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Abstract: Cubosomes are lipid vesicles that are comparable to vesicular systems like liposomes.
Cubosomes are created with certain amphiphilic lipids in the presence of a suitable stabiliser. Since
its discovery and designation, self-assembled cubosomes as active drug delivery vehicles have drawn
much attention and interest. Oral, ocular, transdermal, and chemotherapeutic are just a few of the
drug delivery methods in which they are used. Cubosomes show tremendous potential in drug
nanoformulations for cancer therapeutics because of their prospective advantages, which include
high drug dispersal due to the structure of the cubic, large surface area, a relatively simple manufac-
turing process, biodegradability, ability to encapsulate hydrophobic, hydrophilic, and amphiphilic
compounds, targeted and controlled release of bioactive agents, and biodegradability of lipids. The
most typical technique of preparation is the simple emulsification of a monoglyceride with a polymer,
followed by sonication and homogenisation. Top-down and bottom-up are two different sorts of
preparation techniques. This review will critically analyse the composition, preparation techniques,
drug encapsulation approaches, drug loading, release mechanism and applications relevant to cubo-
somes. Furthermore, the challenges faced in optimising various parameters to enhance the loading
capacities and future potentialities are also addressed.

Keywords: cubosomes; characterisation; nanomedicine; drug delivery systems

1. Introduction

Drug delivery systems are devices that transport a therapeutic agent to a specific site
inside the body. Controlled drug release is pre-designed to achieve effective concentration
at the site of action, thus minimising toxic side effects while promoting therapeutic benefits.
A more evolved system of the same, termed novel drug delivery system (NDDS), is the
growing trend in the current drug delivery scenario, mostly as a result of the fact that they
address the limitations of traditional drug delivery systems. Their tangible benefits include
reduced dosing frequency, enhanced site-specificity, reduced toxic side effects, degradation
resistance specifically against the acidic gastric environment and increased bioavailability.
Findings suggest that NDDS are a promising option to tackle major diseases. In light of
this, several different types of carriers have been developed in the past decade, and newer
ones are being developed at a phenomenal pace [1,2].

Drug delivery improves a drug’s efficacy. However, to curate optimal drug release
profiles, the rate of active release must be controlled, as well as the ease of preparation
and vehicle stability. All of these attributes must be successfully incorporated into an
ideal delivery vehicle. Surfactants and polymers are extensively used in the production of
guided drug delivery systems. They generate supra-assemblies, which are widely used
as effective delivery modules. Cross-linked gel networks or liquid-crystalline aggregates
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are examples of these systems, which load, stabilise, and finally distribute active compo-
nents [3]. Nanomedicine and nano-delivery systems are rapidly growing disciplines in
which microscopic materials are employed as diagnostic tools or to deliver therapeutic
drugs to specific sites in a controlled manner. Nanotechnology can help treat chronic hu-
man diseases by allowing precise medicines to be delivered to specific locations, a process
known as target-oriented delivery. There have been several noteworthy applications of
nanomedicine, such as chemotherapeutic agents, immunotherapeutic agents, biological
agents, etc., in the treatment of various diseases in recent years [4]. Small nanospheres
made out of materials chosen at the atomic or molecular level are known as nanoparticles.
Thus, they can pass through the human body more easily than larger materials. Nanoscale
particles have distinct biological and structural features. Nanomedicines have attracted
attention in recent years as a result of their potential to encapsulate pharmaceuticals or
bind therapeutic chemicals to nanostructures and deliver them to specific tissues with
greater precision and control. It refers to the use of nanoscale materials in live cells, such as
nano-sensors, nanorobots, and actuation materials for diagnosis, conveyance, and sensory
functions [5,6].

