Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Selection Criteria
2.2. Intervention and Comparison
2.3. Outcomes
2.4. Timing
2.5. Search Strategy
2.6. Assessment of Quality and Risk of Bias
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, J.L.; Andry, G.; Chevalier, D.; Luboinski, B.; Collette, L.; Traissac, L.; de Raucourt, D.; Langendijk, J. Laryngeal preservation with induction chemotherapy for hypopharyngeal squamous cell carcinoma: 10-year results of EORTC trial 24891. Ann. Oncol. 2012, 23, 2708–2714. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Li, X.; Lei, D.; Liu, D.; Yang, Q.; Li, G.; Pan, X. Preservation of laryngeal function improves outcomes of patients with hypopharyngeal carcinoma. Eur. Arch. Otorhinolaryngol. 2015, 272, 1785–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, A.L.; Nishimoto, I.N.; Califano, J.A.; Kowalski, L.P. Trends in incidence and prognosis for head and neck cancer in the United States: A site-specific analysis of the SEER database. Int. J. Cancer 2005, 114, 806–816. [Google Scholar] [CrossRef]
- Lee, N.Y.; O’Meara, W.; Chan, K.; Della-Bianca, C.; Mechalakos, J.G.; Zhung, J.; Wolden, S.L.; Narayana, A.; Kraus, D.; Shah, J.P.; et al. Concurrent chemotherapy and intensity modulated radiotherapy for locoregionally advanced laryngeal and hypopharyngeal cancers. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 459–468. [Google Scholar] [CrossRef]
- Katsoulakis, E.; Riaz, N.; Hu, M.; Morris, L.; Sherman, E.; McBride, S.; Lee, N. Hypopharyngeal squamous cell carcinoma: Three-dimensional or Intensity-modulated radiotherapy? A single institution’s experience. Laryngoscope 2016, 126, 620–626. [Google Scholar] [CrossRef]
- Lefebvre, J.; Ang, K.K. Larynx preservation clinical trial design: Key issues and recommendations—A consensus panel summary. Head Neck 2009, 31, 429–441. [Google Scholar] [CrossRef]
- Panda, S.; Sakthivel, P.; Gurusamy, K.S.; Sharma, A.; Thakar, A. Treatment options for resectable hypopharyngeal squamous cell carcinoma: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2022, 17, e0277460. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 4, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Giraud, P.; Giraud, P.; Gasnier, A.; El Ayachy, R.; Kreps, S.; Foy, J.P.; Durdux, C.; Huguet, F.; Burgun, A.; Bibault, J.-E.; et al. Radiomics and machine learning for radiotherapy in head and neck cancers. Front. Oncol. 2019, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 21, e1000097. [Google Scholar]
- Thompson, M.; Tiwari, A.; Fu, R.; Moe, E.; Buckley, D.I. A Framework to Facilitate the Use of Systematic Reviews and Meta-Analyses in the Design of Primary Research Studies; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2012.
- Howick, J.; Chalmers, I.; Glasziou, P.; Greenhalgh, T.; Heneghan, C.; Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, T. The 2011 Oxford CEBM Levels of Evidence (Introductory Document). 2011. Available online: http://www.cebm.net/index.aspx?o=5653 (accessed on 12 May 2019).
