The Choice of the Most Appropriate Suture Threads for Pancreatic Anastomoses on the Basis of Their Mechanical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Abu Hilal, M.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Nappo, G.; Capretti, G.L.; Nappo, G.; Capretti, G.; Petitti, T.; Gavazzi, F.; Ridolfi, C.; Cereda, M.; Montorsi, M. Zerbi, A. The evolution of post-operative pancreatic fistula (POPF) classification: A single-center experience. Pancreatology 2019, 19, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.E.; Tzeng, C.W.D.; McMillan, M.T.; Callery, M.P.; Kent, T.S.; Christein, J.D.; Behrman, S.W.; Schauer, D.P.; Hanseman, D.J.; Eckman, M.H.; et al. Pancreas fistula risk prediction: Implications for hospital costs and payments. HPB 2017, 19, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Falconi, M.; Molinari, E.; Salvia, R.; Butturini, G.; Sartori, N.; Mantovani, W.; Pederzoli, P.; Russell, S.J.; Büchler, M.W.; et al. Reconstruction by pancreaticojejunostomy versus pancreaticogastrostomy following pancreatectomy: Results of a comparative study. Ann. Surg. 2005, 242, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.Y.; Wang, J.W.; Hong, D.F.; Liu, Y.B.; Wang, Y.F. Binding pancreaticoenteric anastomosis: From binding pancreaticojejunostomy to binding pancreaticogastrostomy. Updates Surg. 2011, 63, 69–74. [Google Scholar] [CrossRef]
- Malleo, G.; Bassi, C. Pancreas: Reconstruction methods after pancreaticoduodenectomy. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 445–446. [Google Scholar] [CrossRef]
- Fujii, T.; Sugimoto, H.; Yamada, S.; Kanda, M.; Suenaga, M.; Takami, H.; Hattori, M.; Inokawa, Y.; Nomoto, S.; Fujiwara, M.; et al. Modified Blumgart Anastomosis for Pancreaticojejunostomy: Technical Improvement in Matched Historical Control Study. J. Gastrointest. Surg. 2014, 18, 1108–1115. [Google Scholar] [CrossRef]
- Chen, X.P.; Huang, Z.Y.; Lau, J.W.Y.; Zhang, B.X.; Zhang, Z.W.; Chen, Y.F.; Zhang, W.G.; Zhu, P.; Zhang, B. Chen’s U-Suture Technique for End-to-End Invaginated Pancreaticojejunostomy Following Pancreaticoduodenectomy. Ann. Surg. Oncol. 2014, 21, 4336–4341. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, L.; Gao, X.; Bao, H.; Liu, P.; Aziz, A.; Wang, Z.; Gong, P. Pancreaticogastrostomy versus pancreaticojejunostomy reconstruction after pancreaticoduodenectomy: A meta-analysis of randomized controlled trials. Surg. Today 2015, 45, 585–594. [Google Scholar] [CrossRef]
- Xiang, Y.; Wu, J.; Lin, C.; Yang, Y.; Zhang, D.; Xie, Y.; Yao, X.; Zhang, X. Pancreatic reconstruction techniques after pancreaticoduodenectomy: A review of the literature. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 797–806. [Google Scholar] [CrossRef]
- Molinari, E.; Bassi, C.; Salvia, R.; Butturini, G.; Crippa, S.; Talamini, G.; Falconi, M.; Pederzoli, P. Amylase value in drains after pancreatic resection as predictive factor of postoperative pancreatic fistula: Results of a prospective study in 137 patients. Ann. Surg. 2007, 246, 281–287. [Google Scholar] [CrossRef]
- Bassi, C.; Molinari, E.; Salvia, R.; Butturini, G.; Crippa, S.; Talamini, G.; Falconi, M.; Pederzoli, P. Early versus late drain removal after standard pancreatic resections: Results of a prospective randomized trial. Ann. Surg. 2010, 252, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Strobel, O.; Büchler, M.W. Drainage after pancreaticoduodenectomy: Controversy revitalized. Ann. Surg. 2014, 259, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, U.; Müller, T.C.; Späth, C.; Cresswell, L.; Wilhelm, D.; Friess, H.; Michalski, C.W.; Kleeff, J. The evidence based dilemma of intraperitoneal drainage for pancreatic resection—A systematic review and meta-analysis. BMC Surg. 2014, 14, 1–12. [Google Scholar] [CrossRef]
