
Citation: Shahab, M.; Danial, M.;

Khan, T.; Liang, C.; Duan, X.; Wang,

D.; Gao, H.; Zheng, G. In Silico

Identification of Lead Compounds

for Pseudomonas Aeruginosa PqsA

Enzyme: Computational Study to

Block Biofilm Formation. Biomedicines

2023, 11, 961. https://doi.org/

10.3390/biomedicines11030961

Academic Editor: Alessandro Russo

Received: 14 February 2023

Revised: 9 March 2023

Accepted: 14 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

In Silico Identification of Lead Compounds for Pseudomonas
Aeruginosa PqsA Enzyme: Computational Study to Block
Biofilm Formation
Muhammad Shahab 1, Muhammad Danial 2, Taimur Khan 1, Chaoqun Liang 1, Xiuyuan Duan 1, Daixi Wang 1,
Hanzi Gao 1 and Guojun Zheng 1,*

1 State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology,
Beijing 100029, China

2 Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences,
Shenzhen 518055, China

* Correspondence: zhenggj@mail.buct.edu.cn

Abstract: Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium implicated in acute
and chronic nosocomial infections and a leading cause of patient mortality. Pseudomonas aeruginosa
infections are frequently associated with the development of biofilms, which give the bacteria
additional drug resistance and increase their virulence. The goal of this study was to find strong
compounds that block the Anthranilate-CoA ligase enzyme made by the pqsA gene. This would stop
the P. aeruginosa quorum signaling system. This enzyme plays a crucial role in the pathogenicity of
P. aeruginosa by producing autoinducers for cell-to-cell communication that lead to the production of
biofilms. Pharmacophore-based virtual screening was carried out utilizing a library of commercially
accessible enzyme inhibitors. The most promising hits obtained during virtual screening were
put through molecular docking with the help of MOE. The virtual screening yielded 7/160 and
10/249 hits (ZINC and Chembridge). Finally, 2/7 ZINC hits and 2/10 ChemBridge hits were selected
as potent lead compounds employing diverse scaffolds due to their high pqsA enzyme binding
affinity. The results of the pharmacophore-based virtual screening were subsequently verified using
a molecular dynamic simulation-based study (MDS). Using MDS and post-MDS, the stability of the
complexes was evaluated. The most promising lead compounds exhibited a high binding affinity
towards protein-binding pocket and interacted with the catalytic dyad. At least one of the scaffolds
selected will possibly prove useful for future research. However, further scientific confirmation in the
form of preclinical and clinical research is required before implementation.

Keywords: pqsA gene; pharmacophore-based virtual screening; ZINC; Cambridge; MD simulation; biofilms

1. Introduction

Pseudomonas aeruginosa is a type of Gram-negative bacterium that can cause infections
in humans, particularly in healthcare settings, and is able to thrive in a variety of envi-
ronments and conditions. This is due to its genome plasticity, resistance to environmental
stresses, great metabolic versatility, high resistance to antibiotics, powerful biofilm-forming
ability, and, very importantly, the expression of quorum sensing-regulated virulence fac-
tors [1]. According to the WHO, P. aeruginosa is a high-priority disease, and there is a press-
ing need for new treatments [2]. Multi-drug resistant P. aeruginosa strains are a major issue
for hospitals [3]. P. aeruginosa is a leading pathogen among immunocompromised patients,
particularly those with diseases such as HIV, diffused panbronchiolitis, cystic fibrosis, and
chronic obstructive pulmonary disease, and cancer patients receiving chemotherapy [4,5].
It is also one of the main causes of nosocomial infections, accounting for almost 10% of
such infections [6]. Cystic fibrosis patients primarily die from chronic infections and lung
inflammation caused by P. aeruginosa [7]. Multidrug-resistant P. aeruginosa strains have a
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negative impact on patient outcomes, including increased mortality, hospital visits, length
of stay, and cost [8,9].

P. aeruginosa is a member of the ESKAPE panel of pathogens, which are multidrug-
resistant bacteria known as “superbugs” [10]. It is recognized by the World Health Orga-
nization as one of the most important priority infections due to its resistance to a wide
range of antibiotics, including third-generation cephalosporins and carbapenems [11]. The
ability of bacteria to form biofilms also makes them more resistant to antibiotics, with
P. aeruginosa strains that produce biofilms showing resistance to fluoroquinolones and
gentamicin by 20–30% and 12–22%, respectively [12]. Quorum sensing (QS) regulates
biofilm development in various bacteria and is a key intercellular signaling mechanism for
virulence factor production, genetic competence, antimicrobial peptide production, fruiting
body formation, plasmid conjugation, and symbiosis [13,14]. Quorum sensing is a process
by which bacteria communicate with each other by secreting and detecting small, diffusible
signal molecules called autoinducers (AIs) [15]. A wide range of processes are regulated
by AIs, including the release of virulence factors, swimming motility, the production of
secondary metabolites, the development of biofilms, and antibiotic resistance [16].

