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Abstract: Acute myeloid leukemia (AML) is a hematologic malignancy that occurs due to alterations
such as genetic mutations, chromosomal translocations, or changes in molecular levels. These
alterations can accumulate in stem cells and hematopoietic progenitors, leading to the development of
AML, which has a prevalence of 80% of acute leukemias in the adult population. Recurrent cytogenetic
abnormalities, in addition to mediating leukemogenesis onset, participate in its evolution and can be
used as established diagnostic and prognostic markers. Most of these mutations confer resistance to
the traditionally used treatments and, therefore, the aberrant protein products are also considered
therapeutic targets. The surface antigens of a cell are characterized through immunophenotyping,
which has the ability to identify and differentiate the degrees of maturation and the lineage of the
target cell, whether benign or malignant. With this, we seek to establish a relationship according to
the molecular aberrations and immunophenotypic alterations that cells with AML present.

Keywords: acute myeloid leukemia; genetic alterations; immunophenotyping; prognosis

1. Introduction

Acute myeloid leukemia (AML) is a malignant disorder of hematopoietic stem cells
that emerges due to genetic alterations, such as genetic mutations, chromosomal translo-
cations, or changes in molecular levels. This disease is characterized by clonal expansion
of abnormally differentiated blasts of a myeloid lineage [1–3]. The increased prolifera-
tion of immature myeloid cells causes the accumulation of blasts and impairs normal
hematopoiesis, which may lead to hemorrhages, anemia, and severe and persistent infec-
tions. These are known to be the most common symptoms in the majority of patients with
acute leukemias [3,4].

Although the exact cause of genetic mutations is unclear, the development of AML
is associated with some risk factors, such as exposure to radiation, pesticides, chemother-
apeutic agents, and smoking. AML can also evolve from other hematological diseases,
including myelodysplastic syndrome (MDS), myeloproliferative syndromes (MPS), and
aplastic anemia. AML risk also increases for people with some congenital disorders, such
as Down syndrome and Bloom syndrome [3,5–7].
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AML is the most frequent leukemia in adults, accounting for about 80% of acute leukemia
cases in this population. It mostly affects male patients, with incidence rates increasing with
age. Per year, the number of new AML cases is 4.2 per 100,000 population [3,4,8–10].

2. Genetic Alterations in AML

In AML, recurrent cytogenetic abnormalities are established diagnostic and prognos-
tic markers; they can be therapeutically targetable since most of these mutations confer
resistance to the therapeutic options used traditionally [11–13].

The European Leukemia Net (ELN) and World Health Organization (WHO)
guidelines are probably the most widely used sources for assessing the risk of re-
sistance and classifying patients into favorable, intermediate, and adverse groups on
the basis of leukemia cell cytogenetics and mutations (Figure 1) [14,15]. The main
cytogenetic–molecular entities in AML are translocations 15;17 (t(15;17)(q22,q21)), 8;21
(t(8;21)(q22;q22.1)), and 9;22 (t(9;22)(q34.1;q11.2)); inversions 16 (inv(16)(p13q22) or
t(16;16)(p13;q22)) and 3 (inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)); mutations in TP53,
NPM1, FLT3, and IDH; complex karyotypes; and others.

2.1. Favorable Risk Genetic Alterations

Core-binding factor (CBF) is a transcription factor that plays critical roles in hematopoi-
etic stem cell (HSC) maintenance and differentiation. CBF has the ability to regulate the
expression of genes associated with cellular proliferation and death. In general, this factor
is characterized by the presence of either t(8;21) (q22;q22) or inv(16)(p13q22), which leads
to the formation of fusion genes that are associated with a favorable response to treatment
(RUNX1-RUNX1T1 and CBFB-MYH11, respectively) [16–18].

According to the ELN guidelines, patients who have mutations in CBF, such as translo-
cation 8;21 (t(8;21)(q22;q22.1)) and inversion 16 (inv(16)(p13q22) or t(16;16)(p13;q22)), are
classified as having favorable risk, along with patients with a single mutation in NPM1 or
bZIP in-frame mutated CEBPA [14].