The therapeutic actions of all forms of delivery systems for drugs, including liposomes,
are influenced by drug release rates. Liposomes are tiny phospholipid vesicles that can be
exploited to circumvent several medications’ putative barriers for successful delivery to
their target tissues, like tumours [7]. Liposomes were the first closed bilayer phospholipid
structures to be developed in 1965, and they were quickly proposed as medication delivery
methods. Liposomes were the first pioneer drug delivery systems to reveal that they could
alter the in vivo dispersion of encapsulated medicines. Simultaneously, novel technologies
for preparing large unilamellar liposomes (LUV) with improved trapping effectiveness
and uniformity were also developed. Liposomes were created in a low-pressure, low-
throughput manner as originally envisioned, and higher-pressure systems were developed
afterwards to accomplish larger-scale manufacturing [7]. Drug retention capabilities in
liposomes vary depending on the drug; some medicines, such as doxorubicin, precipitate
rapidly inside liposomes after assemblage and have exceptional retention properties, while
others, for example, ciprofloxacin, do not precipitate readily and are more challenging to
retain [8,9]. Drug retention can be boosted by loading pharmaceuticals to obtain optimum
intraliposomal drug concentrations exceeding their solubility limits, resulting in increased
precipitation, or by encapsulating polyanions, including dextran sulphate [10].

The use of ‘classical’ and ‘stealth’ liposomes as sustained-release drug delivery de-
vices for in vivo delivery of therapeutics, from monomeric medicines to nucleic acids,
has become ubiquitous. In an earlier investigation involving a small number of patients,
long-circulating (PEGylated) liposomes were found to accumulate extensively in Kaposi’s
sarcoma and malignancies of the head and neck, with intermediate in lung cancer and
lesser in breast cancer [7,11]. Although several modes of delivery have been employed for
liposomal and lipid-based medicines, parenteral administration, particularly intravenous
administration, is the most common for clinically approved products. Because the gastroin-
testinal breakdown of the carrier results in poor bioavailability of linked medicines, oral
administration is not commonly used for liposomal products [11]. Marqibo®, a liposomal
preparation of vincristine licensed in August 2012 to treat acute lymphoblastic leukaemia
at second or higher recurrence, is the latest liposomal medication to earn Food and Drug
Administration (FDA) clearance [12]. The difference between liposomes and cubosomes is
shown in Table 1.

Cubosomes are biocompatible carriers in drug delivery that are nanostructured liquid-
crystalline particles formed of specific amphiphilic lipids in different ratios. Cubosomes
are bicontinuous cubic phases that have already been reversed and have unique physico-
chemical characteristics [13]. These unique systems are a study area of interest because they
can provide a vast range of hydrophobic, hydrophilic, and amphiphilic medicines, having
improved bioavailability and loading potential. They are employed frequently in different
drug delivery applications, including oral, transdermal, ocular, and chemotherapy. Because
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of their enormous application as an alternate drug delivery mechanism to liposomes, cu-
bosomes have been regarded as the drug nanocarrier in recent years. Monoolein–water
cubosomes, especially those comprised of binary systems, can self-assemble into cubic
crystalline forms, capable of being thermodynamically stable [14]. The relevant literature
on cubosomes will be critically evaluated in this review, with emphasis on the advantages
of cubosomes, along with their structure and composition, methods of preparation and
drug delivery applications.

Table 1. Difference between cubosomes and liposomes [15].

Cubosomes Liposomes

Distinct, submicron, nanostructured particles of bicontinuous cubic
liquid-crystalline phase enclosing two separate regions of water divided by

surfactant-controlled bilayers.

Spherical vesicles have an aqueous core enclosed by one or more phospholipid
bilayers. The main components are cholesterol and phospholipids.

Retain their stability even at high dilution, which is not possible with other
liquid-crystalline systems. Higher ratio of particle volume and bilayer area in

comparison with the liposomes.

They contain biocompatible and biodegradable lipids and are inert and
non-immunogenic.

Encapsulate all three types of hydrophilic, hydrophobic and amphiphilic
substances. Can be loaded with hydrophilic and hydrophobic molecules.

Better stability than liposomes and, due to their liquid-crystalline membrane
architecture, possess a greater ability to envelop and encapsulate hydrophobic

chemotherapeutic agents. Extremely high encapsulation efficiency and enhanced
apoptotic efficacy.

Sometimes phospholipid undergoes oxidation and hydrolysis-like reaction.

High-energy methods such as ultrasonication, homogenisation and
micro-fluidisation are used to prepare cubosomes.

