Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Isolation and Expansion of NK Cells
2.3. Fluorescence-Activated Cell Sorting (FACS)
2.4. Interferon-γ (IFN-γ) ELISA
2.5. CCl4-Induced Live Cirrhosis in Mice
2.6. Analysis of Fibrosis
2.7. Immunohistochemistry
2.8. Tracking of Therapeutic NK Cells in a Mouse Model with CCl4-Induced Liver Cirrhosis
2.9. QuantSeq 3′ mRNA Sequencing
2.10. Gene Expression Data Analysis
2.11. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)
2.12. Statistics Analysis
3. Results
3.1. Isolation, Expansion, and Characterization of NK Cells
3.2. Significant Decrease in Collagen Deposition after Repetitive NK Cell Inoculation in the CCl4-Induced Liver Cirrhosis Mouse Model
3.3. Suppression of Fibrosis after NK Cell Therapy
3.4. Optical Image-Based In Vivo Tracking of NK Cells Derived from Codon-Optimized Luciferase-Expressing Transgenic Mice in the CCl4-Induced Liver Cirrhosis Mouse Model
3.5. Gene Expression Profiling of Liver Cirrhosis Mouse Model after NK Cell Therapy
3.6. qRT-PCR Verification of the Downregulated DEGs Related to ECM and Inflammatory Response
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuppan, D.; Afdhal, N.H. Liver cirrhosis. Lancet 2008, 371, 838–851. [Google Scholar] [CrossRef]
- Hernandez-Gea, V.; Friedman, S.L. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 425–456. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411. [Google Scholar] [CrossRef]
- Coulouarn, C.; Corlu, A.; Glaise, D.; Guénon, I.; Thorgeirsson, S.S.; Clément, B. Hepatocyte–Stellate Cell Cross-Talk in the Liver Engenders a Permissive Inflammatory Microenvironment That Drives Progression in Hepatocellular CarcinomaHepatocyte–Stellate Cell Cross-Talk in Liver Cancer. Cancer Res. 2012, 72, 2533–2542. [Google Scholar] [CrossRef]
- Carloni, V.; Luong, T.V.; Rombouts, K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: More complicated than ever. Liver Int. 2014, 34, 834–843. [Google Scholar] [CrossRef]
- Novikova, M.; Khromova, N.; Kopnin, P. Components of the hepatocellular carcinoma microenvironment and their role in tumor progression. Biochemistry 2017, 82, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Amarapurkar, D.N. Prescribing medications in patients with decompensated liver cirrhosis. Int. J. Hepatol. 2011, 2011, 519526. [Google Scholar] [CrossRef]
- Zhou, W.-C.; Zhang, Q.-B.; Qiao, L. Pathogenesis of liver cirrhosis. World J. Gastroenterol. WJG 2014, 20, 7312. [Google Scholar] [CrossRef] [PubMed]
- Scholten, D.; Trebicka, J.; Liedtke, C.; Weiskirchen, R. The carbon tetrachloride model in mice. Lab. Anim. 2015, 49, 4–11. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Yi, R.; Mu, J.; Zhao, X.; Yang, Z. Hepatoprotective effects of Lactobacillus on carbon tetrachloride-induced acute liver injury in mice. Int. J. Mol. Sci. 2018, 19, 2212. [Google Scholar] [CrossRef]
- Eom, Y.W.; Shim, K.Y.; Baik, S.K. Mesenchymal stem cell therapy for liver fibrosis. Korean J. Intern. Med. 2015, 30, 580. [Google Scholar] [CrossRef]