The translocation t(8;21)(q22;q22.1) results in a gene fusion between the RUNX1 and
RUNX1T1 genes, deriving the RUNX1-RUNXT1 hybrid gene. This cytogenetic aberration
is especially identified in patients with M2 AML according to the French–American–British
classification (FAB) [19]. Due to high rates of complete remission after conventional treat-
ments, the presence of this translocation came to be considered a good prognostic factor
and an indicator of favorable outcomes for patients [16,20–22].

The inversion inv(16)(p13q22) and the translocation t(16;16)(p13q22) result in the
formation of the chimeric gene CBFB-MYH11, which encodes the fusion protein CBFb-
SMMHC. The inv(16) mutation is reported in almost all patients with the M4Eo (M4 with
eosinophilia) AML subtype according to FAB, which constitutes about 5–8% of all patients
with AML. Just like RUNX1-RUNXT1, CBFB-MYH11 is also considered a cytogenetic
alteration that confers a favorable prognosis in afflicted patients [23–26].

Mutations in the CEBPA gene are present in 10–15% of AML patients. The CEBPA
gene is located on chromosome 19 and encodes CCAAT enhancer binding protein alpha
(CEBPa), which is a crucial transcription factor for stem and progenitor cell function and
the regulation of myeloid cell differentiation. CEBPa mutations in the basic leucine zipper
domain (bZIP) have been associated with a favorable prognosis; they are an indicator of
a higher chance of achieving complete remission (CR), better overall survival (OS), and a
lower risk of relapse [27–33].

The nucleophosmin (NPM1) gene is located on chromosome 5 and encodes a protein
that is involved in critical cell function by playing key roles in ribosome biogenesis, cen-
trosome duplication, genomic stability, cell cycle progression, and apoptosis. NPM1 is the
most commonly mutated gene in adult AML, occurring in approximately 30% of all cases,
and it is considered to be a prognostic factor of favorable risk [15,34–40].
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Figure 1. Cytogenetic and chromosomal abnormalities associated with prognostic risk groups in
acute myeloid leukemia (AML). RUNX1: RUNX family transcription factor 1; RUNX1T1: RUNX1
partner transcriptional co-repressor 1; CBFB: core-binding factor subunit beta; MYH11: myosin
heavy chain 11; CEBPA: CCAAT enhancer binding protein alpha; NPM1: nucleophosmin 1; bZIP:
basic leucine zipper domain; FLT3-ITD: fms-related receptor tyrosine kinase 3—internal tandem
duplication; WT: wild-type; KMT2A: lysine methyltransferase 2A; MLLT3: MLLT3 super elongation
complex subunit; TP53: tumor protein p53; ASXL1: ASXL transcriptional regulator 1; BCOR: BCL6
corepressor; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; SF3B1: splicing factor
3b subunit 1; SRSF2: serine and arginine rich splicing factor 2; STAG2: stromal antigen 2; U2AF1:
U2 small nuclear RNA auxiliary factor 1; ZRSR2: zinc finger CCCH-type, RNA-binding motif and
serine/arginine rich 2; DEK: DEK proto-oncogene; NUP214: nucleoporin 214; BCR: BCR activator of
RhoGEF and GTPase; ABL: ABL proto-oncogene 1; KAT6A: lysine acetyltransferase 6A; CREBBP:
CREB binding protein; KMT2A: histone-lysine N-methyltransferase 2A; MECOM (EVI1): ecotropic
virus integration site 1 protein homolog. Created with Biorender.com.
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2.2. Intermediate Risk Genetic Alterations

The ELN defines intermediate-risk patients as those with cytogenetic abnormalities
not qualified as favorable or adverse, with mutated NPM1 co-occurring with a low level of
FLT3-ITD or wild-type NPM1 with the co-occurrence of FLT3-ITD and the translocation
(t(9;11)(p21.3;q23.3)) [41].

The detection of the FLT3-ITD mutation is documented in about 40% of NPM1-mutated
AML cases. The deleterious prognostic effects of FLT3-ITD have previously been found to be
most clinically relevant when co-occurring with NPM1 mutations, which are characterized
by a higher relapse rate and poorer OS [35,37,42,43].