Provide selective passive targeting to tumour tissues. Flexibility to couple with
site-specific ligands to achieve active targeting. Prepared by physical dispersion,

solvent dispersion and detergent solubilisation technique.

Challenges faced in optimising various parameters to enhance the loading
capacities and subsequent improvement in their release are a few limitations of

these novel delivery systems.

Chances for leakage and fusion of encapsulated drugs. High production cost,
low solubility with a short half-life.

The cytotoxicity of cubosomes depends on several factors, such as internal nanostruc-
tures, lipid chemistry, and the type of stabilisers used. A study revealed that the cubosomes
prepared with poly(phosphoester) (PPE), a structural analogue of the traditional F127,
were significantly less toxic than carriers containing F127. This result was observed and
evaluated in the cell lines human embryonic kidney 293 (HEK-293) and Human umbilical
vein endothelial cells (HUVEC). It was also demonstrated that the PPE-based formulation
has a high hemocompatibility in contrast to cubosomes prepared with F127, which reveals
a certain degree of cytotoxicity against erythrocytes. Furthermore, several studies reported
a half maximal inhibitory concentration (IC50) value of monoolein-based cubosomes in the
range of 30–100 µg/mL. Cubosomes are included in the US FDA’s list of inactive ingredient
guidelines [16].

2. Cubosomes and Their Types

Amphiphilic Bicontinuous Cubic Phases or BCPs aggregate in selected solvents to
form a wide variety of morphologies, including spheres, cylinders, vesicles (polymersomes),
ribbons, films, fibres, tubules, multi-geometry nanoparticles driven by the reduction of
energetically unfavourable segment/solvent interactions. Bicontinuous mesostructures
are a subclass of these morphologies that are distinguished by their 3D percolating phase
structure. Although bicontinuous phase structures are well-known, their stability range
is limited. Dispersed synthetic particles containing bicontinuous cubic liquid-crystalline
nanostructures, also known as cubosomes, are usually used for low molecular weight
surfactants [15]. Cubosomes are a versatile novel drug delivery platform with a high
loading potential of actives and their sustained release, possessing different physiochemical
properties. They are nanostructured entities with cubic crystallographic symmetry, similar
in structure to the parent phase but with a substantially higher surface area and lower
viscosity. This nanodispersion is a viable method for overcoming the cubic phase’s main
disadvantages [13]. Amphiphilic lipids such as glycerol monooleate (GMO) with the
capability of self-assembling in liquid conditions are used to create cubosomes. They have
a three-dimensional structure comparable to a honeycomb (100–500 nm) [17].
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X-ray scattering measurements were used by Luzzati et al. to discover the existence of
cubic phases in the lipid-water system [18]. Fontell et al. reached similar conclusions in
parallel about the cubic phase in ternary systems of amphiphiles, oils, and water, although
not being aware of the lipid work [19]. Lutton published a comprehensive investigation
of monoglyceride aqueous phase behaviour around the same period. Monoglycerides
are polar lipids with low water solubility that behave in the aqueous phase due to their
structural resemblance to non-ionic surfactants [16]. In the 1980s, Kre Larsson wrote a
review on cubic lipid/water phases, which followed the findings of Patton and Carey,
who had studied the formation of bicontinuous cubic compositions as a product of lipid
degradation [20]. The creation of colloidal dispersions of non-lamellar lyotropic crystalline
phases has been patented by Landh and Larsson, who have dubbed the particles “cubo-
somes”. Larsson pioneered work on cubic structures, discovering that cubosomes can be
created from bulk cubic structures when they are dispersed in aqueous conditions, forming
submicron particles with an identical interior to the parent structure [21].