- Cho, K.-A.; Ju, S.-Y.; Cho, S.J.; Jung, Y.-J.; Woo, S.-Y.; Seoh, J.-Y.; Han, H.-S.; Ryu, K.-H. Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow. Cell Biol. Int. 2009, 33, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.W.; Kim, G.; Baik, S.K. Mesenchymal stem cell therapy for cirrhosis: Present and future perspectives. World J. Gastroenterol. WJG 2015, 21, 10253. [Google Scholar] [CrossRef]
- Fasbender, F.; Widera, A.; Hengstler, J.G.; Watzl, C. Natural killer cells and liver fibrosis. Front. Immunol. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, L.; Zhang, H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy. J. Immunol. Res. 2018, 2018, 1206737. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Jeong, W.I.; Tian, Z. Liver: An organ with predominant innate immunity. Hepatology 2008, 47, 729–736. [Google Scholar] [CrossRef]
- Notas, G.; Kisseleva, T.; Brenner, D. NK and NKT cells in liver injury and fibrosis. Clin. Immunol. 2009, 130, 16–26. [Google Scholar] [CrossRef]
- Melhem, A.; Muhanna, N.; Bishara, A.; Alvarez, C.E.; Ilan, Y.; Bishara, T.; Horani, A.; Nassar, M.; Friedman, S.L.; Safadi, R. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J. Hepatol. 2006, 45, 60–71. [Google Scholar] [CrossRef]
- Radaeva, S.; Wang, L.; Radaev, S.; Jeong, W.-I.; Park, O.; Gao, B. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G809–G816. [Google Scholar] [CrossRef]
- Gao, B.; Radaeva, S.; Jeong, W.-I. Activation of natural killer cells inhibits liver fibrosis: A novel strategy to treat liver fibrosis. Expert Rev. Gastroenterol. Hepatol. 2007, 1, 173–180. [Google Scholar] [CrossRef]
- Jeong, W.I.; Park, O.; Radaeva, S.; Gao, B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 2006, 44, 1441–1451. [Google Scholar] [CrossRef]
- Jeong, W.I.; Park, O.; Suh, Y.G.; Byun, J.S.; Park, S.Y.; Choi, E.; Kim, J.K.; Ko, H.; Wang, H.; Miller, A.M. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice. Hepatology 2011, 53, 1342–1351. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Liu, J.; Huang, Z.; Zhao, Q.; Huang, Y.; Li, X.; Gao, Z. Intrahepatic NK cells function suppressed in advanced liver fibrosis. Eur. J. Clin. Investig. 2016, 46, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.S.; Jeong, W.I. Interaction of hepatic stellate cells with diverse types of immune cells: Foe or friend? J. Gastroenterol. Hepatol. 2013, 28, 99–104. [Google Scholar] [CrossRef]
- Menees, K.B.; Earls, R.H.; Chung, J.; Jernigan, J.; Filipov, N.M.; Carpenter, J.M.; Lee, J.-K. Sex-and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. Immun. Ageing 2021, 18, 3. [Google Scholar] [CrossRef]
- Youn, H.; Chung, J.-K. Reporter gene imaging. Am. J. Roentgenol. 2013, 201, W206–W214. [Google Scholar] [CrossRef]
- Youn, H.; Hong, K.-J. Non-invasive molecular imaging of immune cell dynamics for vaccine research. Clin. Exp. Vaccine Res. 2019, 8, 89–93. [Google Scholar] [CrossRef]
