The eGFR Decline as a Risk Factor for Metabolic Syndrome in the Korean General Population: A Longitudinal Study of Individuals with Normal or Mildly Reduced Kidney Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Definition of Kidney Function and Metabolic Syndrome
2.3. Assessment of Other Covariates
2.4. Statistical Analysis
3. Results
3.1. Association between Metabolic Syndrome and Kidney Function
3.1.1. Baseline Characteristics
3.1.2. Prevalent MS and Kidney Function in Logistic Regression Model
3.2. Development of MS According to Kidney Function
3.2.1. Baseline Characteristics
3.2.2. Incident MS and Kidney Function in the Cox Proportional Hazard Model
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fried, L.F.; Shlipak, M.G.; Crump, C.; Bleyer, A.J.; Gottdiener, J.S.; Kronmal, R.A.; Kuller, L.H.; Newman, A.B. Renal insufficiency as a predictor of cardiovascular outcomes and mortality in elderly individuals. J. Am. Coll. Cardiol. 2003, 41, 1364–1372. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, G.; Tighiouart, H.; Coresh, J.; Macleod, B.; Salem, D.N.; Griffith, J.L.; Levey, A.S.; Sarnak, M.J. Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int. 2003, 63, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Pressel, S.; Davis, B.R.; Nwachuku, C.; Wright, J.T., Jr.; Whelton, P.K.; Barzilay, J.; Batuman, V.; Eckfeldt, J.H.; Farber, M.A.; et al. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate. Ann. Intern. Med. 2006, 144, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Schrauben, S.J.; Hsu, J.Y.; Amaral, S.; Anderson, A.H.; Feldman, H.I.; Dember, L.M. Effect of Kidney Function on Relationships between Lifestyle Behaviors and Mortality or Cardiovascular Outcomes: A Pooled Cohort Analysis. J. Am. Soc. Nephrol. 2021, 32, 663–675. [Google Scholar] [CrossRef]
- Kang, Y.U.; Kim, H.Y.; Choi, J.S.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. Metabolic syndrome and chronic kidney disease in an adult Korean population: Results from the Korean National Health Screening. PLoS ONE 2014, 9, e93795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [Green Version]
- Glassock, R.J.; Warnock, D.G.; Delanaye, P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol. 2017, 13, 104–114. [Google Scholar] [CrossRef]
- Ataklte, F.; Song, R.J.; Upadhyay, A.; Musa Yola, I.; Vasan, R.S.; Xanthakis, V. Association of Mildly Reduced Kidney Function With Cardiovascular Disease: The Framingham Heart Study. J. Am. Heart Assoc. 2021, 10, e020301. [Google Scholar] [CrossRef] [PubMed]
- Van Biesen, W.; De Bacquer, D.; Verbeke, F.; Delanghe, J.; Lameire, N.; Vanholder, R. The glomerular filtration rate in an apparently healthy population and its relation with cardiovascular mortality during 10 years. Eur. Heart J. 2007, 28, 478–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.G.; Lee, S.K.; Kim, S.H.; Shin, C.; Han, S.Y. Differences in estimated glomerular filtration rate are associated with different patterns of 24-h ambulatory blood pressure in the general population. J. Hypertens. 2022, 40, 804–810. [Google Scholar] [CrossRef]