Interfering with the way bacteria communicate with one another, known as quorum
sensing -mediated signaling, is a promising strategy for limiting the proliferation of harmful
pathogens [17–20]. By disrupting this process, it becomes possible to reduce the pathogenic-
ity of the bacteria and make them more susceptible to removal by the host’s immune system.
The use of quorum sensing inhibitors is being researched as a preventative measure to
manage pathogens that are resistant to antibiotics, which are becoming an increasingly
significant public health concern. P. aeruginosa has three main quorum sensing systems: rhl,
las, and pqs. These systems control how virulence proteins are made and how cells talk
to each other. As shown in Figure 1, the las system starts the expression of AI receptors,
which positively affects both the rhl and pqs systems (PqsR and RhlR). The RhlR and PqsR
are also activated by the binding of their respective AIs [21,22].

The pqs system, in particular, uses two signal molecules: Pseudomonas quinolone
signal, also known as 2,3,5-trihydroxy-4 (1H)-quinoline (PQS), and 2-heptyl-4- quinoline
(HHQ). Attachment of these molecules to the PqsR activates many genes that cause biofilm
formation [12]. This system plays a crucial role in the virulence of P. aeruginosa, as it regu-
lates the production of several virulence factors and the formation of biofilms, which are
protective structures that allow the bacteria to evade the host’s immune system. Inhibi-
tion of the enzyme PqsA affects the synthesis of PQS signal molecules, gene regulation
controlled by PqsR, and biofilm formation.

In this study, we employed cutting-edge in silico drug discovery technology to predict
potent and novel inhibitors of quorum sensing (QS). The process of discovering new drugs
is a complex and time-consuming endeavor that typically requires significant resources,
including years of research and billions of dollars in funding [23]. However, the use of
advanced computational approaches such as molecular docking simulations and virtual
screening has greatly facilitated the drug discovery process by allowing researchers to
identify new lead compounds against specific targets through rational, principle-based
approaches based on theoretical chemistry. These computational methods have saved
researchers time and resources [24,25]. Computational methods, such as virtual screening,
docking, and binding free energy analysis, can help identify potential drug candidates
from compound libraries, saving time and money in the drug development process [26].
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Figure 1. A representative of multiple quorum sensing system in PqsA (rhl, las, and pqs) to coordi-
nate gene expression and adapt to different environmental conditions, including virulence, biofilm
formation, and antibiotic resistance. These systems play a crucial role in the pathogenesis of PqsA
infection and are potential targets for new antimicrobial strategies.

2. Methodology

The overall mechanism and various tools used in this study for designing lead com-
pounds by rational drug design are depicted in Figure 2.
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2.1. Retrieval of Protein

The 3D structure of the protein is required to comprehend the molecular interaction
study of proteins with ligands. For this purpose, the initial crystallographic structure of the
target protein (PDB ID: 5OE3) (accessed on: 1 January 2023) and its co-crystallized ligand
structure were extracted from the protein using MOE. First, the structure was checked for
any missing chain breaks or missing atoms. It was then prepared by removing the water
molecules and the non-protein atoms from the crystal structure. Hydrogens were added,
and the bond order assigned according to the protocol “compute Quick preparation” in
MOE 2020. All the atoms in the Amber-22 (Amber ff19SB) forcefield were used to refine
the protein structure. Hydrogens were added to amino acids using 3D protonation, then
energy was minimized with the MOE 2020 program. To date, only the N-terminal domain
is available in the protein databank; however, understanding the dynamic features of the
full protein upon binding is important [27,28]. We screened potential inhibitors using the N-
terminal domain structure against commercially available datasets (ZINC and Chembridge)
(accessed on: 1 January 2023)) since the C-terminal region did not affect the binding pocket
of the N-terminal domain.