Cubosome particles are made by mechanically fragmenting the cubic lipid-water phase
in a three-phase region containing a liposomal dispersion, and they are called cubosomes
to distinguish them from liposomes. Its structure differs from liposomes in that it may
accommodate lipid-soluble, water-soluble, and amphiphilic molecules simultaneously.
Cubosomes are thermodynamically stable and can persist for an infinite amount of time.
The addition of polymers to cubosome colloidal dispersions can help to stabilise them.
They also have the potential for regulated delivery of actives, as the tortuous diffusion of
the actives through the cubic phase’s “regular” channel structure governs diffusion. They
form in aqueous surfactant systems at high amphiphile concentrations and have enough
relative molecular alignment to be distinguished by geometric symmetry [17]. Based on
differential geometry principles, open and closed cubosome structures can be defined. The
open cubosome has both aqueous channels connecting the exterior environment, whereas
the closed cubosome has one water channel open to the exterior and the other in isolation,
as seen in Figure 1. Cubosomes are categorised as a gyroid, primitive, or diamond, and
they maintain cubic symmetry like their bulk parent phase [15,22,23].
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Figure 1. Structure of a cubosome.

3. Theories on Cubic Phase Structure

Cubosomes or bicontinuous cubic phase liquid crystals have several features that
are intriguing as a generic medication delivery system. It is formed into bilayers inside
the surfactant and wrapped into a three-dimensional, periodic, and minimum surface,
generating a densely packed structure. The material is an optically transparent, very viscous
bicontinuous cubic liquid-crystalline phase with a unique structure in the nanometer range.
They are relatively easy to make, and the improved penetration power and emulsification
properties of lipids allow them to encapsulate hydrophobic, hydrophilic, and amphiphilic
compounds while ensuring the targeted and controlled release of bioactive compounds [24].
The three macroscopic phases of the cubic structure that are often seen during cubosome
synthesis are the precursor, bulk gel, and particle dispersion phases. A solid or semisolid
material that produces the cubic phase in reaction to stimuli, including contacting a liquid,
is designated the precursor state. The bulk gel-cubic phase, on the other hand, is rigid,
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isotropic, and can be expanded into cubosomes. Finally, the dispersion of the solid-like
phase into smaller particles forms cubosomes [25].

3.1. Fontell & Drew Theory

Cubic phases can be found in ternary systems of amphiphiles, oil and water, and
various monoglycerides. Monoglycerides are polar lipids with low water solubility and
aqueous phase behaviour that is structurally similar to non-ionic surfactants. Lutton’s
results show that monoglycerides with hydrocarbon chain lengths between C-12 and C-22,
particularly monoolein, have a bigger cubic phase area. Monoolein, also known as C-18
Monoglycerides, is an unsaturated fatty acid [19,26].

3.2. Gustafson et al. Theory

Cubosomes are single-crystal formations with unilamellar vesicles visible and dis-
tributed lamellar liquid-crystalline phase particles. The formation of larger vesicles is
aided by increasing the polymer-to-monoolein ratio [19]. Slow transport processes that
form highly viscous crystalline structures and the high energy required for fragmentation
result in mostly vesicles through ultrasonication of bulk cubic phases that are trace formed
into cubosomes via membrane fusion over time. This metastability is one of the many
characteristics of cubosomes systems (bulk cubic phase). Cubosomes are also colloidally
stabilised by vesicles [27].

3.3. Schwarz, Jacob & Anderson Theory

In non-ionic surfactant systems, cubic phases are frequently encountered wedged
between lamellar and hexagonal liquid-crystalline phases. The monoolein-water system
is remarkable in that it has a cubic phase area with a wide range of composition and
temperature. Surfactant packing concepts, on the other hand, are getting closer. Normally,
monoolein has a hydrophilic head and a hydrophobic tail, resulting in reversed or inversed
cubic phases, indicating polar medium phases. As a result, cubic phase structures can
be represented using differential geometry and periodic minimum surfaces. The ideal
way to characterise minimal surfaces is to compare them to soap films. Three types of
minimum surfaces are investigated in cubic phases based on their curvatures. At high
water levels, the monoolein-water system creates the D-surface, and at lower water levels,
the G surface. The p-surface forms in the monoolein-water system, but only when a third
component, such as caseins or amphiphilic molecules, is present. The block copolymer is
incorporated. The existence of cubic phases can be determined using the X-ray scattering
technique. Cubosomes are visualised using transmission electron microscopy (TEM) and
freeze-fracture electron microscopy [27].