In AML, translocation 9;11 (t(9;11)(p22;q23)) results in the KMT2A-MLLT3 fusion
protein. This translocation is the most common one involving KMT2A, and it can be found
in some types of AML, such as de novo and therapy-related AML (t-AML). Usually, the
presence of KMT2A-MLLT3 fusion is correlated with a poorer prognosis and more complex
cytogenetics [43–45].

2.3. Adverse Risk Genetic Alterations

According to the ELN, the high-risk group is composed of patients with complex or
monosomal karyotypes; inversion of chromosome 3 (inv(3)(q21.3q26.2)); rearrangement of
KMT2A (t(v;11q23.3)) or MECOM(EVI1) (t(3q26.2;v)); translocations 6;9 (1(6;9)(p23.3;q34.1)),
9;22 (t(9;22)(q34.1;q11.2)), and 8;16 (t(8;16)(p11.2;p13.3)); deletions of chromosome 5, 7, or
17; or mutations in several genes, such as TP53, RUNX1, ASXL1, BCOR, EZH2, SF3B1,
SRSF2, STAG2, U2AF1, and/or ZRSR2 [14,41,43].

The translocation t(6;9)(p23;q34) generates the fusion gene DEK-NUP214. It is a rela-
tively rare mutation in AML and is associated with a poorer prognosis. Most cases reported
in the literature are commonly found in AML M2 and M4 according to FAB classification,
although this alteration can also be identified in AML M1 in a few cases [46–48].

The t(9;22) chromosome translocation originating from the BCR-ABL1 fusion oncopro-
tein is detected most commonly in chronic myeloid leukemia (CML), occurring in approx-
imately 95% of the cases and representing the hallmark of this disease. However, t(9;22)
can also be found in 10 to 20% of adults and 2 to 5% of children with acute lymphoblastic
leukemia (ALL), as well as in rare cases (1% approximately) of AML. The prognosis of
BCR-ABL-mutated AML seems to depend on the cytogenetic and/or molecular background
rather than BCR-ABL itself. Cases of AML with this mutation can be often challenging to
distinguish from the presentation of CML in a blast crisis [49–51].

The TP53 protein has an impact on various cellular functions, especially DNA repair
and cellular senescence, and the inactivation of TP53 by either mutation or deletion in-
creases the proliferation of cancer cells. In AML, mutated TP53 is reported in patients
with older age, lower blast counts, adverse risk karyotypes, and exposure to antecedent
chemotherapy. Overall, this genetic aberration may occur across nearly all FAB subtypes.
The TP53 mutation associated with AML represents a distinct subgroup associated with
a poorer prognosis since this mutation predicts inferior OS and resistance to cytotoxic
chemotherapies [52–54].

Notably, all these genetic aberrations have an impact on the patient’s diagnosis, treat-
ment, and prognosis. Thus, the development of novel targeted therapies that may help
deal with these cytogenetic alterations in a specific and individualized way is essential.

3. Immunophenotyping in Acute Myeloid Leukemia Cells

The antigens that summarize the immunophenotype of a cell are the indicators of its
identity, making it possible to characterize its degree of maturation and lineage; the main
surface antigens of myeloid lines are CD11b, CD13, CD14, CD15, and CD33. From the
phenotypic alterations that occur in a neoplastic clone, the surface antigens also undergo
changes that can be used to identify and characterize these cells. Due to the variability
of immunophenotypic changes present in leukemic cells, they can be categorized into
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groups: expression of crossline antigens, asynchronous expression of maturational markers,
expression of decreased or absent antigens, and overexpression of antigens [21,55,56].

For AML, diagnostic tools include cytomorphology, cytochemistry, immunopheno-
typing, cytogenetics, and molecular genetics techniques, all of which complement each
other to classify the disease in view of its intrinsic heterogeneity. However, among these
techniques, immunophenotyping is of great importance, as it is crucial for the detection,
characterization, and quantification of cells and can provide a useful line of markers for dif-
ferential diagnosis and classification. Noting that leukemic cells have immunophenotypic
aberrations, this technique allows the identification of acute leukemias of mixed lineage
while also being able to suggest possible genetic changes [57–59].