- Dembinski, J.; Mariette, C.; Tuech, J.J.; Mauvais, F.; Piessen, G.; Fuks, D.; Schwarz, L.; Truant, S.; Cosse, C.; Pruvot, F.R.; et al. Early removal of intraperitoneal drainage after pancreatoduodenectomy in patients without postoperative fistula at POD3: Results of a randomized clinical trial. J. Visc. Surg. 2019, 156, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Søreide, K.; Ansari, D. The Dilemma of Drains after Pancreatoduodenectomy: Still an Issue? Scand. J. Surg. 2020, 109, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.J.; Gönen, M.; Brennan, M.F.; Bucknor, A.A.; Robinson, L.M.; Pappas, M.M.; Carlucci, K.E.; D’Angelica, M.I.; DeMatteo, R.P.; Kingham, T.P.; et al. Pasireotide for Postoperative Pancreatic Fistula. N. Engl. J. Med. 2014, 370, 2014–2022. [Google Scholar] [CrossRef] [PubMed]
- Elliott, I.A.; Dann, A.M.; Ghukasyan, R.; Damato, L.; Girgis, M.D.; King, J.C.; Hines, O.J.; Reber, H.A.; Donahue, T.R. Pasireotide does not prevent postoperative pancreatic fistula: A prospective study. HPB 2018, 20, 418–422. [Google Scholar] [CrossRef]
- Young, S.; Sung, M.L.; Lee, J.A.; DiFronzo, L.A.; O’Connor, V.V. Pasireotide is not effective in reducing the development of postoperative pancreatic fistula. HPB 2018, 20, 834–840. [Google Scholar] [CrossRef]
- Tarvainen, T.; Sirén, J.; Kokkola, A.; Sallinen, V. Effect of Hydrocortisone vs Pasireotide on Pancreatic Surgery Complications in Patients with High Risk of Pancreatic Fistula: A Randomized Clinical Trial. JAMA Surg. 2020, 155, 291–298. [Google Scholar] [CrossRef]
- Bootsma, B.T.; Plat, V.D.; Van de Brug, T.; Huisman, D.E.; Botti, M.; Van den Boezem, P.B.; Bonsing, B.A.; Bosscha, K.; Dejong, C.H.C.; Groot-Koerkamp, B.; et al. Somatostatin analogues for the prevention of pancreatic fistula after open pancreatoduodenectomy: A nationwide analysis. Pancreatology 2022, 22, 421–426. [Google Scholar] [CrossRef]
- Poon, R.T.P.; Fan, S.T.; Lo, C.M.; Ng, K.K.; Yuen, W.K.; Yeung, C.; Wong, J. EXternal drainage of pancreatic duct with a stent to reduce leakage rate of pancreaticojejunostomy after pancreaticoduodenectomy: A prospective randomized trial. Ann. Surg. 2007, 246, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Pessaux, P.; Sauvanet, A.; Mariette, C.; Paye, F.; Muscari, F.; Cunha, A.S.; Sastre, B.; Arnaud, J.P. External pancreatic duct stent decreases pancreatic fistula rate after pancreaticoduodenectomy: Prospective multicenter randomized trial. Ann. Surg. 2011, 253, 879–885. [Google Scholar] [CrossRef]
- Motoi, F.; Egawa, S.; Rikiyama, T.; Katayose, Y.; Unno, M. Randomized clinical trial of external stent drainage of the pancreatic duct to reduce postoperative pancreatic fistula after pancreaticojejunostomy. Br. J. Surg. 2012, 99, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, T.; Motomura, T.; Uchiyama, H.; Iseda, N.; Yoshida, R.; Kayashima, H.; Harada, N.; Ninomiya, M.; Sugimachi, K.; Honboh, T.; et al. Impact of a 7.5-Fr Pancreatic Stent for Preventing Pancreatic Fistula after Pancreaticoduodenectomy. Dig. Surg. 2022, 38, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Hirashita, T.; Iwashita, Y.; Fujinaga, A.; Nakanuma, H.; Tada, K.; Masuda, T.; Endo, Y.; Ohta, M.; Inomata, M. Short internal pancreatic stent reduces pancreatic fistula in pancreatoduodenectomy. Langenbeck’s Arch. Surg. 2021, 406, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Huscher, C.; Perri, G.; Lazzarin, G.; Marchegiani, G.; Malleo, G.; Salvia, R.; Bassi, C. Coronary Artery Stent for Securing High-risk Pancreatico-jejunal Anastomosis after Pancreatoduodenectomy: A Pilot Series. Ann. Surg. 2022, 275, E665–E668. