Larjava, H.; Fournier, B.P.J. Distinct Phenotype and Therapeutic Potential of Gingival Fibroblasts. Cytotherapy 2014, 16, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Rajshankar, D.; Wang, B.; Worndl, E.; Menezes, S.; Wang, Y.; McCulloch, C.A. Focal Adhesion Kinase Regulates Tractional Collagen Remodeling, Matrix Metalloproteinase Expression, and Collagen Structure, Which in Turn Affects Matrix-Induced Signaling. J. Cell Physiol. 2020, 235, 3096–3111. [Google Scholar] [CrossRef]
- Rockey, D.C.; Bell, P.D.; Hill, J.A. Fibrosis–A Common Pathway to Organ Injury and Failure. N. Engl. J. Med. 2015, 372, 1138–1149. [Google Scholar] [CrossRef]
- Rajshankar, D.; Wang, Y.; Mcculloch, C.A. Osteogenesis Requires FAK-Dependent Collagen Synthesis by Fibroblasts & Osteoblasts. FASEB J. 2017, 31, 937–953. [Google Scholar]
- Ilić, D.; Furuta, Y.; Kanazawa, S.; Takeda, N.; Sobuet, K.; Nakatsuji, N.; Nomura, S.; Fujimoto, J.; Fujimoto, J.; Yamamoto, T.; et al. Reduced Cell Motility and Enhanced Focal Adhesion Contact Formation in Cells from FAK-Deficient Mice. Nature 1995, 377, 539–544. [Google Scholar]
- Klingberg, F.; Chow, M.L.; Koehler, A.; Boo, S.; Buscemi, L.; Quinn, T.M.; Costell, M.; Alman, B.A.; Genot, E.; Hinz, B. Prestress in the Extracellular Matrix Sensitizes Latent TGF-Β1 for Activation. J. Cell Biol. 2014, 207, 766–767. [Google Scholar] [CrossRef]
- Elster, D.; von Eyss, B. Hippo Signaling in Regeneration and Aging. Mech. Ageing Dev. 2020, 189, 111280. [Google Scholar] [CrossRef]
- Piccolo, S.; Dupont, S.; Cordenonsi, M. The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiol. Rev. 2014, 94, 1287–1312. [Google Scholar] [CrossRef]
- Alfonso García, S.L.; Parada-Sanchez, M.T.; Arboleda Toro, D. The Phenotype of Gingival Fibroblasts and Their Potential Use in Advanced Therapies. Eur. J. Cell Biol. 2020, 99, 151123. [Google Scholar] [CrossRef]
- Romasco, T.; Tumedei, M.; Inchingolo, F.; Pignatelli, P.; Montesani, L.; Iezzi, G.; Petrini, M.; Piattelli, A.; di Pietro, N. A Narrative Review on the Effectiveness of Bone Regeneration Procedures with OsteoBiol® Collagenated Porcine Grafts: The Translational Research Experience over 20 Years. J. Funct. Biomater 2022, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Rai, V.K.; Narang, R.K.; Markandeywar, T.S. Collagen-Based Formulations for Wound Healing: A Literature Review. Life Sci. 2022, 290, 120096. [Google Scholar] [CrossRef]
- Klewin-Steinböck, S.; Nowak-Terpiłowska, A.; Adamski, Z.; Grocholewicz, K.; Wyganowska-Świątkowska, M. Effect of Injectable Equine Collagen Type I on Metabolic Activity and Apoptosis of Gingival Fibroblasts. Postep. Derm. Alergol. 2021, 38, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Reuven, E.; Fink, A.; Shai, Y. Regulation Of Innate Immune Responses By Transmembrane Interactions: Lessons From The TLR Family. Biochem. Biophys. 2014, 6, 1586–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boink, M.A.; Roffel, S.; Breetveld, M.; Thon, M.; Haasjes, M.; Waaijman, T. Comparison Of Advanced Therapy Medicinal Product Gingiva And Skin Substitutes And Their In Vitro Wound Healing Potentials. J. Tissue Eng. Regener. Med. 2018, 2, 1088–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Wang, X.; Chen, Y.; Yue, O.; Bai, Z.; Cui, B.; Jiang, H.; Liu, X. A Review of Recent Progress on Collagen-Based Biomaterials. Adv. Healthc. Mater. 2022, e2202042. [Google Scholar] [CrossRef]