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Chen, R.Y.; Lin, Y.C.; Shen, W.C.; Hsieh, T.C.; Yen, K.Y.; Chen, S.W.; Kao, C.H. Associations of Tumor PD-1 Ligands, Immunohistochemical Studies, and Textural Features in 18F-FDG PET in Squamous Cell Carcinoma of the Head and Neck. Sci. Rep. 2018, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Bahig, H.; Lapointe, A.; Bedwani, S.; de Guise, J.; Lambert, L.; Filion, E.; Roberge, D.; Létourneau-Guillon, L.; Blais, D.; Ng, S.P.; et al. Dual-energy computed tomography for prediction of loco-regional recurrence after radiotherapy in larynx and hypopharynx squamous cell carcinoma. Eur. J. Radiol. 2019, 110, 16. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wei, D.; Wushouer, A.; Cao, S.; Zhao, T.; Yu, D.; Lei, D. Discovery and Validation of a CT-Based Radiomic Signature for Preoperative Prediction of Early Recurrence in Hypopharyngeal Carcinoma. BioMed Res. Int. 2020, 2020, 4340521. [Google Scholar] [CrossRef]
- Mo, X.; Wu, X.; Dong, D.; Guo, B.; Liang, C.; Luo, X.; Zhang, B.; Zhang, L.; Dong, Y.; Lian, Z.; et al. Prognostic value of the radiomics-based model in progression-free survival of hypopharyngeal cancer treated with chemoradiation. Eur. Radiol. 2020, 30, 833–843. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lin, S.M.; Ming Tsang, N.; Juan, Y.H.; Wang, C.W.; Wang, W.C.; Kuo, S.H. Magnetic resonance imaging-derived radiomic signature predicts locoregional failure after organ preservation therapy in patients with hypopharyngeal squamous cell carcinoma. Clin. Transl. Radiat. Oncol. 2020, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Guo, J.; Zhang, L.; Qu, X.; Dai, S.; Peng, R.; Chong, V.F.H.; Xian, J. CT-based radiomics features in the prediction of thyroid cartilage invasion from laryngeal and hypopharyngeal squamous cell carcinoma. Cancer Imaging 2020, 20, 81. [Google Scholar] [CrossRef]
- Zhong, J.; Frood, R.; Brown, P.; Nelstrop, H.; Prestwich, R.; McDermott, G.; Currie, S.; Vaidyanathan, S.; Scarsbrook, A.F. Machine learning-based FDG PET-CT radiomics for outcome prediction in larynx and hypopharynx squamous cell carcinoma. Clin. Radiol. 2021, 76, 78.e9–78.e17. [Google Scholar] [CrossRef]
- Fatima, K.; Dasgupta, A.; DiCenzo, D.; Kolios, C.; Quiaoit, K.; Saifuddin, M.; Sandhu, M.; Bhardwaj, D.; Karam, I.; Poon, I.; et al. Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma. Clin. Transl. Radiat. Oncol. 2021, 28, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, C.; Long, M.; Yang, Y.; Lin, P.; Xia, S.; Shen, W. Computed tomography-based radiomics signature as a pretreatment predictor of progression-free survival in locally advanced hypopharyngeal carcinoma with a different response to induction chemotherapy. Eur. Arch. Otorhinolaryngol. 2022, 279, 3551–3562. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lu, S.; Mao, Y.; Tan, L.; Li, G.; Gao, Y.; Tan, P.; Huang, D.; Zhang, X.; Qiu, Y.; et al. An MRI-based radiomics-clinical nomogram for the overall survival prediction in patients with hypopharyngeal squamous cell carcinoma: A multi-cohort study. Eur. Radiol. 2022, 32, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Long, M.; Sun, C.; Yang, Y.; Lin, P.; Shen, Z.; Xia, S.; Shen, W. CT-based radiomics signature analysis for evaluation of response to induction chemotherapy and progression-free survival in locally advanced hypopharyngeal carcinoma. Eur. Radiol. 2022, 32, 7755–7766. [Google Scholar] [CrossRef]
- Nakajo, M.; Kawaji, K.; Nagano, H.; Jinguji, M.; Mukai, A.; Kawabata, H.; Tani, A.; Hirahara, D.; Yamashita, M.; Yoshiura, T. The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [18F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer. Mol. Imaging Biol. 2022. [Google Scholar] [CrossRef]
