Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Cell Culture Conditions
2.1.1. Cryopreservation
2.1.2. Colony Formation Assay
2.1.3. Wound Healing Assay
2.1.4. Senescence-Associated β-Galactosidase Assay
2.1.5. Cytogenetic Analysis
2.2. Immunocytochemistry
2.3. In Vitro Drugs Protocol
2.4. Cell Viability Assay
2.5. Statistical Analysis
3. Results
3.1. Cell Line Characterization
3.1.1. Morphology Features
3.1.2. Colony Formation Assay
3.1.3. Wound Healing Assay
3.1.4. Senescence-Associated β-Galactosidase Assay
3.1.5. Cytogenetic Analysis
3.2. Immunocytochemistry
3.3. In Vitro Drug Results
3.3.1. MTT Results of the Different Cell Lines with 5-FU as Single Agents
3.3.2. MTT Results with Repurposed Drugs as Single Agents
3.3.3. MTT Results with Combined Drugs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hugen, S.; Thomas, R.E.; German, A.J.; Burgener, I.A.; Mandigers, P.J.J. Gastric carcinoma in canines and humans, a review. Vet. Comp. Oncol. 2017, 15, 692–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, J.; Melo, S.; Carneiro, P.; Moreira, A.M.; Fernandes, M.S.; Ribeiro, A.S. Clinical spectrum and pleiotropic nature of CDH1 germline mutations. J. Med. Genet. 2019, 56, 199–208. [Google Scholar] [CrossRef] [Green Version]
- GLOBOCAN. Available online: https://gco.iarc.fr (accessed on 14 November 2022).
- Yusefi, A.R.; Lankarani, K.B.; Bastani, P.; Radinmanesh, M.; Kavosi, Z. Risk factors for gastric cancer: A systematic review. Asian Pac. J. Cancer. Prev. 2018, 19, 591–603. [Google Scholar] [PubMed]
- Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol. 2006, 12, 354–362. [Google Scholar] [CrossRef]
- Ruan, T.; Liu, W.; Tao, K.; Wu, C. A review of research progress in multidrug-resistance mechanisms in gastric cancer. Onco. Targets Ther. 2020, 13, 1797–1807. [Google Scholar] [CrossRef] [Green Version]
- Heidelberger, C.; Chaudhuri, N.K.; Danneberg, P.; Mooren, D.; Griesbach, L.; Duschinsky, R. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 1957, 179, 663–666. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Miranda, A.; Hamilton, P.T.; Zhang, A.W.; Pattnaik, S.; Becht, E.; Mezheyeuski, A. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc. Natl. Acad. Sci. USA 2019, 116, 9020–9029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Tang, J.N.; Xie, H.X.; Du, Y.A.; Huang, L.; Yu, P.F. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int. J. Biol. Sci. 2015, 11, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Duarte, D.; Rêma, A.; Amorim, I.; Vale, N. Drug Combinations: A new strategy to extend drug repurposing and epithelial-mesenchymal transition in breast and colon cancer cells. Biomolecules 2022, 12, 190. [Google Scholar] [CrossRef]
- Sahragardjoonegani, B.; Beall, R.F.; Kesselheim, A.S.; Hollis, A. Repurposing existing drugs for new uses: A cohort study of the frequency of FDA-granted new indication exclusivities since 1997. J. Pharm. Policy Pract. 2021, 14, 3. [Google Scholar] [CrossRef]
- Khataniar, A.; Pathak, U.; Rajkhowa, S.; Jha, A.N. A comprehensive review of drug repurposing strategies against known drug targets of COVID-19. COVID 2022, 26, 148–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Boyer, A.; Pasquier, E.; Tomasini, P.; Ciccolini, J.; Greillier, L.; Andre, N. Drug repurposing in malignant pleural mesothelioma: A breath of fresh air? Eur. Respir. Rev. 2018, 27, 170098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M. Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol. 2017, 7, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Wang, S.; Yang, D.; Pan, K.; Li, L.; Yuan, S. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing. Oncol. Lett. 2016, 11, 3265–3272. [Google Scholar] [CrossRef] [Green Version]
- Welscher, Y.M.; Napel, H.H.; Balagué, M.M.; Souza, C.M.; Riezman, H.; de Kruijff, B. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J. Biol. Chem. 2008, 283, 6393–6401. [Google Scholar] [CrossRef] [Green Version]