- Zhang, X.; Lerman, L.O. The metabolic syndrome and chronic kidney disease. Transl. Res. 2017, 183, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Pammer, L.M.; Lamina, C.; Schultheiss, U.T.; Kotsis, F.; Kollerits, B.; Stockmann, H.; Lipovsek, J.; Meiselbach, H.; Busch, M.; Eckardt, K.U.; et al. Association of the metabolic syndrome with mortality and major adverse cardiac events: A large chronic kidney disease cohort. J. Intern. Med. 2021, 290, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shao, X.; Gao, P.; Zou, H.; Zhang, X. Metabolic Syndrome Components and Chronic Kidney Disease in a Community Population Aged 40 Years and Older in Southern China: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2022, 15, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Nashar, K.; Egan, B.M. Relationship between chronic kidney disease and metabolic syndrome: Current perspectives. Diabetes Metab. Syndr. Obes. 2014, 7, 421–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Vale Moreira, N.C.; Hussain, A.; Bhowmik, B.; Mdala, I.; Siddiquee, T.; Fernandes, V.O.; Montenegro Junior, R.M.; Meyer, H.E. Prevalence of Metabolic Syndrome by different definitions, and its association with type 2 diabetes, pre-diabetes, and cardiovascular disease risk in Brazil. Diabetes Metab. Syndr. 2020, 14, 1217–1224. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic. Dis. 2017, 14, E24. [Google Scholar] [CrossRef] [Green Version]
- Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2020, 75, A6–A7. [Google Scholar] [CrossRef]
- Nestel, P.; Lyu, R.; Low, L.P.; Sheu, W.H.; Nitiyanant, W.; Saito, I.; Tan, C.E. Metabolic syndrome: Recent prevalence in East and Southeast Asian populations. Asia Pac. J. Clin. Nutr. 2007, 16, 362–367. [Google Scholar]
- Prasad, G.V. Metabolic syndrome and chronic kidney disease: Current status and future directions. World J. Nephrol. 2014, 3, 210–219. [Google Scholar] [CrossRef] [PubMed]
- May, R.C.; Kelly, R.A.; Mitch, W.E. Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis. J. Clin. Investig. 1987, 79, 1099–1103. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; Yuan, M.; Frantz, D.F.; Melendez, P.A.; Hansen, L.; Lee, J.; Shoelson, S.E. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 2005, 11, 183–190. [Google Scholar] [CrossRef]
- Underwood, P.C.; Adler, G.K. The renin angiotensin aldosterone system and insulin resistance in humans. Curr. Hypertens. Rep. 2013, 15, 59–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, Y.; Bi, X.; Hu, C.; Ding, W. NLRP3 Deletion Attenuated Angiotensin II-Induced Renal Fibrosis by Improving Mitochondrial Dysfunction and Endoplasmic Reticulum Stress. Nephron 2021, 145, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement: Executive Summary. Crit. Pathw. Cardiol. 2005, 4, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Zou, G.Y. On the estimation of additive interaction by use of the four-by-two table and beyond. Am. J. Epidemiol. 2008, 168, 212–224. [Google Scholar] [CrossRef]