- Rabinovich, B.A.; Ye, Y.; Etto, T.; Chen, J.Q.; Levitsky, H.I.; Overwijk, W.W.; Cooper, L.J.; Gelovani, J.; Hwu, P. Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 14342–14346. [Google Scholar] [CrossRef] [PubMed]
- Ozsolak, F.; Milos, P.M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet. 2011, 12, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Wang, G.; Yu, G.; Wang, D.; Guo, S.; Shan, F. Comparison of the purity and vitality of natural killer cells with different isolation kits. Exp. Ther. Med. 2017, 13, 1875–1883. [Google Scholar] [CrossRef]
- Yang, N.; Ko, M.; Ahn, M.; Shin, T. Hepatoprotective effects of norgalanthamine on carbon tetrachloride induced-hepatotoxicity in mice. Drug Chem. Toxicol. 2023, 46, 144–154. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jeong, W.I. Retinoic acids and hepatic stellate cells in liver disease. J. Gastroenterol. Hepatol. 2012, 27, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Sun, H.; Xue, T.; Gan, C.; Liu, H.; Xie, Y.; Yao, Y.; Ye, T. Liver fibrosis: Therapeutic targets and advances in drug therapy. Front. Cell Dev. Biol. 2021, 9, 730176. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.L.; Guimaraes, J.C.; Auf der Maur, P.; De Silva, D.; Trefny, M.P.; Okamoto, R.; Bruno, S.; Schmidt, A.; Mertz, K.; Volkmann, K. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 2021, 594, 566–571. [Google Scholar] [CrossRef]
- Mehal, W.; Imaeda, A. Cell death and fibrogenesis. In Seminars in Liver Disease; Thieme Medical Publishers: New York, NY, USA, 2010; pp. 226–231. [Google Scholar]
- Wei, Y.; Bingyu, W.; Lei, Y.; Xingxing, Y. The antifibrotic role of natural killer cells in liver fibrosis. Exp. Biol. Med. 2022, 247, 1235–1243. [Google Scholar] [CrossRef]
- Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Asp. Med. 2019, 65, 37–55. [Google Scholar] [CrossRef]
- Wree, A.; McGeough, M.D.; Inzaugarat, M.E.; Eguchi, A.; Schuster, S.; Johnson, C.D.; Peña, C.A.; Geisler, L.J.; Papouchado, B.G.; Hoffman, H.M. NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF in mice. Hepatology 2018, 67, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Szondi, D.C.; Wong, J.K.; Vardy, L.A.; Cruickshank, S.M. Arginase signalling as a key player in chronic wound pathophysiology and healing. Front. Mol. Biosci. 2021, 8, 1049. [Google Scholar] [CrossRef]
- Stark, G.R.; Kerr, I.M.; Williams, B.R.; Silverman, R.H.; Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 1998, 67, 227–264. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Quan, J. Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis. Hum. Cell 2020, 33, 582–589. [Google Scholar] [CrossRef]
- Choi, W.M.; Ryu, T.; Lee, J.H.; Shim, Y.R.; Kim, M.H.; Kim, H.H.; Kim, Y.E.; Yang, K.; Kim, K.; Choi, S.E. Metabotropic glutamate receptor 5 in natural killer cells attenuates liver fibrosis by exerting cytotoxicity to activated stellate cells. Hepatology 2021, 74, 2170–2185. [Google Scholar] [CrossRef]
- Pegram, H.J.; Andrews, D.M.; Smyth, M.J.; Darcy, P.K.; Kershaw, M.H. Activating and inhibitory receptors of natural killer cells. Immunol. Cell Biol. 2011, 89, 216–224. [Google Scholar] [CrossRef]