- Rozacky, J.; Nemec, A.A.; Sweasy, J.B.; Kidane, D. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks. Oncotarget 2015, 6, 24474–24487. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, J.L.; Lai, Y.; Annamalai, T.; Jiang, Z.; Zhang, M.; Lei, R. Inhibition of base excision repair by natamycin suppresses prostate cancer cell proliferation. Biochimie 2020, 168, 241–250. [Google Scholar] [CrossRef]
- Pfab, C.; Schnobrich, L.; Eldnasoury, S.; Gessner, A.; El-Najjar, N. Repurposing of antimicrobial agents for cancer therapy: What do we know? Cancers 2021, 13, 3193. [Google Scholar] [CrossRef]
- Mahmoud, D.B.; Shitu, Z.; Mostafa, A. Drug repurposing of nitazoxanide: Can it be an effective therapy for COVID-19? J. Genet. Eng. Biotechnol. 2020, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Sidler, D.; Nachbur, U.; Wastling, J.; Brunner, T.; Hemphill, A. Thiazolides inhibit growth and induce glutathione- S -transferase Pi (GSTP1)-dependent cell death in human colon cancer cells. Int. J. Cancer 2008, 123, 1797–1806. [Google Scholar] [CrossRef]
- Qu, Y.; Olsen, J.R.; Yuan, X.; Cheng, P.F.; Levesque, M.P.; Brokstad, K.A. Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nat. Chem. Biol. 2018, 14, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2018, 175, 168–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madras, B.K.; Fahey, M.A.; Goulet, M.; Lin, Z.; Bendor, J.; Goodrich, C. Dopamine transporter (DAT) inhibitors alleviate specific parkinsonian deficits in monkeys: Association with dat occupancy in vivo. J. Pharmacol. Exp. Ther. 2006, 319, 570–585. [Google Scholar] [CrossRef] [Green Version]
- Runyon, S.; Carroll, F.I. Dopamine transporter ligands: Recent developments and therapeutic potential. Curr. Top. Med. Chem. 2006, 6, 1825–1843. [Google Scholar] [CrossRef]
- Sogawa, C.; Eguchi, Y.; Tran, M.T.; Ishige, M.; Trin, K.; Okusha, Y. Antiparkinson drug benztropine suppresses tumor growth, circulating tumor cells, and metastasis by acting on SLC6A3/DAT and reducing STAT3. Cancers 2020, 12, 523. [Google Scholar] [CrossRef] [Green Version]
- McGowan-Jordan, J.; Hastings, R.J.; Moore, S. ISCN 2020: An International System for Human Cytogenomic Nomenclature, 1st ed.; Karger: Basel, Switzerland, 2020. [Google Scholar]
- Rodrigues, R.; Duarte, D.; Vale, N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int. J. Mol. Sci. 2022, 23, 4280. [Google Scholar] [CrossRef]
- Shi, W.J.; Gao, J.B. Molecular mechanisms of chemoresistance in gastric cancer. World J. Gastrointest. Oncol. 2016, 8, 673–681. [Google Scholar] [CrossRef]
- Luo, B.H.; Xiong, F.; Wang, J.P.; Li, J.H.; Zhong, M.; Liu, Q.L. Epidermal growth factor-like domain-containing protein 7 (EGFL7) enhances EGF receptor-AKT signaling, epithelial-mesenchymal transition, and metastasis of gastric cancer cells. PLoS ONE 2014, 9, e99922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safari, F.; Zaer, S.J. Evaluation of cell- morphological changes by Helicobacter pylori caga and pragmin in ags human gastric carcinoma cells. Gene. Cell Tissue 2017, 4, e12598. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, Y.; Hou, M.; Liu, Y. NaCl pretreatment attenuates H.pylori-induced DNA damage and exacerbates proliferation of gastric epithelial cells (GES-1). Infect. Agent. Cancer 2015, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatib, H.; Rezaei-Tavirani, M.; Keshel, S.H.; Azodi, M.Z.; Omidi, R.; Biglarian, M. Flow cytometry analysis of rosa damascena effects on gastric cancer cell line (MKN45). Iran. J. Cancer Prev. 2013, 6, e80457. [Google Scholar]
- Walen, K.H. The origin of transformed cells. Cancer Genet. Cytogenet. 2002, 133, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Sarma, N.J.; Takeda, A.; Yaseen, N.R. Colony forming cell (CFC) assay for human hematopoietic cells. J. Vis. Exp. 2010, 46, 2195. [Google Scholar]