2.2. Preparation of Quorum Sensing Inhibitor

Crystal structures of the N-terminal domain of anthranilate-CoA ligase PqsA, the first
enzyme of PQS biosynthesis, in complex with 6-fluoroanthraniloyl-AMP (6FABA-AMP) at
1.7 Å resolution were selected from the protein databank (https://www.rcsb.org/structure/
5OE3 (accessed on: 1 January 2023)) and used as a reference drugs in this study. The ligands
were deposited to MOE for pre-processing, including protonation, ionization, specified
counter ions, and energy minimization using AMBER force field ff19SB.

2.3. Pharmacophore Based Virtual Screening

To find the lead compound against PqsA (key enzyme in P. aeruginosa quinolone
signaling), pharmacophore-based virtual screenings were created based on the protein
complex with the ligand. The selected protein was analyzed using MOE software for
H-bond donors/acceptors, hydrophilicity, lipophilic features and ionizable charges. The
pharmacophore represents steric and electronic features for optimal interaction with a target
and blocking its response. The common feature pharmacophore model was generated by
using co-crystallized inhibitor 6-fluoroanthraniloyl-AMP. The model was then validated by
two methods; first, a set of 8 active compounds were taken from the literature study and
then screened against the generated pharmacophore model; second, the validation of the
pharmacophore model was also carried out by examining its interaction with important
amino acids in the receptor protein’s active pocket, based on the important chemical
features of the pharmacophore. This was used to assess the accuracy of our predicted
model through protein–ligand interactions.

2.4. Screening of Commercially Available Databases

In pharmacophore-based drug discovery, identifying novel and active molecules that
are structurally similar is crucial. To achieve this, virtual screening was performed using the
prepared pharmacophore model to identify potential lead compounds. In this connection,
the ChemBridge [29] and ZINC [30], database were utilized for pharmacophore-based
screening. The compounds most closely matching the selected pharmacophore features
were then selected. By using MOE software against ZINC and Chembridge databases,
the pharmacophore-based virtual screening was carried out [31]. From the screening,
structurally diverse hits presenting a better fit to the generated pharmacophore model
were recovered. Compounds with larger molecular weights > 500 KD; H-bond donors > 5;
H-bond acceptors > 10; and Logp o/w > 5 were not selected. The final best hits were then
examined for molecular docking and molecular dynamics simulation.

https://www.rcsb.org/structure/5OE3
https://www.rcsb.org/structure/5OE3
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2.5. Molecular Docking

Molecular docking predicts small molecule–protein binding affinity to aid drug de-
sign [32]. The retrieved compound was placed into a three-dimensional grid representing
the protein, and the position of the molecule was optimized to achieve a high binding
energy. The 3D protonation of the target receptor was tracked using MOE software 2020
default parameters for optimal outcome. To refine the results, all compounds were docked
into the PqsA binding site. The top 10 conformations from each hit were chosen for further
study. The docking analysis underwent closer examination, putting more attention on
protein/hit interactions and docking scores. To validate the molecular docking results,
MDS was employed. All acquired hits were subjected to docking with the PqsA protein
to determine the total number of interactions and leading compounds. The root mean
square deviation (RMSD) between the co-crystallized and re-docked conformations for
each ligand was calculated using the MOE SVL script and found to be 0.78 Å, indicating
the reliability of the docking protocol. This was achieved by allowing 30 conformations
using the default parameters in MOE: Triangle Matcher for placement, London dG and
GBVI/WSA dG for rescoring, and Rigid Receptor for refinement [31]. Based on docking
score and binding interaction, the top 4 compounds (from ZINC and Chembridge) were
ranked. These 4 compounds displayed potency toward the target compared to the reference
compound. The binding interactions and proteins were visualized using PyMOL. The
top-scoring complexes were then run through a molecular dynamics simulation using
Amber v.22 software.