- Krizhanovsky, V.; Yon, M.; Dickins, R.A.; Hearn, S.; Simon, J.; Miething, C.; Yee, H.; Zender, L.; Lowe, S.W. Senescence of activated stellate cells limits liver fibrosis. Cell 2008, 134, 657–667. [Google Scholar] [CrossRef]
- Radaeva, S.; Sun, R.; Jaruga, B.; Nguyen, V.T.; Tian, Z.; Gao, B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in nkg2d-dependent and tumor necrosis factor–related apoptosis-inducing ligand–dependent manners. Gastroenterology 2006, 130, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Gur, C.; Doron, S.; Kfir-Erenfeld, S.; Horwitz, E.; Abu-Tair, L.; Safadi, R.; Mandelboim, O. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 2012, 61, 885–893. [Google Scholar] [CrossRef]
- Ren, C.; Li, M.; Zheng, Y.; Cai, B.; Du, W.; Zhang, H.; Wu, F.; Tong, M.; Lin, F.; Wang, J. Single-cell RNA-seq reveals altered NK cell subsets and reduced levels of cytotoxic molecules in patients with ankylosing spondylitis. J. Cell. Mol. Med. 2022, 26, 1071–1082. [Google Scholar] [CrossRef]
- Mount, N.M.; Ward, S.J.; Kefalas, P.; Hyllner, J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. B: Biol. Sci. 2015, 370, 20150017. [Google Scholar] [CrossRef] [PubMed]
- Khurana, A.; Sayed, N.; Allawadhi, P.; Weiskirchen, R. It’s all about the spaces between cells: Role of extracellular matrix in liver fibrosis. Ann. Transl. Med. 2021, 9, 728. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, M.; Fu, L.; Lin, J.; Zhou, X.; Zhou, P.; Huang, P.; Hu, H.; Han, Y. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Theranostics 2020, 10, 36. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Li, C.-J.; Yang, Y.-L.; Huang, Y.-H.; Hsiau, Y.-T.; Chu, P.-Y. Roles of lysyl oxidase family members in the tumor microenvironment and progression of liver cancer. Int. J. Mol. Sci. 2020, 21, 9751. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, A.; Chen, W.; Wang, P.; Liu, T.; Cong, M.; Xu, A.; Yan, X.; Jia, J.; You, H. Inhibition of lysyl oxidase-like 1 (LOXL1) expression arrests liver fibrosis progression in cirrhosis by reducing elastin crosslinking. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018, 1864, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
Genes | Forward Sequence | Reverse Sequence | Pathways |
---|---|---|---|
mMMP3 | CTCTGGAACCTGAGACATCACC | AGGAGTCCTGAGAGATTTGCGC | Extracellular matrix |
mMMP8 | GATGCTACTACCACACTCCGTG | TAAGCAGCCTGAAGACCGTTGG | |
mMMP12 | CACACTTCCCAGGAATCAAGCC | TTTGGTGACACGACGGAACAGG | |
mMMP9 | GCTGACTACGATAAGGACGGCA | TAGTGGTGCAGGCAGAGTAGGA | |
mMMP14 | GGATGGACACAGAGAACTTCGTG | CGAGAGGTAGTTCTGGGTTGAG | |
mMMP11 | GATTGATGCTGCCTTCCAGGATG | CAGCGGAAAGTATTGGCAGGCT | |
mCOL15a1 | ACACCCACAGTGACTCCCAAGA | TCCTCATTGCCCACGATGTCTC | |
mCOL8a2 | GAGTGTCCTCTGGCGGCGGA | AGTCCATTGGCAGCATCGGTAG | |
mTGFb2 | TTGTTGCCCTCCTACAGACTGG | GTAAAGAGGGCGAAGGCAGCAA | |
mTGFb3 | AAGCAGCGCTACATAGGTGGCA | GGCTGAAAGGTGTGACATGGAC | |
mITGA6 | CATCACGGCTTCTGTGGAGATC | CATTGTCGTCTCCACATCCTTCC | |