- el Blidi, O.; el Omari, N.; Balahbib, A.; Ghchime, R.; el Menyiy, N.; Ibrahimi, A.; Kaddour, K.; Bouyahya, A.; Chokairi, O.; Barkiyou, M. Extraction Methods, Characterization and Biomedical Applications of Collagen: A Review. Biointerface Res. Appl. Chem 2021, 11, 13587–13613. [Google Scholar]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Körtvélyessy, G.; Tarjányi, T.; Baráth, Z.L.; Minarovits, J.; Tóth, Z. Bioactive Coatings for Dental Implants: A Review of Alternative Strategies to Prevent Peri-Implantitis Induced by Anaerobic Bacteria. Anaerobe 2021, 70, 102404. [Google Scholar] [CrossRef] [PubMed]
- Ritz, U.; Nusselt, T.; Sewing, A.; Ziebart, T.; Kaufmann, K.; Baranowski, A.; Rommens, P.M.; Hofmann, A. The Effect of Different Collagen Modifications for Titanium and Titanium Nitrite Surfaces on Functions of Gingival Fibroblasts. Clin. Oral Investig. 2017, 21, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Rizo-Gorrita, M.; Luna-Oliva, I.; Serrera-Figallo, M.; Guti’errez-P´erez, J.; Torres-Lagares, D. Comparison Of Cytomorphometry And Early Cell Response Of Human Gingival Fibroblast (Hgfs) Between Zirconium And New Zirconia-Reinforced Lithium Silicate Ceramics (ZLS). Int. J. Mol. Sci. 2018, 9, 2718. [Google Scholar] [CrossRef] [Green Version]
- Gόmez-Florit, M.; Ramis, J.; Xing, R.; Taxt-Lamolle, H.; Haugen, S.; Lyngstadaas, M.; Monjo, M. Differential Response Of Human Gingival Fibroblasts To Titaniumand Titanium-Zirconium-Modified Surfaces. J. Periodon. Res. 2014, 4, 425–436. [Google Scholar] [CrossRef]
- Keane, T.; Horejs, C.; Stevens, M. Scarring Vs Functional Healing: Matrix-Based Strategies To Regulate Tissue Repair. Adv. Drug. Deliv. Rev. 2018, 129, 407–419. [Google Scholar] [CrossRef]
- Randelli, F.; Menon, A.; Via, A.G.; Mazzoleni, M.; Sciancalepore, F.; Brioschi, M.; Gagliano, N. Effect of a Collagen-Based Compound on Morpho-Functional Properties of Cultured Human Tenocytes. Cells 2018, 7, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randelli, F.; Sartori, P.; Carlomagno, C.; Bedoni, M.; Menon, A.; Vezzoli, E.; Sommariva, M.; Gagliano, N. The Collagen-Based Medical Device MD-Tissue Acts as a Mechanical Scaffold Influencing Morpho-Functional Properties of Cultured Human Tenocytes. Cells 2020, 9, 2641. [Google Scholar] [CrossRef]
- Corrado, B.; Mazzuoccolo, G.; Liguori, L.; Chirico, V.A.; Costanzo, M.; Bonini, I.; Bove, G.; Curci, L. Treatment of Lateral Epicondylitis with Collagen Injections: A Pilot Study. Muscle Ligaments Tendons J. 2019, 9, 584–589. [Google Scholar] [CrossRef] [Green Version]
- Corrado, B.; Bonini, I.; Chirico, V.A.; Rosano, N.; Gisonni, P. Use Of Injectable Collagen In Partial-Thickness Tears Of The Supraspinatus Tendon: A Case Report. Oxf. Med. Case Rep. 2020, 11, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.S.; Massafra, U.; Bizzi, E.; Migliore, A. A Double Blind Randomized Active-Controlled Clinical Trial On The Intra-Articular Use Of Md-Knee Versus Sodium Hyaluronate In Patients With Knee Osteoarthritis (“Joint”). BMC Musculoskelet Disord. 