- Leithner, D.; Bernard-Davila, B.; Martinez, D.F.; Horvat, J.V.; Jochelson, M.S.; Marino, M.A.; Avendano, D.; Ochoa-Albiztegui, R.E.; Sutton, E.J.; Morris, E.A.; et al. Radiomic signatures derived from Diffusion-Weighted Imaging for the assessment of breast cancer receptor status and molecular subtypes. Mol. Imaging Biol. 2020, 22, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Dulhanty, C.; Wang, L.; Cheng, M.; Gunraj, H.; Khalvati, F.; Haider, M.A.; Wong, A. Radiomics driven diffusion weighted imaging sensing strategies for zone-level prostate cancer sensing. Sensors 2020, 20, 1539. [Google Scholar] [CrossRef] [Green Version]
- Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Anzai, Y.; Brizel, D.M.; Maghami, E.; Mell, L.K.; Mittal, B.B.; Pinto, H.A.; et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 873–898. [Google Scholar] [CrossRef]
- Machiels, J.P.; Rene Leemans, C.; Golusinski, W.; Grau, C.; Licitra, L.; Gregoire, V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1462–1475. [Google Scholar] [CrossRef]
- Ho, A.S.; Kim, S.; Tighiouart, M.; Gudino, C.; Mita, A.; Scher, K.S.; Laury, A.; Prasad, R.; Shiao, S.L.; Ali, N.; et al. Association of Quantitative Metastatic Lymph Node Burden with Survival in Hypopharyngeal and Laryngeal Cancer. JAMA Oncol. 2018, 4, 985–989. [Google Scholar] [CrossRef] [Green Version]
- Scheckenbach, K. Radiomics: Big data instead of biopsies in the future? Laryngorhinootologie 2018, 97, S114–S141. [Google Scholar]
- Guezennec, C.; Robin, P.; Orlhac, F.; Bourhis, D.; Delcroix, O.; Gobel, Y.; Rousset, J.; Schick, U.; Salaün, P.-Y.; Abgral, R. Prognostic value of textural indices extracted from pretherapeutic 18-F FDG-PET/CT in head and neck squamous cell carcinoma. Head Neck 2019, 41, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Med. 2017, 38, 122–139. [Google Scholar] [CrossRef]
- Ng, S.H.; Liao, C.T.; Lin, C.Y.; Chan, S.-C.; Lin, Y.-C.; Yen, T.-C.; Chang, J.T.-C.; Ko, S.-F.; Fan, K.-H.; Wang, H.-M.; et al. Dynamic contrast-enhanced MRI, diffusion-weighted MRI and (18)F-FDG PET/CT for the prediction of survival in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiation. Eur. Radiol. 2016, 26, 4162–4172. [Google Scholar] [CrossRef]
- Shayesteh, S.; Nazari, M.; Salahshour, A.; Sandoughdaran, S.; Hajianfar, G.; Khateri, M.; Joybari, A.Y.; Jozian, F.; Feyzabad, S.H.F.; Arabi, H.; et al. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer. Med. Phys. 2021, 48, 3691–3701. [Google Scholar] [CrossRef] [PubMed]
- Kayal, E.B.; Kandasamy, D.; Khare, K.; Bakhshi, S.; Sharma, R.; Mehndiratta, A. Texture analysis for chemotherapy response evaluation in osteosarcoma using MR imaging. NMR Biomed. 2021, 34, e4426. [Google Scholar]
- Chen, S.W.; Shen, W.C.; Lin, Y.C.; Chen, R.Y.; Hsieh, T.C.; Yen, K.Y.; Kao, C.H. Correlation of pretreatment (18)F-FDG PET tumor textural features with gene expression in pharyngeal cancer and implications for radiotherapy-based treatment outcomes. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Devakumar, D.; Sunny, G.; Sasidharan, B.K.; Bowen, S.R.; Nadaraj, A.; Jeyseelan, L.; Mathew, M.; Irodi, A.; Isiah, R.; Pavamani, S.; et al. Framework for machine learning of CT and PET radiomics to predict local failure after radiotherapy in locally advanced head and neck cancers. J. Med. Phys. 2021, 46, 181–188. [Google Scholar]
- Tshering Vogel, D.W.; Thoeny, H.C. Cross-sectional imaging in cancers of the head and neck: How we review and report. Cancer Imaging 2016, 16, 20. [Google Scholar] [CrossRef] [Green Version]
- Leger, S.; Zwanenburg, A.; Pilz, K.; Zschaeck, S.; Zöphel, K.; Kotzerke, J.; Schreiber, A.; Zips, D.; Krause, M.; Baumann, M.; et al. CT imaging during treatment improves radiomic models for patients with locally advanced head and neck cancer. Radiother. Oncol. 2019, 130, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalieri, S.; De Cecco, L.; Brakenhoff, R.H.; Serafini, M.S.; Canevari, S.; Rossi, S.; Lanfranco, D.; Hoebers, F.J.P.; Wesseling, F.W.R.; Keek, S.; et al. Development of a multiomics database for personalized prognostic forecasting in head and neck cancer: The Big Data to Decide EU Project. Head Neck 2021, 43, 601–612. [Google Scholar] [CrossRef] [PubMed]
Study | Main Objective | Number of Patients | Gender (M/F) | Age | Imaging Acquisition Method | Radiomic Feature Extraction/Signature Building/Segmentation Method | Treatment Strategy | Conclusion |