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Au, K. Does fibrin glue sealant decrease the rate of anastomotic leak after a pancreaticoduodenectomy? Results of a prospective randomized trial. HPB 2013, 15, 561–566. [Google Scholar] [CrossRef]
- Smits, F.J.; Van Santvoort, H.C.; Besselink, M.G.H.; Borel Rinkes, I.H.M.; Molenaar, I.Q. Systematic review on the use of matrix-bound sealants in pancreatic resection. HPB 2015, 17, 1033–1039. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Virdis, M.; Sposito, C.; Cotsoglou, C.; Droz Dit Busset, M.; Bongini, M.; Flores, M.; Prinzi, N.; Coppa, J. Permanent Pancreatic Duct Occlusion with Neoprene-based Glue Injection After Pancreatoduodenectomy at High Risk of Pancreatic Fistula: A Prospective Clinical Study. Ann. Surg. 2019, 270, 791–798. [Google Scholar] [CrossRef]
- Naleway, S.E.; Lear, W.; Kruzic, J.J.; Maughan, C.B. Mechanical properties of suture materials in general and cutaneous surgery. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Tomihata, K.; Suzuki, M.; Ikada, Y. The pH Dependence of Monofilament Sutures on Hydrolytic Degradation. J. Biomed. Mater. Res. 2001, 58, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Andrianello, S.; Marchegiani, G.; Anselmi, B.; Secchettin, E.; Boriero, F.; Malleo, G.; Salvia, R.; Bassi, C. Polyester preserves the highest breaking point after prolonged incubation in pancreatic juice. J. Gastrointest. Surg. 2018, 22, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Muftuoglu, M.A.T.; Ozkan, E.; Saglam, A. Effect of human pancreatic juice and bile on the tensile strength of suture materials. Am. J. Surg. 2004, 188, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Karaman, K.; Bal, A.; Aziret, M.; Ercan, M.; Bostanci, E.B.; Akoglu, M. Which Suture Material is Optimal for Pancreaticojejunostomy Anastomosis? An In Vitro Study. J. Investig. Surg. 2017, 30, 277–284. [Google Scholar] [CrossRef]
- Karabulut, R.; Sonmez, K.; Turkyilmaz, Z.; Bagbanci, B.; Basaklar, A.C.; Kale, N. An In Vitro and In Vivo Evaluation of Tensile Strength and Durability of Seven Suture Materials in Various pH and Different Conditions: An Experimental Study in Rats. Indian J. Surg. 2010, 72, 386–390. [Google Scholar] [CrossRef]
- Greenwald, D. Mechanical Comparison of 10 Suture Materials before and after in vivo incubation. J. Surg. Res. 1992, 56, 372–377. [Google Scholar] [CrossRef]
- Groot, V.P.; Rezaee, N.; Wu, W.; Cameron, J.L.; Fishman, E.K.; Hruban, R.H.; Weiss, M.J.; Zheng, L.; Wolfgang, C.L.; He, J. Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2018, 267, 936–945. [Google Scholar] [CrossRef]
- Freudenberg, S.; Rewerk, S.; Kaess, M.; Weiss, C.; Dorn-Beinecke, A.; Post, S. Biodegradation of absorbable sutures in body fluids and pH buffers. Eur. Surg. Res. 2004, 36, 376–385. [Google Scholar] [CrossRef]
- D3822/D3822M-14; Standard Test Method for Tensile Properties of Single Textile Fibres. ASTM: West Conshohocken, PA, USA, 1982.