Regarding the identification of antigens for the diagnosis of AML, they are classified
as precursors (CD34, CD117, HLA-DR), myeloid markers (cMPO, CD33, CD13), myeloid
maturation markers (CD11b, CD15, CD64, CD4, CD38, CD11c), monocytic markers (CD14,
CD36, CD64), megakaryocytic markers (CD41, CD36, CD61), and erythrocyte markers
(CD235, CD71, CD36) [14,57,60,61].

Immunophenotyping also plays a fundamental role in the evaluation of treatment
response and the detection of minimal/measurable residual disease (MRD), for which the
identification of antigens defined at the time of diagnosis is sought and their presence is
evaluated during and/or after treatment [3,62].

MRD can be performed at two moments: right after the beginning of the induction
of treatment (to evaluate the kinetics of the response to the disease) and after the end
of treatment (to evaluate the possibility of recurrence). The means of detection of MRD
have evolved with advances in therapies, and today, the approaches used for its eval-
uation are multiparametric flow cytometry (MFC) and molecular approaches, such as
real-time quantitative PCR (qPCR), digital PCR (dPCR), and next-generation sequencing
(NGS) [63–65].

Advances in diagnostic techniques have led to improvements in not only the prog-
nosis and monitoring of the disease but also the classification of AML with the precise
identification of mutations. However, the application of MFC and qRT-PCR/NGS in combi-
nation still needs to be better investigated in order for it to become a feasible approach in
AML [57,64].

4. Immunophenotyping x Genetics in AML

Identifying correlations between immunophenotypic markers and genetic changes
may provide more a precise diagnosis and better targeted treatment strategies for AML pa-
tients. In this context, Table 1 comprises a series of clinical trials with published results that,
in the past 10 years, described genetic alterations and/or clinical features and immunophe-
notypic characteristics at diagnosis. These studies were found in the PubMed database
from research using the descriptors “acute myeloid leukemia”, “immunophenotyping”,
“genetic alterations”, and “prognosis”.

Currently, the wide application of immunophenotyping and genetic characteriza-
tion has become critical for clinicopathological evaluations, diagnostic refinement, risk
group classification, prognosis prediction, and promotion of targeted therapy in AML
patients [66–68].

All 10 articles described in Table 1 reported the main genetic alterations and the im-
munophenotyping results of AML patients enrolled in each study. Of all the reported
cytogenetic abnormalities, the most frequent were mutations involving NPM1 (7), FLT3 (7),
and DNMT3A (6). Regarding immunophenotyping results, the most frequent immunophe-
notyping markers were CD34 (7), HLA-DR (5), CD45 (4), and CD13 (4) [69–78].
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Table 1. Studies from the last 10 years indicating relationships between immunophenotyping and
genetic changes in AML patients.

Number of Patients Mean Age Immunophenotypic
Characteristics Genetic Alterations References

41 (71% males and
29% females) 66

CD45, CD34, CD117,
CD36, HLA-DR, CD13,

CD33, CD7, CD71

Deletions involving chromosome
5/5q; deletions involving

chromosome 7/7q; deletion of the
TP53 locus (17p13)

[69]

90 patients Aged > 60 years
CD123, CD34, CD7,
CD117, CD64, CD38,
CD11b, CD33, CD56

TET2, DNMT3A, IDH2, NPM1,
FLT3-ITD, CEBPA, ASXL1, IDH1,

SRSF2, BCOR, TP53, NRAS,
RUNX1, U2AF1, BCORL1, WT1,

and FLT3-TKD.

[70]

67
(26 males and

41 females)
64 (19–84) CD34, CD117, HLA-DR

NPM1 p. W288fs DNMT3A, FLT3,
TET2, IDH2, PTPN11, IDH1,
NRAS, SRSF2, RAD21, WT1,

ASXL1, and NF1

[71]

1040 (51.92% males and
48.08% females) 10.3 CD123

t(8;21), inv(16), CEBPA, NPM1,
FLT3-ITD; monosomy 7,

monosomy 5/del(5q), t(6;9) with
DEK-NUP214 fusion, KMT2A

rearrangements

[72]

37
Males: 20 (54%),

Females: 17 (46%)
54 (24–70)

CD8+CD45RA−
CD27+/int CD28+

PD1+
TCF1+

NPM1, DNMT3A, ASXL1, IDH2,
TP53, CEBPA, NRAS, WT1 [73]