2.6. Systematic Analysis of the Potent Lead Compound

Molecular dynamics simulation is a computational technique to study molecular be-
havior and interactions over time through mathematical models and offer rich information
on the dynamics and structure of biomolecules, target proteins and drug interactions in
therapy. The top four compounds with an improved docking score, binding affinity, en-
ergy, and interaction were analyzed through post trajectory analysis. The lead molecules
were parameterized using GAFF and assigned ff19SB atom types with Antechamber, and
their parameter files were generated using tLEaP [33]. All visualization was conducted in
PyMol [34]. All-atom MD simulations and essential dynamics analysis were conducted in
AMBER version 2022 [35]. The LEaP module was used to integrate hydrogen atoms into
the crystal structure. Next, counter ions (Na+ and Cl−) were added to maintain the systems’
neutrality by using the tLEAP module. All systems were solvated in a TIP3P water model
truncated octahedral box with a cut-off 12.0 Å buffer. The particle mesh Ewald (PME)
method [36] was used to treat long-range electrostatic interactions. The SHAKE algorithm
with a tolerance of 10−5 Å was applied to constrain all covalent bonds involving hydrogen
atoms [37]. The CUDA-accelerated PMEMD was utilized for all MD simulations. The
steepest descent method was applied to minimize the solvated systems with 10,000 steps,
800 ps heating phase, and 400 ps NVT equilibration. Temperature and pressure were
regulated using Langevin’s algorithm with a time constant of 1.0 ps, isotropic scaling, and
a relaxation time of 4.0 ps [38]. The analysis was conducted using CPPTRAJ implemented
in Amber v 2022.

2.7. Hydrogen Bond Analysis

The Amber22 CPPTRAJ package is a tool that can be used to analyze molecular
dynamics (MD) trajectories [39]. In order to comprehend the variations, it is important in
determining the structural stability of PqsA enzyme. The total number of H-bonds play a
crucial role in elucidation of the three-dimensional structure of the hits’ complexes. A total
of 10,000 frames were taken during the MD simulation to assess the diversity among the
ligand–protein complexes of the reference drug, and the identified hits was employed to
examine the hydrogen bonds between the protein–ligand targets. Additionally, hydrogen
bond analysis could also be used to investigate the binding of PqsA with the retrieved lead



Biomedicines 2023, 11, 961 6 of 18

compound. H-bonding is described in this paper as occurring at a distance of 3.5 Å. All
results were computed using the original program.

2.8. Dynamic Cross-Correlation Movement Analysis

The DCCM is a powerful tool that helps in understanding the dynamics of protein–
ligand interactions. It helps to identify the key residues that are responsible for stability or
instability of the complex. It also helps to identify the regions where the ligand can bind
more efficiently and the regions where it can move away. This information is useful in
designing new drugs or in understanding the mechanism of action of existing drugs. The
DCCM graph shows positive and negative correlations, where positive correlations indicate
ligand–protein movement in the same direction, stabilizing the system through interactions.
Negative correlations imply instability of the complex or that the ligand has left the binding
pocket, resulting in anti-parallel correlation. The color intensity of the DCCM map reflects
the strength of the correlation, with blue to red representing positive and blue to light blue
representing negative. The deeper the color, the stronger the correlation, and vice versa.
These analyses display the correlation of amino acid residue movement over time and also
evaluate the persistent correlations of domains [40].

The DCCM analysis was carried out by using Cα carbon atoms from 5000 snapshots.
The Cα carbon atoms in the trajectories were cross-correlated with the displacements of
backbone Cα atoms. The correlation coefficient between two atoms, i and j, is represented
by Sij and is mathematically represented as:

Sij = 〈∆ri. ∆rj〉/(〈∆ri2〉〈∆ri 2〉)1⁄2 (1)

Here, the bracket “〈〉” defines time throughout the analysis, ∆ri or ∆rj represent
displacement vectors of ith or jth atoms with their average position, where Sij > 0 represents
the movement with positive correlation (+1) between two atoms, i.e., atoms i and j, whereas
when Sij < 0, it shows the movement with negative correlation (−1) between atoms i and
j. Cpptraj was used for the analysis of DCCM, and Origin software was used for plotting
the data.

2.9. Principal Component Analysis and Free Energy Landscape

The present study used the cpptraj package to conduct a PCA of the protein to identify
the high-amplitude principal motions [41]. The dynamics behavior of all five systems
was evaluated by calculating the covariance matrix based on Cartesian coordination of
Cα atoms from 10,000 snapshots of the whole trajectories. By extracting eigenvectors and
eigenvalues from the covariance matrix, the direction and mean square fluctuation of high-
amplitude motions were determined. The first and last two principal components (PC1
and PC2) were plotted to monitor the motions of each system. The free energy landscape
(FEL) was calculated using the first two principal components and equation:

∆G(X) = −KBTlnP(X) (2)

where X represents the reaction coordinates, KB is the Boltzmann constant, and P(X) is the
probability distribution of the system along the first two principal components. The FEL
shows the folding and lowest energy stable states of the confirmation with minimal energy
stable state, while the boundaries show intermediate conformations [42].