- Mayr, C.; Beyreis, M.; Dobias, H.; Gaisberger, M.; Pichler, M.; Ritter, M. Miniaturization of the clonogenic assay using confluence measurement. Int. J. Mol. Sci. 2018, 19, 724. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Gao, Y.; Zhu, L.; Song, H.; Zhao, L.; Liu, A. Establishment and characterization of a GES-1 human gastric epithelial cell line stably expressing miR-23a. Oncol. Lett. 2018, 16, 977–983. [Google Scholar] [CrossRef]
- Peng, D.F.; Hu, T.L.; Schneider, B.G.; Chen, Z.; Xu, Z.K.; El-Rifai, W. Silencing of glutathione peroxidase 3 through dna hypermethylation is associated with lymph node metastasis in gastric carcinomas. PLoS ONE 2012, 7, e46214. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Wang, M.; Song, X.; Ding, F.; Zhu, J. Effects of glabridin combined with 5-fluorouracil on the proliferation and apoptosis of gastric cancer cells. Oncol. Lett. 2018, 15, 7037–7045. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.F.; Qu, L.S.; Qian, X.F.; Xia, B.L.; Mao, Z.B.; Chen, W.C. Nuclear transcription factor CDX2 inhibits gastric cancer-cell growth and reverses epithelial-to-mesenchymal transition in vitro and in vivo. Mol. Med. Rep. 2015, 12, 5231–5238. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, S.; Chhabra, N.; Kaur, A.; Gupta, N. Wound healing concepts in clinical practice of OMFS. J. Maxillofac. Oral Surg. 2017, 16, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Le Dévédec, S.E.; Yan, K.; de Bont, H.; Ghotra, V.; Truong, H.; Danen, E.H. Systems microscopy approaches to understand cancer cell migration and metastasis. Cell Mol. Life Sci. 2010, 67, 3219–3240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, J.T.; Jozic, I.; Bedogni, B. wound healing assay for melanoma cell migration. Methods Mol. Biol. 2021, 2265, 65–71. [Google Scholar] [PubMed]
- Cikutović-Molina, R.; Herrada, A.A.; González, W.; Brown, N.; Zúñiga, L. TASK-3 gene knockdown dampens invasion and migration and promotes apoptosis in KATO III and MKN-45 human gastric adenocarcinoma cell lines. Int. J. Mol. Sci. 2019, 20, 6077. [Google Scholar] [CrossRef] [Green Version]
- Xia, P.; Liang, J.; Jin, D.; Jin, Z. Reversine inhibits proliferation, invasion and migration and induces cell apoptosis in gastric cancer cells by downregulating TTK. Exp Ther. Med. 2021, 22, 929. [Google Scholar] [CrossRef]
- Song, Z.; Wu, Y.; Yang, J.; Yang, D.; Fang, X. Progress in the treatment of advanced gastric cancer. Tumor Biology 2017, 39, 1010428317714626. [Google Scholar] [CrossRef] [Green Version]
- Itahana, K.; Campisi, J.; Dimri, G.P. Methods to detect biomarkers of cellular senescence. Methods Mol. Biol. 2007, 371, 21–31. [Google Scholar]
- Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instability in colorectal cancers. Nature 1997, 386, 623–627. [Google Scholar] [CrossRef]
- Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature 1998, 396, 643–649. [Google Scholar] [PubMed]
- Motoyama, T.; Hojo, H.; Watanabe, H. Comparison of seven cell lines derived from human gastric carcinomas. Pathol. Int. 1986, 36, 65–83. [Google Scholar] [CrossRef] [PubMed]
- Krasinskas, A.M.; Goldsmith, J.D. Diagnostic immunohistochemistry. Theranostic Genom. Appl. 2021, 3, 500–540. [Google Scholar]
- Nijkamp, M.M.; Span, P.N.; Hoogsteen, I.J.; van der Kogel, A.J.; Kaanders, J.H.A.M.; Bussink, J. Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother. Oncol. 2011, 99, 344–348. [Google Scholar] [CrossRef]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef] [PubMed]
- Eom, B.W.; Ryu, K.W.; Yoon, H.M.; Kook, M. Predictive value of E-cadherin and EpCAM for detection of metastatic lymph node in early gastric cancer. Chin. J. Cancer Res. 2020, 32, 614–620. [Google Scholar]