84 (51 females and
33 males) 65.5 (22–89)

CD34-, HLA-DR-,
CD117+, CD11b-,

CD56+, CD13

FLT3-ITD, FLT3-TKD, DNMT3A,
NPM1, TET2, IDH1, IDH2 [74]

769 patients NR

CD56, CD34, CD7,
CD11b, CD117, CD13,

SSC, CD33, CD45,
CD38, FSC, HLA-DR

FAB, inv(16), t(8;21), cKit, 11q23,
FLIT3, NPM1, CEBPA, HT1, GLIS2 [75]

217 patients NR

CD34+
CD38−
CD90−

CD45RA+

RUNX1
DNMT3A

IDH2
TET2

[76]

174 (153 adults and
21 children

Adults aged
20–85 years and
children aged

< 20 years

CD34, CD7, HLA-DR NPM1, FLT3-ITD, FLT3-D835,
DNMT3A, NPM1 [77]

13 (11 males and
2 females) 68 CD13+, CD34+,

HLA-DR+, CD33 addX, del7, del5/5q, and add19 [78]

AML: acute myeloid leukemia; CD: cluster of differentiation; HLA-DR: human leukocyte antigens; NR: not
reported; ITD: internal tandem domain; TKD: tyrosine kinase domain; ADD: addition; DEL: deletion; NT/T:
near-tetraploidy/tetraploidy; APL: acute promyelocytic leukemia.

The NPM1 mutation was one of the most frequent genetic aberrations detected in
the populations of the different studies (7/10), and it is indeed the most frequent in
AML cases, usually representing a favorable prognosis when presented as a single mu-
tation [14,70–75,77]. However, as previously stated, these mutations can be commonly
associated with mutations in other genes, such as DNMT3A, FLT3, TET2, IDH1, and IDH2,
all of which directly influence AML leukemogenesis progression [71,76]. It was possible
to observe a significant relationship between the mutation of the NPM1 gene and a lower
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expression of CD34+ or CD34 expression, indicating a favorable prognosis in patients with
this profile, as observed by Dohner et al. in 2005 [79].

In addition, CD34+ expression in more than 10% of blast cells and/or leukemic
stem cells (LSCs) is reported in approximately 75% of cases of AML. However, in other
cases in which this expression does not occur, it is possible to observe NPM1 muta-
tions [61,70,71,77,79]. Some studies have associated NPM1-mutated AML with CD117+
blasts with increased expression of CD33 and/or CD123 and decreased expression or
absence of CD13, HLA-DR, CD15, and CD64, along with CD34 [80,81].

Mutated FLT3 was reported in 7 of the 10 studies in Table 1 [70–75,77]. Although
mutations may manifest as either internal tandem duplication of the juxta membrane
domain (FLT3-ITD) or point mutations in the tyrosine kinase domain (FLT3TKD), FLT3-
ITD is the manifestation more highly associated with a worse prognosis in AML patients,
predicting shorter remission and decreased OS [82,83]. Some studies have identified that the
phenotypes CD34, CD123, CD25, and CD99 predict both FLT3-ITD and FLT3-ITDmut. This
correlation could lead to the utilization of targeted therapies with specific inhibitors [84,85].
Furthermore, higher rates of FLT3-ITD mutations were associated with a higher expression
of the CD33 phenotype in the study of Feldman et al. [86], leading to a shorter duration of
remission [87–89].

Alterations in DNMT3A were present in patients in five different studies described
in Table 1, and they are also common mutations in early leukemic stages that confer pro-
liferative advantages to pre-leukemic cells [56]. DNMT3A activity on gene methylation
directly influences AML development, as either hypermethylation of tumor suppressors or
hypomethylation of oncogenes might act as drivers of leukemogenesis onset [90]. However,
although many mutations in DNMT3A are cataloged, few have been thoroughly investi-
gated, with point mutations in the catalytic domain being the major players associated
with AML drivers [91]. Other studies have shown that patients with DNMT3A mutation
present higher levels of HLA- DR, CLIP, PD-L1, and TIM-3 and lower levels of CD34
(Figure 2) [89,92,93].
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Figure 2. Commonly reported genetic mutations and associated immunophenotypic characteristics
in acute myeloid leukemia (AML) neoplastic clones. CD: cluster of differentiation; DNMT3A: DNA
methyltransferase 3 alpha; FLT3: fms-related receptor tyrosine kinase; HLA-DR: major histocompat-
ibility complex, class II, DR; NPM1: nucleophosmin 1; PD-L1: programmed cell death 1 ligand 1;
TIM-3: T-cell immunoglobulin mucin family member 3. Created with Biorender.