2.10. Binding Free Energy Calculations

The molecular mechanics generalized Born surface area (MMGBSA), computational
method for predicting protein–ligand binding affinities by combining molecular mechanics
and generalized Born implicit solvent models were applied [43]. Five hundred snapshots
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were taken from a 5 ns trajectory and analyzed using MM/GBSA (MMPBSA.py in Amber)
to calculate binding free energy (∆Gbind) of simulated SMT proteins:

∆G(bind) = ∆G(R + L) − ∆G(R) + ∆G(L) . . . . . . .1 (3)

G = E(VDW) + E(bond) + G(GB) + E(elec) + G(SA) − TS(S) . . . . . . .2 (4)

The first equation above describes the calculation of binding free energy (∆Gbind)
using the MM/GBSA method. The terms ∆G(L), ∆G(R), and ∆G(R + L) represent the free ener-
gies of the ligand, receptor, and receptor–ligand complex, respectively. The second equation
describes the components of the energy calculation, including dihedral energy (E(bond)),
bond angles, van der Waals energy (∆E(VDW)), and electrostatic energy (∆E(elec)). The
non-polar and polar contributions of solvation energy are represented as G(SA) and G(GB),
respectively. The terms Ss and T refer to the solute entropy and the absolute temperature of
the system [44,45].

3. Results and Discussion
3.1. Pharmacophore-based Virtual Screening

Pharmacophore modeling is a powerful technique that is used to identify and extract
the key interactions between ligands and receptors. It is based on the principle that
by schematically representing the essential components of molecular recognition, it is
possible to represent and distinguish molecules that are likely to have similar biological
activity and interactions with the target protein. Pharmacophore models describe 3D
arrangements of functional groups involved in biological interactions with protein active
sites. In ligand-based modeling, similar compounds are predicted to have similar biological
activity and target protein binding. This is because the pharmacophore model focuses
on the key features of the molecule that are involved in the interactions and binding,
rather than the overall structure. Generally, ligand-based pharmacophore modeling is
used to find new and potent ligands/inhibitors by comparing molecular similarity to
known promising inhibitors, without protein structure information; this is a powerful
advantage of this technique [46]. Pharmacophore modeling is widely used in the drug
discovery process, as it allows for the efficient search and optimization of inhibitors. Using
MOE software’s pharmacophore editor tool, a pharmacophore model was generated from
known inhibitors (6-fluoroanthraniloyl-AMP), and seven important features selected with
the pharmacophore query command. The model consisted of 2 Aromatic, 1 Acc, 1 Don,
1 Don & Acc, and 1 AtomQ features. These features are represented by different colors
in the model, and they depict the interactions between the ligand and the receptor. The
resulting model, as shown in Figure 3, is an essential characteristic of a pharmacophore
model for the most active compound.

The pharmacophore model was validated by testing against a database of anti- quorum
sensing drugs, including 6-fluoroanthraniloyl-AMP as a reference. It was then used to
screen compounds from ZINC and ChemBridge libraries, resulting in the identification
of numerous strong interacting compounds. A total of 445 and 1520 structurally diverse
hits were retrieved from the ZINC and ChemBridge libraries, respectively, that fit the EHT
pharmacophore model. Then, 160 and 249 hits were selected by applying Lipinski Ro5
(rules for predicting oral bioavailability) from the ZINC and ChemBridge libraries.

3.2. Molecular Docking

This method involves the placement of the small molecule into the binding pocket of
the protein and the calculation of the energy of the complex. For the purpose of studying
molecular interactions and selecting lead compounds, the chemical compounds that were
identified using the pharmacophore model were docked into the binding site of a protein
called PqsA chain. This process was performed using the molecular docking software
Molecular operating environment (MOE 2020). The software generated 20 possible con-
formations per compound with default settings (Triangular Matcher placement, London



Biomedicines 2023, 11, 961 8 of 18

dG and GBVI/WSA dG rescoring, Rigid Receptor refinement). To validate the accuracy
of the docking, the RMSD was calculated between the co-crystallized and re-docked con-
formations using MOE’s SVL script, resulting in an RMSD of 0.78 Å, indicating a reliable
protocol. Based on the docking score, the top four compounds were selected for further
analysis. The potential anti-quorum sensing compounds that were discovered were seen to
fit well within the PqsA drug target as shown in Figure 4. Four compounds with improved
or equivalent binding strength and energy were selected for further analysis. The docking
score, binding technique, pharmacophore mapping, stability of binding energy, binding
affinity, and visual depiction of ligand interaction suggested that these lead compounds
could be effective, diversified, and innovative protein medicines.
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3.3. Binding of Selected Drug-like Compound