- D2256-02; Standard Test Method for Tensile Properties of Yarns by the Single-Strand Method 1. ASTM: West Conshohocken, PA, USA, 2021.
- Pedrazzoli, S.; Brazzale, A.R. Systematic review and meta-analysis of surgical drain management after the diagnosis of postoperative pancreatic fistula after pancreaticoduodenectomy: Draining-tract-targeted works better than standard management. Langenbeck’s Arch. Surg. 2020, 405, 1219–1231. [Google Scholar] [CrossRef]
- Bonaroti, J.W.; Zenati, M.S.; Al-abbas, A.I.; Rieser Caroline, J.; Zureikat, A.H.; Hogg, M.E.; Zeh, H.J.; Boone, B.A. Impact of postoperative pancreatic fistula on long-term oncologic outcomes after pancreatic resection. HPB 2021, 23, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Callery, M.P.; Pratt, W.B.; Kent, T.S.; Chaikof, E.L.; Vollmer, C.M. A prospectively validated clinical risk score accurately predicts pancreatic fistula after pancreatoduodenectomy. J. Am. Coll. Surg. 2013, 216, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gierek, M.; Merkel, K.; Ochała-Gierek, G.; Niemiec, P.; Szyluk, K.; Kuśnierz, K. Which Suture to Choose in Hepato-Pancreatic-Biliary Surgery? Assessment of the Influence of Pancreatic Juice and Bile on the Resistance of Suturing Materials—In Vitro Research. Biomedicines 2022, 10, 1053. [Google Scholar] [CrossRef]
- Rijcken, E.; Sachs, L.; Fuchs, T.; Spiegel, H.U.; Neumann, P.A. Growth factors and gastrointestinal anastomotic healing. J. Surg. Res. 2014, 187, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Mcmillan, M.T.; Malleo, G.; Bassi, C.; Sprys, M.H., Jr.; Charles, M.V. Defining the practice of pancreatoduodenectomy around the world. HPB 2015, 17, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; McPherson, N.; Grant, A. Tensile Strength of Absorbable Suture Materials: In Vitro Analysis of the Effects of pH and Bacteria. J. Surg. Educ. 2009, 66, 208–211. [Google Scholar] [CrossRef]
UTS [MPa]—Poliglecaprone 25 | |||
---|---|---|---|
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.102 | 0.013 | 0.221 |
3 VS. 0 | 0.153 | 0.072 | 0.001 |
3 VS. 1 | 0.838 | 0.488 | 0.034 |
7 VS. 0 | 0.001 | 0.001 | 0.001 |
7 VS. 1 | 0.020 | 0.060 | 0.011 |
7 VS. 3 | 0.011 | 0.010 | 0.683 |
E0–3 [MPa]—Poliglecaprone 25 | |||
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.165 | 0.094 | 0.079 |
3 VS. 0 | 0.004 | 0.488 | 0.045 |
3 VS. 1 | 0.131 | 0.327 | 0.806 |
7 VS. 0 | 0.111 | 0.001 | 0.022 |
7 VS. 1 | 0.838 | 0.131 | 0.596 |
7 VS. 3 | 0.191 | 0.013 | 0.775 |
UTS [MPa]—Polydioxanone | |||
---|---|---|---|
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.002 | 0.001 | 0.080 |
3 VS. 0 | 0.003 | 0.001 | 0.108 |