mLAMB3 | TGACCAGACCTATGGACACGTG | GTCACAGTGACCTCGTTGGCAT | |
mLOXL1 | CGACTATGACCTCCGAGTGCTA | GTAGTGGCTGAACTCGTCCATG | |
mCCL4 | ACCCTCCCACTTCCTGCTGTTT | CTGTCTGCCTCTTTTGGTCAGG | Inflammatory response |
mS100a9 | TGGTGGAAGCACAGTTGGCAAC | CAGCATCATACACTCCTCAAAGC | |
mCD68 | GGCGGTGGAATACAATGTGTCC | AGCAGGTCAAGGTGAACAGCTG | |
mCSF1 | GCCTCCTGTTCTACAAGTGGAAG | ACTGGCAGTTCCACCTGTCTGT | |
mFCGR1 | ACCTGAGTCACAGCGGCATCTA | TGACACGGATGCTCTCAGCACT | |
mADAM8 | TGCCAACGTGACACTGGAGAAC | GCAGACACCTTAGCCAGTCCAA | |
mS100a8 | CAAGGAAATCACCATGCCCTCTA | ACCATCGCAAGGAACTCCTCGA | |
mSAA1 | GGAGTCTGGGCTGCTGAGAAAA | TGTCTGTTGGCTTCCTGGTCAG | |
mCCL2 | GCTACAAGAGGATCACCAGCAG | GTCTGGACCCATTCCTTCTTGG | |
mCD14 | TTGAACCTCCGCAACGTGTCGT | CGCAGGAAAAGTTGAGCGAGTG | |
mICAM1 | AAACCAGACCCTGGAACTGCAC | GCCTGGCATTTCAGAGTCTGCT | |
mTNIP2 | AACCAGGAGCTGACAGCCATGA | CCAGCTCTTGAATCCTACTGTGC | |
mITGAM | TACTTCGGGCAGTCTCTGAGTG | ATGGTTGCCTCCAGTCTCAGCA | |
mCCL19 | TCGTGAAAGCCTTCCGCTACCT | CAGTCTTCGGATGATGCGATCC | |
mGAPDH | GTCTCCTCTGACTTCAACAGCG | ACCACCCTGTTGCTGTAGCCAA | Housekeeping |
Gene Symbol | Fold Change | Normalized Data (log2) | |||
---|---|---|---|---|---|
CCl4/Saline | CCl4 + NK/CCl4 | Saline | CCl4 | CCl4 + NK | |
SERPINE1 | 12.519 | 0.139 | 1.378 | 5.024 | 2.178 |
THBS4 | 4.682 | 0.370 | 0.000 | 2.227 | 0.792 |
THBS1 | 3.378 | 0.373 | 1.079 | 2.835 | 1.413 |
CRISPLD2 | 5.071 | 0.459 | 1.299 | 3.641 | 2.516 |
MMP3 | 1.603 | 0.466 | 0.762 | 1.443 | 0.340 |
MMP12 | 15.310 | 0.494 | 0.638 | 4.575 | 3.557 |
ELAN | 2.534 | 0.500 | 0.000 | 1.341 | 0.340 |
LTBP2 | 8.797 | 0.505 | 0.188 | 3.325 | 2.338 |
MMP8 | 2.836 | 0.505 | 0.430 | 1.935 | 0.949 |
BMPER | 3.474 | 0.512 | 0.430 | 2.227 | 1.261 |
LOXL1 | 5.101 | 0.516 | 1.339 | 3.690 | 2.734 |
PLXDC2 | 5.697 | 0.516 | 0.875 | 3.385 | 2.430 |
COL15a1 | 2.356 | 0.524 | 2.501 | 3.737 | 2.804 |
OLFML2B | 1.865 | 0.528 | 0.638 | 1.537 | 0.615 |
ANGPTL7 | 1.977 | 0.556 | 1.126 | 2.109 | 1.261 |
ADAMTS1 | 3.073 | 0.559 | 2.603 | 4.223 | 3.384 |
TGFb2 | 3.607 | 0.573 | 0.503 | 2.354 | 1.550 |
LRRC24 | 2.390 | 0.58 | 1.079 | 2.336 | 1.550 |
MGP | 6.283 | 0.582 | 2.620 | 5.271 | 4.491 |
ITGA6 | 2.989 | 0.582 | 1.126 | 2.705 | 1.923 |
MFAP5 | 1.695 | 0.585 | 0.354 | 1.115 | 0.34 |
LABM3 | 2.051 | 0.588 | 1.031 | 2.067 | 1.300 |
VASN | 1.718 | 0.59 | 3.625 | 4.405 | 3.644 |
TGFb3 | 2.952 | 0.596 | 1.031 | 2.593 | 1.845 |
MMP9 | 3.679 | 0.604 | 0.188 | 2.067 | 1.339 |
FMOD | 3.765 | 0.611 | 0.820 | 2.732 | 2.021 |
WNT4 | 3.284 | 0.625 | 0.638 | 2.354 | 1.676 |
MMP14 | 2.711 | 0.627 | 5.089 | 6.527 | 5.854 |
MMP11 | 1.719 | 0.628 | 0.981 | 1.763 | 1.091 |
VWA1 | 1.663 | 0.646 | 0.572 | 1.306 | 0.677 |
IL16 | 2.404 | 0.647 | 1.453 | 2.719 | 2.090 |
LGALS3 | 23.571 | 0.651 | 1.525 | 6.084 | 5.465 |
COL8a2 | 2.336 | 0.656 | 0.430 | 1.654 | 1.045 |
Gene Symbol | Fold Change | Normalized Data (log2) | |||
---|---|---|---|---|---|
CCl4/Saline | CCl4 + NK/CCl4 | Saline | CCl4 | CCl4 + NK | |
SAA2 | 18.764 | 0.318 | 3.786 | 8.016 | 6.363 |