Molecular docking is a powerful tool for investigating how a ligand interacts with
a drug target [47]. The results of molecular docking analysis indicated that the lead
compound had better interaction with the PqsA enzyme than the reference compound. The
ChemBridge54245649 was found to be the most active among the commercially available
databases, with a docking score of −9.094. The predicted docking conformations showed
that it may form eight hydrogen bond interactions with the target protein. This could make
it a promising candidate for further drug development and testing, along with hydrophilic
pie–pie interactions, salt-bridges and pie-stacking with the active residues, i.e., Phe 209, Gly
269, Thr 211, Thr 164, Arg 397, Asp 292, Asp382, Ile 301, Gly 302, Ala 303, Lys 172, Gly 269,
Thr 211, and Pro 282 of the PqsA enzyme (Figure 5C). In the case of ChemBridge53910279,
a total of four hydrogen bonds were established with docking scores of −8.533. Among the
others with the pie–pie interactions, it could be seen that this compound blocked the key
active side residues such as Lys 172, Gly 269, Ala 303, Gly 302 and Ile 301 (Figure 5D). The
ZINC32573386 compound was identified as a promising candidate during a screening of the
ZINC database. Its predicted docking score was favorable, and the predicted interactions
with the active residues of the target protein, PqsA, were also favorable. This suggests that
the ZINC32573386 compound could be a potential lead for further drug development and
testing. This compound was observed to form three polar and three hydrophobic contacts
with the active site residues Gly 269, Thr 304, Ile 301, Gly 279 and Pro 281 and fit well
into the active site pocket of the enzyme (Figure 5A). The ZINC79107864 demonstrated
a docking score of −7.87 and had favorable interactions with the key areas of the target
protein. The way in which this compound binds revealed that it established six polar
connections with the active site amino acids Phe 209, Gly 279, Ile 301, and Thr 304, as seen
in Figure 5B. The Phe 209 and Pro 281 residues interacted with the aromatic ring of the lead
compound, contributing to its effectiveness as a strong inhibitor due to electron-donating
and electron-withdrawing groups and delocalized electrons on the aromatic ring. Table 1
presents the outcomes for the finally selected lead compounds.
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Table 1. The four finally selected lead compounds and their binding energies and affinities.

S.N ZINC and
ChemBridge ID MW LogP Don Acc Docking Score TPSA

(Angstrom)

Binding
Energy

(kcal/moL)

1 ZINC79107864 341.45 3.52 2 4 −7.76 52.93 −52.75
2 ZINC32573386 370.49 3.12 2 5 −8.33 53.96 −43.76
3 ChemBridge54245649 338.43 0.47 3 5 −8.27 44.73 −46.95
4 ChemBridge53910279 366.50 3.45 2 4 −8.90 96.37 −50.48
5 Reference compound 444.21 2.27 4 5 −6.65 143.72 −40.14