3 VS. 1 | 0.998 | 0.819 | 0.999 |
7 VS. 0 | 0.001 | 0.001 | 0.539 |
7 VS. 1 | 0.516 | 0.392 | 0.631 |
7 VS. 3 | 0.424 | 0.878 | 0.722 |
E0–3 [MPa]—Polydioxanone | |||
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.001 | 0.043 | 0.113 |
3 VS. 0 | 0.015 | 0.001 | 0.127 |
3 VS. 1 | 0.708 | 0.341 | 1.00 |
7 VS. 0 | 0.003 | 0.001 | 0.006 |
7 VS. 1 | 0.988 | 0.438 | 0.539 |
7 VS. 3 | 0.876 | 0.998 | 0.500 |
UTS [MPa]—Polyglactin 910 | |||
---|---|---|---|
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.903 | 0.008 | 0.111 |
3 VS. 0 | 0.514 | 0.027 | 0.514 |
3 VS. 1 | 0.596 | 0.653 | 0.025 |
7 VS. 0 | 0.020 | 0.001 | 0.002 |
7 VS. 1 | 0.027 | 0.327 | 0.121 |
7 VS. 3 | 0.094 | 0.153 | 0.001 |
E0–3 [MPa]—Polyglactin 910 | |||
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.252 | 0.030 | 0.005 |
3 VS. 0 | 0.002 | 0.003 | 0.001 |
3 VS. 1 | 0.135 | 0.438 | 0.462 |
7 VS. 0 | 0.210 | 0.001 | 0.072 |
7 VS. 1 | 0.999 | 0.165 | 0.307 |
7 VS. 3 | 0.165 | 0.540 | 0.079 |
UTS [MPa]—Polypropylene | |||
---|---|---|---|
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.781 | 0.004 | 0.002 |
3 VS. 0 | 0.376 | 0.016 | 0.001 |
3 VS. 1 | 0.895 | 0.913 | 0.759 |
7 VS. 0 | 0.793 | 0.006 | 0.093 |
7 VS. 1 | 1.000 | 0.996 | 0.268 |
7 VS. 3 | 0.885 | 0.973 | 0.044 |
E0–3 [MPa]—Polypropylene | |||
Saline Solution | Bile | Pancreatic Juice | |
Time intervals | p | p | p |
1 VS. 0 | 0.403 | 0.552 | 0.494 |
3 VS. 0 | 0.989 | 0.990 | 0.142 |
3 VS. 1 | 0.255 | 0.382 | 0.842 |
7 VS. 0 | 0.846 | 0.427 | 0.012 |
7 VS. 1 | 0.862 | 0.042 | 0.216 |
7 VS. 3 | 0.676 | 0.603 | 0.640 |
Saline solution | ||||||||
---|---|---|---|---|---|---|---|---|
Poliglecaprone 25 4-0 | Polydioxanone 4-0 | Polyglactin 910 4-0 | Polypropylene 4-0 | |||||
Time | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] |
Dry | 1721.1 | 789.3 | 1726.3 | 2660.3 | 1664.5 | 7663.9 | 904.2 | 2504.2 |
1 Day | 1662.2 | 622.5 | 1578.4 | 1796.2 | 1667.4 | 7108.1 | 917.9 | 2289.5 |
3 Days | 1646.6 | 503.9 | 1598.3 | 2006.1 | 1647.4 | 6445.8 | 924.9 | 2546.3 |
7 Days | 1105.7 | 612.5 | 1529.9 | 1860.0 | 1601.9 | 7075.0 | 917.5 | 2394.5 |
Bile | ||||||||
Poliglecaprone 25 4-0 | Polydioxanone 4-0 | Polyglactin 910 4-0 | Polypropylene 4-0 | |||||
Time | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] |
Dry | 1721.1 | 789.3 | 1726.3 | 2660.3 | 1664.5 | 7663.9 | 904.2 | 2504.2 |
1 Day | 1205.4 | 619.3 | 1517.8 | 2259.6 | 1512.8 | 6594.7 | 698.6 | 2390.4 |
3 Days | 1321.5 | 679.1 | 1477.0 | 2019.4 | 1515.4 | 6363.9 | 732.1 | 2529.8 |
7 Days | 967.4 | 571.6 | 1442.2 | 2045.5 | 1435.1 | 6120.2 | 710.1 | 2636.4 |
Pancreatic Juice | ||||||||