- Hu, W.; Wu, X.J.; Ni, Y.J.; Hao, H.R.; Yu, W.N.; Zhou, H.W. Metabolic syndrome is independently associated with a mildly reduced estimated glomerular filtration rate: A cross-sectional study. BMC Nephrol. 2017, 18, 192. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Guo, X.; Li, G.X.; Yang, H.; Zheng, L.; Sun, Y. Metabolic healthy obesity is associated with higher incidence of mild decrease estimate glomerular rate in rural northeast Chinese. BMC Nephrol. 2020, 21, 505. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, A.M.; Bes-Rastrollo, M.; Sayon-Orea, C.; Gea, A.; Aguinaga-Ontoso, E.; Lopez-Iracheta, R.; Martinez-Gonzalez, M.A. Working hours and incidence of metabolic syndrome and its components in a Mediterranean cohort: The SUN project. Eur. J. Public Health 2015, 25, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Sarebanhassanabadi, M.; Mirhosseini, S.J.; Mirzaei, M.; Namayandeh, S.M.; Soltani, M.H.; Pakseresht, M.; Pedarzadeh, A.; Baramesipour, Z.; Faraji, R.; Salehi-Abargouei, A. Effect of dietary habits on the risk of metabolic syndrome: Yazd Healthy Heart Project. Public Health Nutr. 2018, 21, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Guo, X.; Li, G.; Yang, H.; Sun, G.; Zheng, L.; Sun, Y. Gender discrepancy of incidence and risk factors of metabolic syndrome among rural Chinese from 2012-2013 to 2015-2017. Diabetol. Metab. Syndr. 2020, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fang, S.; Wang, H.; Shan, Z.; Lai, Y. Factors Related to Metabolic Syndrome Development and Recovery in Chinese Adults: A Prospective Longitudinal Study. Front. Endocrinol. 2022, 13, 923650. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, N.; Liu, T.; Tang, M.; Chen, H. Gender-related responses of dioecious plant Populus cathayana to AMF, drought and planting pattern. Sci. Rep. 2020, 10, 11530. [Google Scholar] [CrossRef] [PubMed]
- Khalfa, A.; Tiali, A.; Zemour, L.; Fatah, A.; Mekki, K. Prevalence of metabolic syndrome and its association with lifestyle and cardiovascular biomarkers among postmenopausal women in western Algeria. Int. J. Gynaecol. Obstet. 2017, 138, 201–206. [Google Scholar] [CrossRef]
- Henry, R.M.; Kostense, P.J.; Bos, G.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Stehouwer, C.D. Mild renal insufficiency is associated with increased cardiovascular mortality: The Hoorn Study. Kidney Int. 2002, 62, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Schiffrin, E.L.; Lipman, M.L.; Mann, J.F. Chronic kidney disease: Effects on the cardiovascular system. Circulation 2007, 116, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.C.; Chen, I.J.; Hsu, L.T.; Chen, Y.J.; Tsou, M.T.; Tung, T.H.; Chen, J.Y. Metabolic Risk Factors Associated With Chronic Kidney Disease in a Middle-Aged and Elderly Taiwanese Population: A Cross-Sectional Study. Front. Med. 2021, 8, 748037. [Google Scholar] [CrossRef]