3.4. Molecular Dynamics Simulation

In order to obtain dynamical information under explicit solvent conditions, all four
complexes (ZINC32573386, ZINC79107864, ChemBridge53910279, and ChemBridge54245649)
along with the reference complex were subjected to all-atom MD simulations for 100 ns.
The Amber 22 program was utilized to perform a 100 ns molecular dynamics simulation
(MDS) in order to identify the structure of the lead compound complexes that were both
well-stabilized and equilibrated. The stabilities of the four selected complexes as well as the
reference complex were determined by calculating the root mean square deviation (RMSD)
of the backbone atoms. It was found that there was an inverse relationship between the
fluctuation amplitudes of the calcium atoms and the stability of the system. The lower the
RMSD, the more stable the system was, and the fewer fluctuations in the c-alpha atoms
there were [48]. The ZINC32573386/PqsA complex reached equilibrium during the 100 ns
simulation. The RMSD graph revealed that no major fluctuations were recorded during
the simulation time, with an RMSD score of 1.1. The RMSD score decreased to 0.9 with
negligible changes after 70 to 80 ns. As seen in Figure 6, the system was totally stabilized
and achieved an average RMSD value of 1.0 with the fewest variations.
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In order to obtain more information on how the inhibition quality of these compounds
compared among themselves and with the reference compound and how the retrieved lead
compounds made proteins less reactive, root means square fluctuation (RMSF) analysis
was performed. Residue flexibility indexing revealed significant information regarding the
binding of two proteins, small molecules, molecular recognition, and bioengineering. We
calculated the RMSF for the reference complex and the retrieved lead compound reported
in Figure 7. The plot revealed that the replacement of one amino acid residue had a different
effect on the flexibility of each compound. The RMSF plot showed that the residues of each
compound in the same PqsA pocket had entirely different fluctuations in the course of
trajectory. The ZINC32573386 showed unusually less residual flexibility fluctuation among
(100–140 and 220–300), because it was found to be particularly stable; smaller fluctuations
mean a more stable complex. After analyzing the residues, it was found that they had fluc-
tuations similar to those of the reference compound. Further analysis, including assessing
binding energies, docking scores, RMSD and RMSF values, showed that ZINC32573386 ap-
peared to be a more potent inhibitor than the reference complex, even though some regions
of the reference compound had less fluctuation (Figure 7A). The inhibitors ZINC79107864
and Ch54245649 were found to have less residual fluctuation throughout the entire 100 ns
simulation period as compared to the test compound. Although the reference complex
appeared stable, these compounds may be better candidates when other analyses are taken
into account (as seen in Figure 7B,D). The inhibitor Ch53910279 also exhibited similar
RMSF behavior, with fewer fluctuations of 5.1–5.9 Å in the system, specifically in the region
of 180–400 amino acid residues. Other regions had fluctuations similar to those of the
reference compound and in some regions had greater fluctuations when compared to the
test compound. However, when other analyses are considered, Ch53910279 may still be a
better candidate than the reference compound (as seen in Figure 7C).
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3.5. Hydrogen Bond Analysis

To gain a more accurate assessment at the atomic level, the number of hydrogen bonds
generated in all systems was calculated. To form a hydrogen bond, two conditions must be
met: (1) the hydrogen donor–acceptor angle must be 30 degrees, and (2) the donor–acceptor
distance must be 0.35 nanometers. Hydrogen bonds play a crucial role in maintaining
the secondary structure of ligands and proteins [49,50]. The time-dependent hydrogen
bonding investigation revealed that all of the retrieved lead compounds had the strongest
and best hydrogen-bonding networks with the PqsA protein (Figure 8). This revealed that
each complex system contained a large number of hydrogen bonds as compared to the
reference complex. Our findings show that the generated lead compounds have a high
binding ability, making them potentially strong inhibitors of PqsA.
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3.6. Exploring the Dominant Motions for Lead Compounds

The thermodynamics of binding between ligands and PqsA protein was explored
through motion mode analysis. PCA was applied to the coordinate covariance matrix
derived from the 100 ns MD simulation of lead compound complexes, allowing the PCs
to depict the modes of motion in these complexes. The most prominent motion was
depicted by the first PC, but the actual movement of the complexes during simulation was
a combination of all PCs. Here, we performed the principal component analysis (PCA)
for the ref/PqsA and the ZINC32573386/PqsA, ZINC79107864/PqsA, Ch53910279/PqsA,
and Ch54245649/PqsA systems. This could identify the best inhibitor among the finally
selected lead compounds as compared to the reference compound. The color gradient (red
to green) in the representation highlights the periodic changes in conformation. The PCA
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plot showed that the lead compounds were compact and stable. Each complex had different
motion patterns. The reference compound’s motion was mixed and cluster-like (Figure 9A),
with blue dots at the start, followed by red, then blue dots. In contrast, the dots of the first
compound ZINC32573386 were more organized and compact compared to the reference
compound (Figure 9B), covering a range of−350 to +350 along PC1 and−400 to +350 along
PC2. The second inhibitor, ZINC79107864, had a little less assembly in the dots, but they
were still more ordered than those of the reference compound (Figure 9C), covering a range
of −330 to +380 at PC1 and −380 to +380 at PC2. The third inhibitor, Ch53910279, showed
much more dispersion compared to the reference compound (Figure 9D), with reference
dots being more compact. The fourth inhibitor, Ch54245649, had less assembly in the dots
than the reference compound (Figure 9E), but they were still more organized, covering a
range of −330 to +380 at PC1 and −380 to +380 at PC2.
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The use of FEL analysis assisted us in determining the stable, native, and meta-stable
states of all PqsA systems. In-depth examination of the FEL plot was performed to obtain
structural coordinates from the lowest energy states (located at the center of each plot)
and comprehend the inhibition mode of both reference and lead compounds, as well as
the stability of the overall protein ensemble (Figure 10). In Figure 10C, the blue color
in the center signifies the lowest Gibbs energy states. The results from the FEL analysis
demonstrate that the reference complex had a single (meta) energy state, while the lead
compound had two states (meta-stable and native) separated by low-energy barriers.
The stability of the retrieved hits was monitored using Cα-RMSd, and it was noted that
they remained stable throughout the MD simulation. On the other hand, the reference
compound showed deviation initially but eventually stabilized. The FEL plots of the
reference compound showed significant conformational changes. This analysis further
demonstrates that the selected hits had the lowest energy barrier throughout the 100 ns
trajectory. These findings indicate that the energy states, separated by low, moderate, and
high energy barriers, periodically switched from one state to another, causing a periodic
change in the conformational behavior.
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3.7. The Dynamic Cross-Correlation Matrix (DCCM)