- Wu, H.; Xu, J.B.; He, Y.L.; Peng, J.J.; Zhang, X.H.; Chen, C.Q. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 2012, 106, 462–468. [Google Scholar] [CrossRef]
- Weiss, D.J.; Walcheck, B. Neutrophil function. Clin. Biochem. Domest. Anim. 2008, 3, 331–350. [Google Scholar]
- Wiedenmann, B.; Franke, W.W.; Kuhn, C.; Moll, R.; Gould, V.E. Synaptophysin: A marker protein for neuroendocrine cells and neoplasms. Proc. Natl. Acad. Sci. USA 1986, 83, 3500–3504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef] [Green Version]
- Fan-Minogue, H.; Bodapati, S.; Solow-Cordero, D.; Fan, A.; Paulmurugan, R.; Massoud, T.F. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol. Cancer Ther. 2013, 12, 1896–1905. [Google Scholar] [PubMed] [Green Version]
- Laudisi, F.; Marônek, M.; di Grazia, A.; Monteleone, G.; Stolfi, C. Repositioning of anthelmintic drugs for the treatment of cancers of the digestive system. Int. J. Mol. Sci. 2020, 21, 4957. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.P.; Rayapudi, K.; Pacana, T.; Shah, N.J.; Krishnaswamy, N.; Flynn, M. A randomized study comparing levofloxacin, omeprazole, nitazoxanide, and doxycycline versus triple therapy for the eradication of Helicobacter pylori. Am. J. Gastroenterol. 2011, 106, 1970–1975. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Sneed, G.T.; Brown, J.N. Treatment of Helicobacter pylori with nitazoxanide-containing regimens: A systematic review. Infect. Dis. 2020, 52, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Soriano, A.G.; Black, J. Nitazoxanide use as part of an empiric multi-drug regimen in treating children with suspected Helicobacter pylori infection. Case. Rep. Gastroenterol. 2015, 9, 36–42. [Google Scholar] [CrossRef]
Antibody | Antigen Retrieval | Dilution | Manufacturer |
---|---|---|---|
E-cadherin | Microwave/Extran | 1:50 | Life Technologies |
Vimentin | Retrieval solution/Water bath | 1:500 | Dako |
EpCam | 1:450 | Invitrogen | |
C-kit | Dako | ||
Cytokeratin AE1/AE3 | 1:1200 | Invitrogen | |
CD31 | Pepsin/Incubator | 1:50 | Dako |
Synaptophysin | Retrieval solution/Water bath | 1:150 | Thermo Scientific |
CD18 | 1:100 | Antiserum |
Cell Line | % Cells with Normal Karyotype (2n) | % Hypodiploid Cells | % Hyperdiploid Cells |
---|---|---|---|
AGS | 13.3 | 43.3 | 13.3 |
MKN28 | 0 | 2 | 4 |
MKN45 | 0 | 56 | 0 |
24 h/IC50 μM | 48 h/IC50 μM | |||||
---|---|---|---|---|---|---|
AGS | MKN28 | MKN45 | AGS | MKN28 | MKN45 | |
5-FU | 20.05 | >100 | >100 | 1.25 | 12.41 | 1.11 |
Natamycin | >100 | 25.66 | 33.58 | 39.57 | 35.36 | 6.02 |
Nitazoxanide | 17.75 | 4.42 | 3.72 | 2.79 | 6.71 | 1.95 |
Benztropine | 49.98 | 52.67 | >100 | 5.76 | 30.71 | 20.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, E.; Araújo, D.; Pereira, M.; Lopes, B.; Sousa, P.; Sousa, A.C.; Coelho, A.; Rêma, A.; Alvites, R.; Faria, F.; et al. Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines. Biomedicines 2023, 11, 799. https://doi.org/10.3390/biomedicines11030799
Ribeiro E, Araújo D, Pereira M, Lopes B, Sousa P, Sousa AC, Coelho A, Rêma A, Alvites R, Faria F, et al. Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines. Biomedicines. 2023; 11(3):799. https://doi.org/10.3390/biomedicines11030799
Chicago/Turabian StyleRibeiro, Eduarda, Diana Araújo, Mariana Pereira, Bruna Lopes, Patrícia Sousa, Ana Catarina Sousa, André Coelho, Alexandra Rêma, Rui Alvites, Fátima Faria, and et al. 2023. "Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines" Biomedicines 11, no. 3: 799. https://doi.org/10.3390/biomedicines11030799
APA StyleRibeiro, E., Araújo, D., Pereira, M., Lopes, B., Sousa, P., Sousa, A. C., Coelho, A., Rêma, A., Alvites, R., Faria, F., Oliveira, C., Porto, B., Maurício, A. C., Amorim, I., & Vale, N. (2023). Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines. Biomedicines, 11(3), 799. https://doi.org/10.3390/biomedicines11030799