---|---|---|---|---|---|---|---|---|
Chen et al. [16] Taiwan—2017 retrospective study | Associations of tumor PD-1 ligands, IHC studies, and textural features in 18F-FDG PET | 23 | M = 23 | ND | PET/CT | MTV; the heterogeneity of a tumor was evaluated using its textural features; GLCM, GLRLM, and GLSZM. | RT or CRT | p16 and Ki-67 staining percentages detected using IHC and several 18F-FDG PET/CT-derived textural features were explored. The PD-L1 expressions were positively correlated with p16 and Ki-67, whereas the textural index of correlation was a negative predictor for PD-L1 expression of ≥5%. |
Bahig et al. [17] Canada—2018 retrospective study | Prediction of loco-regional recurrence | 5 | ND | ND | Dual energy—CT scan | Kurtosis, GTVp, and GTVn; iodine concentration (in mg/mL) extracted from GTVp and GTVn structures by determining the iodine partial electron density from each voxel, using a two-material decomposition method. | RT | Radiomics can represent a potential surrogate of microvessel density and heterogeneity of perfusion evaluation method for outcome prediction. |
Li et al. [18] China—2020 retrospective study | Preoperative prediction of early recurrence | 167 | 160/7 | ND | CT | LASSO, LR; manual VOI delineation. | Surgery | Authors identified the noninvasive, predictive role of CT-based radiomics in the preoperative prediction of early recurrence of patients |
Mo et al. [19] China—2020 retrospective study | Prediction of progression-free survival | 113 | 106/7 | ND | CT | Features extracted corresponds to texture, intensity, shape, and wavelet; LASSO. Wavelet HHH_glszm_GrayLevelNonUniformityNormalized Wavelet-LLH_firstorder_Maximum Wavelet-HLL_firstorder_Median Wavelet-HLH_glszm_LargeAreaEmphasis | CRT | According to the authors, the radiomic model showed good performance in stratifying patients into high- and low-risk groups of progression in hypopharyngeal cancer patients treated with chemoradiotherapy. |
Hsu et al. [20] Taiwan—2020 retrospective study | Prediction of locoregional failure | 116 | 111/5 | ND | MRI | LASSO, skewness, and kurtosis. | CRT | The authors established and validated that a non-invasive RS model provides a novel and convenient approach to predict 1-year LRF and the survival outcome, including the PFS, LFS, and OS, in patients with locally advanced HPSCC who received organ preservation treatment. |
Guo et al. [21] China—2020 retrospective study | Prediction of thyroid cartilage invasion | 26 | ND | ND | CT | LASSO GLCM, GLRLM, and GLSZM. | Preoperative diagnosis. | Models based on CT radiomic features were able to improve the accuracy of predicting thyroid cartilage invasion from LHSCC. |
Zhong et al. [22] U.K.—2020 retrospective study | Prediction of early disease progression | 40 | ND | ND | PET-CT | PET parameters selected by the ML model were metabolic tumor volume (MTV); conventional minimum standardized uptake value (SUVmin); gray-level zone length matrix (GLZLM); small-zone low gray-level emphasis (SZLGE); histogram kurtosis; and histogram energy. CT parameters selected by the ML model were maximum CT attenuation value; GLZLM small-zone emphasis (SZE); mean CT attenuation value; GLZLM SZLGE; and GLZLM gray-level non-uniformity (GLNU). Clinical parameters selected by the ML model were duration of radiation treatment, nodal (N) stage, smoking, age, and sex. The parameters included in the combined model were MTV, maximum CT value, SUVmin, GLZLM SZLGE, and histogram kurtosis. | CRT | FDG PET-CT determined that radiomic features are potential predictors of early disease progression in patients with locally advanced larynx and hypopharynx SCC. |
Fatima et al. [23] Canada—2021 retrospective study | Recurrence prediction | 2 | 48/3 | 61 | Quantitative US | In the quantitative ultrasound spectroscopy a total of seven spectral parameters were calculated within each ROI window. These include spectral slope (SS); spectral intercept (SI) at 0 MHz; mid-band fit (MBF); average acoustic concentration (AAC); average scatterer diameter (ASD); attenuation coefficient estimate (ACE); and spacing among scatterers (SAS). Texture analysis: GLCM, energy, homogeneity, and contrast. | RT | Machine learning classifiers trained with QUS spectral and texture parameters were shown to predict recurrence for patients with HNSCC receiving RT with an accuracy of 82% at week 4 of treatment. |