In this study, the method of determining functional residue movements in complex
proteins, known as the dynamic cross-correlation matrix (DCCM), was employed. The
DCCM algorithm was applied to gather insights into the correlated motions of the lead
compounds through molecular dynamics simulations. This was accomplished by cal-
culating the cross-correlations of Cα atoms using the R programming language’s Bio3D
package [51]. In this research, all post-molecular dynamics simulation results were obtained
using AMBER v2022 software. An evaluation of alterations in the conformation of ligands
within the binding pocket of the PqsA protein was performed using a DCCM analysis
on the Cα atom backbone during 100 ns molecular dynamics simulations. This analysis
aimed to identify fluctuations and correlated motions, as illustrated in Figure 11A–E. We
analyzed the correlation of movements in the active site of PqsA enzyme by creating DCCM
graphs from a 100 ns MD simulation to study the effect of the chosen lead compounds.
Positive correlation indicated strong coordination of motions. On the other hand, amino
acids demonstrated anti-correlation in motion if their movements were in opposition to
one another. DCCM computes both positive and negative (anti-parallel) correlations. The
findings demonstrate that, in comparison to the reference complex, every retrieved hit
had a unique pattern of correlated motions. However, all of the retrieved hits showed a
significant difference between the (+) and (−) correlation of atomic displacements.

3.8. Binding Free Energy Calculation

The binding free energy (∆Gbind) was calculated as the difference in the solvation
free energy of the complex and the solvation free energy of the individual components. The
non-bonded energy (∆Gnon-bonded) was calculated as the difference in the non-bonded
interactions between the complex and the individual components. Molecular mechanics
generalized Born surface area (MMGBSA), a well-known technique, was used to accurately
predict the binding free energies of all of the complexes. Gibbs free energy controls the
binding affinity between interacting molecules [52,53]. The table includes the total binding
free energies of all of the retrieved hits along with that of the reference complex, as well
as VDWAALS, electrostatic energy, polar solvation energy and other energy terms. These
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findings strongly support that our retrieved hits had greater potential for inhibition than
the reference compound. The binding free energies for all of the systems are provided in
Table 2.
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Table 2. Binding free energy calculation.

No Compound
ID vdW EEL ESURF EGB TOTAL

1 ZINC32573386 −38.8733 −0.9948 −3.9755 10.3074 −33.5365
2 ZINC79107864 −51.8814 1.0207 −4.6930 10.7405 −44.8132
3 Ch53910279 −46.5828 −43.0180 −5.8361 47.5489 −47.8880
4 Ch54245649 −65.0533 −3.2224 −7.5232 −18.6792 −57.1197
5 Reference −40.5049 −9.0757 −3.9914 −30.2265 −23.3445

4. Conclusions

The objective of this study was to perform a virtual screening of compounds from the
ChemBridge and ZINC databases, as well as molecular docking and molecular dynamics
simulations of selected compounds and a reference ligand (6-fluoroanthraniloyl-AMP), and
to estimate their binding interactions with the PqsA enzyme. Four natural compounds,
ZINC32573386, ZINC79107864, Ch53910279, and Ch54245649, were found to have strong
interactions with the active site of the PqsA enzyme, with binding affinities ranging from
−6.2 to −9 kcal/moL. These compounds had improved pharmacophore features compared
to the reference compound attached to the PqsA (PDB ID;5OE3) protein. The results suggest
that these compounds have the potential to be developed into drugs for the PqsA enzyme,
which is crucial for quinolone signaling in P. aeruginosa. Further in vitro and in vivo clinical
testing could validate the compounds as candidate inhibitors of PqsA.
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