- Xu, L.; Liu, J.; Li, D.; Yang, H.; Zhou, Y.; Yang, J. Association between metabolic syndrome components and chronic kidney disease among 37,533 old Chinese individuals. Int. Urol. Nephrol. 2022, 54, 1445–1454. [Google Scholar] [CrossRef]
Characteristics | eGFR Category, mL/min/1.73 m2 | p Value | ||||
---|---|---|---|---|---|---|
Total (n = 3869) | eGFR ≥ 105 (n = 1360) | eGFR 90 to <105 (n = 2064) | eGFR 75 to <90 (n = 392) | eGFR 60 to <75 (n = 53) | ||
Age (yr) | 54.0 ± 8.1 | 48.3 ± 4.3 | 56.3 ± 7.6 | 60.5 ± 8.9 | 62.1 ± 7.4 | <0.001 |
Male (%) | 1956 (50.6%) | 564 (41.5%) | 1119 (54.2%) | 237 (60.5%) | 36 (67.9%) | <0.001 |
BMI (kg/m2) | 23.8 ± 2.8 | 23.7 ± 2.7 | 23.9 ± 2.8 | 23.7 ± 2.8 | 24.3 ± 3.1 | 0.198 |
Exercise (MET/d) | 129.4 ± 250.9 | 124.8 ± 303.0 | 128.4 ± 211.8 | 146.4 ± 242.4 | 157.4 ± 241.3 | 0.277 |
Alcohol consumption (g/day) | 9.3 ± 20.7 | 10.3 ± 24.4 | 9.0 ± 18.9 | 7.3 ± 16.0 | 8.7 ± 19.6 | 0.455 |
Waist circumference (cm) | 81.9 ± 8.0 | 80.1 ± 7.7 | 82.8 ± 8.0 | 83.0 ± 7.6 | 84.1 ± 8.6 | <0.001 |
Smoking status | 0.001 | |||||
Never smoker | 2365 (61.1%) | 903 (66.4%) | 1227 (59.4%) | 212 (54.1%) | 23 (43.4%) | |
Ex-smoker | 755 (19.5%) | 200 (14.7%) | 424 (20.5%) | 110 (28.1%) | 21 (39.6%) | |
Current smoker | 749 (19.4%) | 257 (18.9%) | 413 (20.0%) | 70 (17.9%) | 9 (17.0%) | |
Education | <0.001 | |||||
<6 years | 972 (25.1%) | 190 (14.0%) | 632 (30.6%) | 133 (33.9%) | 17 (32.1%) | |
6 to <12 years | 2272 (58.7%) | 927 (68.2%) | 1132 (54.8%) | 187 (47.7%) | 26 (49.1%) | |
≥12 years | 625 (16.2%) | 243 (17.9%) | 300 (14.5%) | 72 (18.4%) | 10 (18.9%) | |
Menopuase in women | 1135 (29.3%) | 244 (17.9%) | 742 (35.9%) | 132 (33.7%) | 17 (32.1%) | <0.001 |
eGFR (ml/min/1.73 m2) | 100.8 ± 9.2 | 109.6 ± 4.2 | 98.7 ± 4.2 | 85.2 ± 3.8 | 69.9 ± 4.4 | <0.001 |
Creatinine (mg/dL) | 0.97 ± 0.14 | 0.88 ± 0.11 | 0.98 ± 0.12 | 1.13 ± 0.13 | 1.31 ± 0.14 | <0.001 |
Urine Protein | 13 (1.0%) | 26 (1.3%) | 8 (2.0%) | 2 (3.8%) | 13 (1.0%) | 0.133 |
Fasting glucose (mg/dL) | 89.8 ± 10.2 | 89.0 ± 11.0 | 90.3 ± 9.9 | 90.7 ± 9.2 | 88.6 ± 9.2 | 0.869 |
SBP (mmHg) | 112.4 ± 14.7 | 108.9 ± 13.3 | 113.8 ± 15.0 | 116.1 ± 15.3 | 116.4 ± 15.6 | <0.001 |
DBP (mmHg) | 75.7 ± 9.6 | 74.4 ± 9.8 | 76.4 ± 9.5 | 76.9 ± 9.3 | 75.6 ± 9.9 | 0.315 |
HDL (mg/dL) | 46.3 ± 10.2 | 47.1 ± 10.5 | 46.1 ± 10.0 | 45.4 ± 10.4 | 42.5 ± 9.9 | 0.001 |
TG (mg/dL) | 113.0 ± 66.7 | 111.0 ± 76.2 | 113.1 ± 61.5 | 116.5 ± 55.0 | 131.4 ± 72.9 | 0.022 |
Abdominal obesity (%) | 1160 (30.0%) | 351 (25.8%) | 669 (32.4%) | 125 (31.9%) | 15 (28.3%) | 0.001 |
High blood pressure (%) | 1041 (26.9%) | 258 (19.0%) | 602 (29.2%) | 155 (39.5%) | 26 (49.1%) | <0.001 |
Hypertriglyceridemia (%) | 591 (15.3%) | 205 (15.1%) | 302 (14.6%) | 72 (18.4%) | 12 (22.6%) | 0.121 |
High fasting glucose (%) | 169 (4.4%) | 48 (3.5%) | 86 (4.2%) | 30 (7.7%) | 5 (9.4%) | 0.001 |
Low HDL (%) | 1666 (43.1%) | 611 (44.9%) | 864 (41.9%) | 169 (43.1%) | 22 (41.5%) | 0.362 |
eGFR Category, ml/min/1.73 m2 | HR (95% CI) p Value | p for Linear Trend | ||||
---|---|---|---|---|---|---|