2016, 17, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavelka, K.; Jarosova, H.; Sleglova, O.; Svobodova, R.; Votavova, M.; Milani, L.; Prochazka, Z.; Kotlarova, L.; Kostiuk, P.; Sliva, J.; et al. Chronic Low Back Pain: Current Pharmacotherapeutic Therapies and a New Biological Approach. Curr. Med. Chem. 2018, 25, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.C.; Park, A.Y.; Guan, J.L. In Vitro Scratch Assay: A Convenient and Inexpensive Method for Analysis of Cell Migration in Vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Jonkman, J.E.N.; Cathcart, J.A.; Xu, F.; Bartolini, M.E.; Amon, J.E.; Stevens, K.M.; Colarusso, P. An Introduction to the Wound Healing Assay Using Live-Cell Microscopy. Cell. Adh. Migr. 2014, 8, 440–451. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, F.; Mandatori, D.; Schiavone, V.; Melito, F.P.; Valentinuzzi, S.; Vadini, M.; di Tomo, P.; Vanini, L.; Pelusi, L.; Pipino, C.; et al. Cytotoxic and Genotoxic Effects of Composite Resins on Cultured Human Gingival Fibroblasts. Materials 2021, 14, 5225. [Google Scholar] [CrossRef]
- D’souza, Z.; Chettiankandy, T.J.; Ahire (Sardar), M.S.; Thakur, A.; Sonawane, S.G.; Sinha, A. Collagen–Structure, Function and Distribution in Orodental Tissues. J. Glob. Oral Health 2020, 2, 134–139. [Google Scholar] [CrossRef]
- Ramshaw, J.A.M. Biomedical Applications of Collagens. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 665–675. [Google Scholar] [CrossRef]
- Hashimoto, K.; Yamashita, K.; Enoyoshi, K.; Dahan, X.; Takeuchi, T.; Kori, H.; Gotoh, M. The Effects of Coating Culture Dishes with Collagen on Fibroblast Cell Shape and Swirling Pattern Formation. J. Biol. Phys. 2020, 46, 351–369. [Google Scholar] [CrossRef]
- Rhee, S.; Grinnell, F. Fibroblast Mechanics in 3D Collagen Matrices. Adv. Drug. Deliv. Rev. 2007, 59, 1299–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardakani, M.R.T.; Hajizadeh, F.; Yadegari, Z. Comparison of Attachment and Proliferation of Human Gingival Fibroblasts on Different Collagen Membranes. Ann. Maxillofac. Surg. 2018, 8, 218–223. [Google Scholar]
- Böhm, S.; Strauß, C.; Stoiber, S.; Kasper, C.; Charwat, V. Impact of Source and Manufacturing of Collagen Matrices on Fibroblast Cell Growth and Platelet Aggregation. Materials 2017, 10, 1086. [Google Scholar] [CrossRef] [Green Version]
- Fujioka-Kobayashi, M.; Ülgür, I.I.; Katagiri, H.; Vuignier, S.; Schaller, B. In Vitro Observation of Macrophage Polarization and Gingival Fibroblast Behavior on Three-Dimensional Xenogeneic Collagen Matrixes. J. Biomed. Mater. Res. A 2020, 108, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Mahdavi, P.; Lee, W.S.; Quan, B.; Sone, E.; Ganss, B.; McCulloch, C.A. A Novel, Cell-Permeable, Collagen-Based Membrane Promotes Fibroblast Migration. J. Periodontal Res. 2018, 53, 727–735. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Wairkar, S. Collagen Fabricated Delivery Systems for Wound Healing: A New Roadmap. Biomater. Adv. 2022, 142, 213152. [Google Scholar] [CrossRef] [PubMed]