The majority of studies in Table 1 (7/10) reported the presence of CD34+ immunophe-
notypic markers in most patients. Its presence is associated with immature cell populations,
worse prognosis due to increased cell proliferation, blockage in differentiation, cell traffic
and adhesion pathways, and increased resistance to induced apoptosis when compared
with CD34- cells [69–71,75–78]. In a study by Loghavi et al. [71], for example, it was
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demonstrated that CD34+ expression combined with a CD117 increase and a CD38 and/or
HLA-DR decrease may characterize complications in AML. Both the HLA-DR and CD117
markers are found in myeloid precursor cells and activate metabolization by inducing
cycle progression; CD117 is a primitive myeloid marker associated with a worse prognosis.
In turn, the negative expression of HLA-DR is associated with a favorable evolution and
complete remission unless it is associated with CD117+, which is then correlated with
unfavorable cytogenetics [94,95].

CD123 is associated with high-risk disease in AML, with greater expression in patients
with KMT2A rearrangements and FLT3-ITD mutations, as observed by Lamble et al. [72].
As an interleukin 3 (IL-3) receptor, the CD123 plays an important role in the production
and function of healthy hematopoietic cells, but its overexpression in leukemic patients
results in an adverse prognosis, with leukocytosis due to increased susceptibility to IL-3
and higher chemoresistance rates due to the high replication rate. In addition, mutations in
DNMT3A and WT1 can also be strongly associated with CD123 [70,96–100].

Some cytogenetic alterations already have a well-established immunophenotype in the
literature, such as AML patients with PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11,
as shown in Table 2, where red and green are consistent with the increase and decrease
in the markers’ expression, respectively. Studies on PML-RARA AML have identified
the positive expression of CD33, CD13, and CD19 antigens; the absence of HLA-DR
expression; and low-frequency CD7, CD11b, and CD14 expression. Moreover, aberrant
surface antigens, including CD2 and CD34, have also been described in some variations of
APL [101–103]. The common blast immunophenotypes of RUNX1-RUNX1T1 AML were
CD34, CD117, CD13, CD33, CD19, CD56, CD38, HLA-DR, and MPO [104–106]. Regarding
the CBFB-MYH11 fusion gene, studies have reported a high frequency of CD33, CD34,
CD117, HLA-DR, CD15, CD64, and CD14 expression [107,108].

Table 2. Correlation between mutations and immunophenotypic profiles.

RUNX1-
RUNX1T1

PML-
RARA

CBFB-
MYH11

FLT3 NPM1 DNMT3A

CD34

CD117

CD19

CD13

CD33

HLA-DR

MPO

CD7

CD123

CD64

CD38

CD11b

CD56

CD14

CD2

CD15

CD25

CD99
CD: cluster of differentiation; HLA-DR: human leukocyte antigens; MPO: myeloperoxidase; RUNX1: RUNX
family transcription factor 1; RUNX1T1: RUNX1 partner transcriptional co-repressor 1; CBFB: core-binding
factor subunit beta; MYH11: myosin heavy chain 11; NPM1: nucleophosmin 1; FLT3-ITD: fms-related receptor
tyrosine kinase 3—internal tandem duplication; DNMT3A: DNA methyltransferase 3 alpha; Red: increased
marker expression; Green: decreased marker expression.
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5. Conclusions

Studies have pointed out that it is possible to have a correlation between genetic
alterations and surface antigens in patients with AML; however, further studies are needed
to establish a complete correlation between alterations and markers. Such information may
provide a faster diagnosis for AML patients due to the easy access to immunophenotyping
tools, which could help steer investigators in clinical practice toward a preset cohort
of genetic alterations while also highlighting which targeted therapeutic strategies may
potentially be more effective for patient treatment.
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