eGFR ≥ 105 (n = 1360) | eGFR 90 to <105 (n = 2064) | eGFR 75 to <90 (n = 392) | eGFR 60 to <75 (n = 53) | |||
Total | Incidence case/total | 659/1360 | 1208/2064 | 244/392 | 39/53 | |
Person-year | 46.6 | 63.6 | 71.3 | 97.8 | ||
Crude | Reference | 1.364 (1.240–1.500) <0.001 | 1.531 (1.321–1.773) <0.001 | 1.994 (1.443–2.755) <0.001 | <0.001 | |
Model 1 | Reference | 1.195 (1.070–1.336) 0.002 | 1.278 (1.085–1.507) 0.003 | 1.678 (1.201–2.345) 0.002 | <0.001 | |
Model 2 | Reference | 1.163 (1.041–1.299) 0.088 | 1.305 (1.107–1.539) 0.002 | 1.803 (1.286–2.526) 0.001 | <0.001 | |
Model 3 | Reference | 1.131 (1.011–1.266) 0.031 | 1.273 (1.078–1.502) 0.004 | 1.779 (1.269–2.493) 0.001 | <0.001 | |
Women | Incidence case/total | 393/796 | 617/945 | 102/155 | 15/17 | |
Person-year | 27.8 | 32.5 | 29.8 | 37.6 | ||
Crude | Reference | 1.593 (1.404–1.809) <0.001 | 1.681 (1.352–2.091) <0.001 | 3.644 (2.174–6.107) <0.001 | <0.001 | |
Model 1 | Reference | 1.087 (0.928–1.273) 0.300 | 1.025 (0.800–1.312) 0.846 | 1.813 (1.057–3.110) 0.031 | 0.274 | |
Model 2 | Reference | 1.069 (0.911–1.255) 0.411 | 1.037 (0.809–1.330) 0.775 | 1.965 (1.143–3.380) 0.015 | 0.193 | |
Model 3 | Reference | 1.057 (0.899–1.224) 0.501 | 1.026 (0.799–1.317) 0.843 | 1.966 (1.142–3.386) 0.015 | 0.254 | |
Men | Incidence case/total | 266/564 | 591/1119 | 142/237 | 24/36 | |
Person-year | 18.8 | 31.1 | 41.5 | 60.2 | ||
Crude | Reference | 1.209 (1.046–1.398) 0.010 | 1.470 (1.199–1.802) <0.001 | 1.611 (1.060–2.448) 0.026 | <0.001 | |
Model 1 | Reference | 1.195 (1.021–1.399) 0.027 | 1.433 (1.149–1.787) 0.001 | 1.579 (1.028–2.423) 0.037 | 0.001 | |
Model 2 | Reference | 1.162 (0.992–1.361) 0.063 | 1.453 (1.162–1.817) 0.001 | 1.683 (1.090–2.600) 0.019 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.H.; Lee, S.K.; Shin, C.; Han, S.Y. The eGFR Decline as a Risk Factor for Metabolic Syndrome in the Korean General Population: A Longitudinal Study of Individuals with Normal or Mildly Reduced Kidney Function. Biomedicines 2023, 11, 1102. https://doi.org/10.3390/biomedicines11041102
Han SH, Lee SK, Shin C, Han SY. The eGFR Decline as a Risk Factor for Metabolic Syndrome in the Korean General Population: A Longitudinal Study of Individuals with Normal or Mildly Reduced Kidney Function. Biomedicines. 2023; 11(4):1102. https://doi.org/10.3390/biomedicines11041102
Chicago/Turabian StyleHan, Seung Hyun, Seung Ku Lee, Chol Shin, and Sang Youb Han. 2023. "The eGFR Decline as a Risk Factor for Metabolic Syndrome in the Korean General Population: A Longitudinal Study of Individuals with Normal or Mildly Reduced Kidney Function" Biomedicines 11, no. 4: 1102. https://doi.org/10.3390/biomedicines11041102
APA StyleHan, S. H., Lee, S. K., Shin, C., & Han, S. Y. (2023). The eGFR Decline as a Risk Factor for Metabolic Syndrome in the Korean General Population: A Longitudinal Study of Individuals with Normal or Mildly Reduced Kidney Function. Biomedicines, 11(4), 1102. https://doi.org/10.3390/biomedicines11041102