3.4. System Forming Theory

Cubosomes can form in binary and ternary systems if the cubic phase and the solvent
have a significant miscibility gap. When poloxamer 407 is employed to prevent cubosome
aggregation and flocculation, the cubosomes have good colloidal stability. They can be
encased in lamellar bilayer caps, which seal the cubic bilayer opening created by fragmen-
tation and offer colloidal stability by preventing hydrocarbon chains from coming into
contact with water. The colloidal stability of cubosomes coated with a solid crystalline
bilayer is better, whereas lamellar liquid-crystalline coatings are rigid. In addition, sponge
phase coatings as a cubosome stabilising coating have been proposed. Another molecule
with a high potential for cubosome development is phytonadione [27].
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4. Mechanism of Drug Release from Cubosomes

The drug release mechanism from cubosomes is based on the principle of drug dif-
fusion, where the concentration gradient of the drug across the cubosomes is the driving
force of the diffusion. Therefore, the drug release rate from cubosomes is generally coin-
cidental with the Higuchi or Fick diffusion equation. There are many factors influencing
the drug release rate, such as drug solubility, diffusion coefficient, partition coefficient,
cubic liquid-crystalline geometry, pore size and distribution, interface curvature, temper-
ature, pH, and ionic strength of the release medium. The release mechanism of several
hydrophilic model drugs from the cubic and reversed hexagonal liquid crystalline was
investigated. These studies indicated that diffusion is the predominant mechanism of
drug release, and the drug release rate from cubic ones is faster than the hexagonal liquid
crystalline. Furthermore, the in vivo drug release profiles of 14C-glucose from cubosomes
and hexagonal phase were consistent with the in vitro release profiles, which indicated the
nanostructure of cubosomes and the nature of lipid could be utilised to control the release
rate of hydrophilic drugs [28]. But it is difficult for the hydrophobic drug to escape from the
cubosomes in vitro due to the affinity of the drug with the hydrophobic domain in the cubic
phase. Hence, the release profiles of hydrophobic drug-loading cubosomes in distilled
water media (pH 6.5) and digestion media (0.1 M Hydrochloric acid) were investigated and
found that the drug release rate in the digestion media was drastically improved. Also, it
is reported that the plasma concentration of Silymarin in vivo showed an increased drug
release rate from cubosome formulation as compared to Legalon®, a commercial capsule
formulation [29].

5. Advantages and Disadvantages of Cubosomes

The most essential advantages of cubosomes are their biocompatibility, the ability to be
loaded with numerous medications, and their simplicity [18]. Due to unique qualities like
thermostability, bioadhesion, the capacity to encapsulate medicinal compounds, and the
capacity for regulated release, cubosomes are considered prospective carriers for diverse
routes of administration [30]. Other advantageous characteristics of cubosomes include
the solubilisation of lipophilic, hydrophilic or amphiphilic drugs, sustained release of
incorporated drugs; bioadhesion; protection of drugs from degradation; and the non-toxic
nature of the building blocks of the cubosomes. The advantages and disadvantages of
cubosomes are shown in Table 2. A few examples of cubosome loaded with proteins and
genetic materials are shown in Table 3.

Table 2. Advantages and disadvantages of cubosomes [31].

Advantages Disadvantages

Cubosomes are biocompatible, biodegradable,
non-irritating and thermodynamically stable

Water-soluble drugs are less likely to be entrapped since
they contain a large amount of water

Lipophilic, hydrophilic, and amphiphilic medicines can all
be loaded into cubosomes

Large-scale production of cubosomes is challenging due to
their high viscosity

They have a high drug-loading capacity due to their large
interior surface area Potential to leak during the storage or in vivo transmission

With 3-D nanostructures with both hydrophilic and
hydrophobic domains, cubic liquid-crystalline phases are

being employed as drug delivery systems in medical
therapeutics

Phase change is possible if cubosomes are exposed to the
external environment

While lipid ingredients are biocompatible, bioadhesive, and
digestible, the huge interfacial surface can provide a

complex diffusion pathway for the continuous release of
entrapped drug molecules

Possibility of particle growth if the particles are left alone
for a long time

The preparation process is simple. They are good
solubilisers when compared to other lipid-based carriers.