- Sklenářová, R.; Akla, N.; Latorre, M.J.; Ulrichová, J.; Franková, J. Collagen as a Biomaterial for Skin and Corneal Wound Healing. J. Funct. Biomater. 2022, 13, 249. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.C.; Martínez, C.; Martínez, J.; McCulloch, C.A. Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling. Front. Physiol. 2019, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Burridge, K.; Guilluy, C. Focal Adhesions, Stress Fibers and Mechanical Tension. Exp. Cell Res. 2016, 343, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuehlmann, B.; Bonham, C.A.; Zucal, I.; Prantl, L.; Gurtner, G.C. Mechanotransduction in Wound Healing and Fibrosis. J. Clin. Med. 2020, 9, 1423. [Google Scholar] [CrossRef]
- Dieterle, M.P.; Husari, A.; Steinberg, T.; Wang, X.; Ramminger, I.; Tomakidi, P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheng, J.; Zhao, C.; Zhao, B.; Mi, J.; Li, W. The Hippo Pathway: A Renewed Insight in the Craniofacial Diseases and Hard Tissue Remodeling. Int. J. Biol. Sci. 2021, 17, 4060–4072. [Google Scholar] [CrossRef]
- Ebisawa, K.; Kato, R.; Okada, M.; Sugimura, T.; Latif, M.A.; Hori, Y.; Narita, Y.; Ueda, M.; Honda, H.; Kagami, H. Gingival and Dermal Fibroblasts: Their Similarities and Differences Revealed from Gene Expression. J. Biosci. Bioeng. 2011, 111, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Meng, F.; Li, Y.R.; Tian, Y.; Chen, H.; Jia, Q.; Cai, H.; Jiang, H.B. Application of Nonsurgical Modalities in Improving Facial Aging. Int. J. Dent. 2022, 2022, 8332631. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Iku, S.; Sammons, R.; Yagami, K.; Furusawa, T.; Morimoto, K.; Rahaman, M.S.; Kurasaki, M.; Tokura, S.; Kuboki, Y. Binding Of Collagen Gene Products With Titanium Oxide. J. Biochem. 2021, 5, 565–573. [Google Scholar] [CrossRef]
- Marín-Pareja, N.; Cantini, M.; González-García, C.; Salvagni, E.; Salmerón-Sánchez, M.; Ginebra, M.P. Different Organization of Type I Collagen Immobilized on Silanized and Nonsilanized Titanium Surfaces Affects Fibroblast Adhesion and Fibronectin Secretion. ACS Appl. Mater. Interfaces 2015, 7, 20667–20677. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romasco, T.; Mandrillo, P.M.; Morsut, E.; Tumedei, M.; Mandatori, D.; Petrini, M.; Curia, M.C.; De Angelis, F.; D’Arcangelo, C.; Piattelli, A.; et al. Morpho-Functional Effect of a New Collagen-Based Medical Device on Human Gingival Fibroblasts: An In Vitro Study. Biomedicines 2023, 11, 786. https://doi.org/10.3390/biomedicines11030786
Romasco T, Mandrillo PM, Morsut E, Tumedei M, Mandatori D, Petrini M, Curia MC, De Angelis F, D’Arcangelo C, Piattelli A, et al. Morpho-Functional Effect of a New Collagen-Based Medical Device on Human Gingival Fibroblasts: An In Vitro Study. Biomedicines. 2023; 11(3):786. https://doi.org/10.3390/biomedicines11030786
Chicago/Turabian StyleRomasco, Tea, Pier Michele Mandrillo, Erica Morsut, Margherita Tumedei, Domitilla Mandatori, Morena Petrini, Maria Cristina Curia, Francesco De Angelis, Camillo D’Arcangelo, Adriano Piattelli, and et al. 2023. "Morpho-Functional Effect of a New Collagen-Based Medical Device on Human Gingival Fibroblasts: An In Vitro Study" Biomedicines 11, no. 3: 786. https://doi.org/10.3390/biomedicines11030786
APA StyleRomasco, T., Mandrillo, P. M., Morsut, E., Tumedei, M., Mandatori, D., Petrini, M., Curia, M. C., De Angelis, F., D’Arcangelo, C., Piattelli, A., & Di Pietro, N. (2023). Morpho-Functional Effect of a New Collagen-Based Medical Device on Human Gingival Fibroblasts: An In Vitro Study. Biomedicines, 11(3), 786. https://doi.org/10.3390/biomedicines11030786