Poliglecaprone 25 4-0 | Polydioxanone 4-0 | Polyglactin 910 4-0 | Polypropylene 4-0 | |||||
Time | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] | UTS [MPa] | E0–3 [MPa] |
Dry | 1721.1 | 789.3 | 1726.3 | 2660.3 | 1664.5 | 7663.9 | 904.2 | 2504.2 |
1 Day | 1547.1 | 608.6 | 1599.1 | 2265.0 | 1573.7 | 6089.8 | 710.5 | 2383.7 |
3 Days | 1108.0 | 546.1 | 1606.8 | 2275.9 | 1685.6 | 5711.1 | 666.8 | 2314.3 |
7 Days | 1050.9 | 568.0 | 1658.9 | 2039.8 | 1461.7 | 6680.1 | 793.9 | 2214.3 |
UTS [MPa] after 7 days | ||||
---|---|---|---|---|
Poliglecaprone 25 | Polyglactin 910 | Polypropylene | Polydioxanone | |
Fluids Comparison | p | p | p | p |
NaCl VS. Dry | 0.027 | 0.191 | 0.979 | 0.002 |
Bile VS. Dry | 0.001 | 0.001 | 0.019 | 0.001 |
Pancreas VS. Dry | 0.004 | 0.001 | 0.001 | 0.221 |
Bile VS. NaCl | 0.121 | 0.014 | 0.001 | 0.514 |
Pancreas VS. NaCl | 0.514 | 0.050 | 0.008 | 0.066 |
Bile VS. Pancreas | 0.369 | 0.624 | 0.096 | 0.013 |
E0–3 [MPa]—after 7 days | ||||
---|---|---|---|---|
Poliglecaprone 25 | Polyglactin 910 | Polypropylene | Polydioxanone | |
Fluids Comparison | p | p | p | p |
NaCl VS. Dry | 0.082 | 0.250 | 0.714 | 0.001 |
Bile VS. Dry | 0.024 | 0.001 | 0.584 | 0.015 |
Pancreas VS. Dry | 0.022 | 0.021 | 0.049 | 0.014 |
Bile VS. NaCl | 0.846 | 0.025 | 0.120 | 0.741 |
Pancreas VS. NaCl | 0.917 | 0.579 | 0.326 | 0.758 |
Bile VS. Pancreas | 1.000 | 0.289 | 0.003 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagnanelli, M.; De Gaetano, F.; Nappo, G.; Capretti, G.; Costantino, M.L.; Zerbi, A. The Choice of the Most Appropriate Suture Threads for Pancreatic Anastomoses on the Basis of Their Mechanical Characteristics. Biomedicines 2023, 11, 1055. https://doi.org/10.3390/biomedicines11041055
Pagnanelli M, De Gaetano F, Nappo G, Capretti G, Costantino ML, Zerbi A. The Choice of the Most Appropriate Suture Threads for Pancreatic Anastomoses on the Basis of Their Mechanical Characteristics. Biomedicines. 2023; 11(4):1055. https://doi.org/10.3390/biomedicines11041055
Chicago/Turabian StylePagnanelli, Michele, Francesco De Gaetano, Gennaro Nappo, Giovanni Capretti, Maria Laura Costantino, and Alessandro Zerbi. 2023. "The Choice of the Most Appropriate Suture Threads for Pancreatic Anastomoses on the Basis of Their Mechanical Characteristics" Biomedicines 11, no. 4: 1055. https://doi.org/10.3390/biomedicines11041055
APA StylePagnanelli, M., De Gaetano, F., Nappo, G., Capretti, G., Costantino, M. L., & Zerbi, A. (2023). The Choice of the Most Appropriate Suture Threads for Pancreatic Anastomoses on the Basis of Their Mechanical Characteristics. Biomedicines, 11(4), 1055. https://doi.org/10.3390/biomedicines11041055