Liu et al. [24] China—2022 retrospective study | Pretreatment predictor of progression-free survival in locally advanced hypopharyngeal carcinoma | 112 | 103/9 | 61 | CT | LASSO, Wavelet-LLH_glszm_ GrayLevelNonUniformityNormalized Gradient_glcm_Imc1 Wavelet-LLL_ngtdm_Busyness Wavelet-LHL_firstorder_Maximum Wavelet-LHL_firstorder_Kurtosis Wavelet-HLH_glcm_MCC | Induction QT, surgery, and RT | The authors propose a radiomics model based on pretreatment with a CT radiomics signature for the detection of induction chemotherapy response in patients with locally advanced hypopharyngeal carcinoma. |
Chen et al. [25] China— 2022 retrospective study | Overall survival | 136 | ND | 58 | MRI | LASSO; Original_Shape_Maximum3DDiameter, Original_Shape_Compactness, Original_Glrlma_Run-Length Non-Uniformity Normalized, Wavelet_HLLc_Glrlma_Long Run Emphasis, Wavelet_LHLd_Glcmb_Joint Entropy, Wavelet_HLHe_Glrlma_Short Run High Gray-Level Emphasis | Surgical and non-Surgical treatment | The radiomics-clinical nomogram and radiomics score might be non-invasive and reliable methods for the risk stratification in patients with hypopharyngeal squamous cell carcinoma. |
Liu et al. [26] China—2022 retrospective study | Signature analysis for evaluation of response to induction chemotherapy and progression-free survival | 112 | 103/9 | 61 | CT | LASSO, Wavelet-LLH_glszm_ GrayLevelNonUniformityNormalized Gradient_glcm_Imc1 Wavelet-LLL_ngtdm_Busyness Wavelet-LHL_firstorder_Maximum Wavelet-LHL_firstorder_Kurtosis Wavelet-HLH_glcm_MCC | Induction chemotherapy, surgery, and RT | The authors propose that a multiparametric CT-based radiomics model could be useful for predicting treatment response and progression-free survival in patients with locally advanced hypopharyngeal carcinoma who underwent induction chemotherapy. |
Nakajo et al. [27] China—2022 retrospective study | Determination of usefulness of clinical and pretreatment 18F-FDG-PET-based radiomic features for prognosis prediction in patients with hypopharyngeal cancer | 100 | 94/6 | 71 | PET-CT | Gray-level co-occurrence matrix entropy (GLCM_Entropy); Gray-level run-length matrix; run-length non-uniformity (GLRLM_RLNU). | Surgery, chemotherapy, CRT, RT. | The logistic regression model constructed by UICC, T and N stages and pretreatment with [18F]-FDG-PET–based radiomic features, GLCM_Entropy, and GLRLM_RLNU may be an important predictor of prognosis in patients with hypopharyngeal cancer. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiesa-Estomba, C.M.; Mayo-Yanez, M.; Guntinas-Lichius, O.; Vander-Poorten, V.; Takes, R.P.; de Bree, R.; Halmos, G.B.; Saba, N.F.; Nuyts, S.; Ferlito, A. Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review. Biomedicines 2023, 11, 805. https://doi.org/10.3390/biomedicines11030805
Chiesa-Estomba CM, Mayo-Yanez M, Guntinas-Lichius O, Vander-Poorten V, Takes RP, de Bree R, Halmos GB, Saba NF, Nuyts S, Ferlito A. Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review. Biomedicines. 2023; 11(3):805. https://doi.org/10.3390/biomedicines11030805
Chicago/Turabian StyleChiesa-Estomba, Carlos M., Miguel Mayo-Yanez, Orlando Guntinas-Lichius, Vincent Vander-Poorten, Robert P. Takes, Remco de Bree, Gyorgy B. Halmos, Nabil F. Saba, Sandra Nuyts, and Alfio Ferlito. 2023. "Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review" Biomedicines 11, no. 3: 805. https://doi.org/10.3390/biomedicines11030805
APA StyleChiesa-Estomba, C. M., Mayo-Yanez, M., Guntinas-Lichius, O., Vander-Poorten, V., Takes, R. P., de Bree, R., Halmos, G. B., Saba, N. F., Nuyts, S., & Ferlito, A. (2023). Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review. Biomedicines, 11(3), 805. https://doi.org/10.3390/biomedicines11030805