NUPR1 | 5.942 | 0.344 | 0.188 | 2.759 | 1.220 |
CXCL2 | 6.373 | 0.361 | 0.820 | 3.492 | 2.021 |
THBS1 | 3.378 | 0.373 | 1.079 | 2.835 | 1.413 |
CCL2 | 5.937 | 0.427 | 0.701 | 3.271 | 2.045 |
SAA1 | 8.838 | 0.464 | 6.174 | 9.318 | 8.211 |
FPR2 | 6.102 | 0.474 | 1.453 | 4.063 | 2.985 |
CAMP | 6.952 | 0.488 | 0.000 | 2.797 | 1.763 |
ADCYL | 1.831 | 0.488 | 0.503 | 1.376 | 0.340 |
HPS1 | 1.708 | 0.490 | 3.191 | 3.964 | 2.935 |
CD14 | 7.534 | 0.491 | 1.525 | 4.438 | 3.412 |
ELANE | 2.534 | 0.500 | 0.000 | 1.341 | 0.340 |
S100a8 | 33.124 | 0.507 | 0.981 | 6.031 | 5.050 |
GGT5 | 1.631 | 0.540 | 1.031 | 1.736 | 0.846 |
RELB | 6.453 | 0.541 | 0.762 | 3.452 | 2.566 |
CXCL5 | 3.516 | 0.549 | 0.000 | 1.814 | 0.949 |
CCL21A | 1.967 | 0.550 | 1.809 | 2.785 | 1.923 |
CSF1 | 2.565 | 0.559 | 2.351 | 3.710 | 2.871 |
CD68 | 5.757 | 0.560 | 2.446 | 4.972 | 4.134 |
PPARG | 1.694 | 0.563 | 3.180 | 3.941 | 3.112 |
AIM2 | 2.621 | 0.566 | 0.981 | 2.371 | 1.550 |
CCRL2 | 4.28 | 0.566 | 0.273 | 2.371 | 1.550 |
HCK | 6.707 | 0.573 | 0.762 | 3.507 | 2.705 |
PLA2G7 | 5.618 | 0.575 | 2.409 | 4.899 | 4.101 |
ADAM8 | 4.346 | 0.577 | 0.572 | 2.692 | 1.898 |
TICAM2 | 1.898 | 0.583 | 0.701 | 1.626 | 0.846 |
FCGR1 | 2.675 | 0.584 | 1.378 | 2.797 | 2.021 |
S100a9 | 28.555 | 0.592 | 1.453 | 6.289 | 5.533 |
CCL4 | 2.227 | 0.598 | 0.000 | 1.155 | 0.414 |
BCL6 | 2.036 | 0.599 | 5.327 | 6.353 | 5.613 |
SIGIRR | 2.070 | 0.602 | 2.953 | 4.003 | 3.270 |
HDAC9 | 1.926 | 0.616 | 0.430 | 1.376 | 0.677 |
HYAL3 | 1.516 | 0.620 | 0.430 | 1.031 | 0.340 |
SMPDL3B | 3.045 | 0.621 | 1.126 | 2.732 | 2.045 |
CCL19 | 3.173 | 0.628 | 0.097 | 1.763 | 1.091 |
MYO9A | 6.399 | 0.635 | 0.638 | 3.316 | 2.660 |
ORM3 | 5.913 | 0.650 | 2.311 | 4.875 | 4.255 |
CX3CL1 | 2.860 | 0.657 | 0.572 | 2.088 | 1.483 |
ITGAM | 5.006 | 0.661 | 0.572 | 2.896 | 2.300 |
TNIP2 | 1.921 | 0.663 | 2.185 | 3.126 | 2.533 |
ICAM1 | 2.885 | 0.664 | 2.518 | 4.047 | 3.456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.R.; Ko, M.K.; Son, D.; Ki, Y.W.; Kim, S.-I.; Lee, S.-Y.; Kang, K.W.; Cheon, G.J.; Hwang, D.W.; Youn, H. Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model. Biomedicines 2023, 11, 1090. https://doi.org/10.3390/biomedicines11041090
Oh HR, Ko MK, Son D, Ki YW, Kim S-I, Lee S-Y, Kang KW, Cheon GJ, Hwang DW, Youn H. Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model. Biomedicines. 2023; 11(4):1090. https://doi.org/10.3390/biomedicines11041090
Chicago/Turabian StyleOh, Ho Rim, Min Kyung Ko, Daehee Son, Young Wook Ki, Shin-Il Kim, Seok-Yong Lee, Keon Wook Kang, Gi Jeong Cheon, Do Won Hwang, and Hyewon Youn. 2023. "Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model" Biomedicines 11, no. 4: 1090. https://doi.org/10.3390/biomedicines11041090
APA StyleOh, H. R., Ko, M. K., Son, D., Ki, Y. W., Kim, S. -I., Lee, S. -Y., Kang, K. W., Cheon, G. J., Hwang, D. W., & Youn, H. (2023). Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model. Biomedicines, 11(4), 1090. https://doi.org/10.3390/biomedicines11041090