Increase the bioavailability of water-soluble peptides
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Table 3. Examples of cubosomes loaded with genetic materials and proteins [31].

Loaded Active Compound Formulation

siRNA Monoolein, DOTAP
siRNA MO, DOTAP, MO-PEG
siRNA Phy, DOTAP, F127 stabiliser
siRNA DOTAP or DDAB, F127 stabiliser

Salmon sperm DNA MO/PEG-15 Cocopolyamine
Thermomyces lanuginosus lipase Monoolein, F127 stabiliser

Beta casein MO/Phy, F127 stabiliser
Nerve growth factor MO, beta casein stabiliser

Dopamine D2Lreceptor (membrane protein) Ni(II) chelated EDTA amphiphiles
Cholera toxin B subunit Phy, GM1, F127 stabiliser

Ovalbumin MO/Phy, F127 stabiliser
Outer membrane protein F (OmpF) Monolinolein, octyl-POE stabiliser

Human recombinant brain-derived neurotrophic
factor (BDNF) MO, eicosapentaenoic acid, PEG stabiliser

6. Structure and Components of Cubosomes

Cubosomes are self-assembled liquid-crystalline particles that have solid-like rheol-
ogy and are also bicontinuous cubic-phase liquid crystals. Because of their interesting
bicontinuous topologies, the cubic phases have very high viscosity. The bicontinuous cubic
liquid-crystalline phase is an optically transparent, viscous substance with a structure that
is on the nanometer scale, as shown in Figure 2. Its geometric model for drug distribution
was provided, constructed, and tested. The surfactant forms bilayers that are twisted into a
three-dimensional, periodic, minimum surface, generating a tightly packed structure that
looks like a honeycomb with water and lipid domains [18]. The presence of two types of
cubic structures, D- and P-type [s9], was confirmed by small-angle X-ray scattering. D-type
is dominant at a 3% concentration of P407, whereas the P-type diffraction pattern is barely
discernible, implying that the polymer preferentially arises on the particle surface and the
inside has a D-type structure dominated by GMO (Rylo MG 19 or Glycerol Monooleate).

On the micron scale, coarse cubosomes have the same Pn3m/QIID (Diamond or D-
surface) morphology as their bulk cubic phase. In contrast, the Im3m/QIIP (Primitive,
Schwarz, or P-surface) morphology dominates following homogenisation, which could be
due to the additional polymer or other factors [32]. The structure helps to maintain the
efficacy and stability of active ingredients like vitamins and proteins [32]. Cubosomes are
thermodynamically stable and can persist for an infinite amount of time [33]. The addition
of polymers to cubosome colloidal dispersions can help to stabilise them. They also have
the potential for regulated delivery of actives, as the tortuous diffusion of the actives
through the cubic phase’s “regular” channel structure governs diffusion [27]. The lipids
that are used to prepare cubosomes are waxy and sticky, thus, incapable of forming small
discreet particles. Noncohesive water-soluble starch coating on waxy lipids is discovered
to prevent agglomeration and allows particle size control.
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6.1. Amphiphilic Lipids

GMO or Rylo MG 19 or Glycerol Monooleate, also known as monoolein, and phy-
tantriol (PHYT) are the most commonly employed amphiphilic lipids in cubosome synthesis
at the moment [34,35]. Under excess water conditions, these commonly used lipids have a
Pn3m/QIID (Diamond or D-surface) shape in temperatures ranging from room temper-
ature to 43 ◦C and above 80 ◦C, respectively. These lipids are also biocompatible, have
acceptable bulk phase characterisation, and were recently cleared for use in vivo [36].

6.1.1. Glycerol Monooleate (GMO)

GMO is a polar, unsaturated monoglyceride with a melting point of 35–37 ◦C, having
a hydrophilic-lipophilic balance (HLB) value of 3, and is clear and colourless in appear-
ance. It is composed of oleic acid glycerides and other fatty acids, the most notable being
monooleate. Monooleate is an amphiphilic lipid which may form lyotropic liquid crystals
in a variety of shapes [37]. GMO has both hydrophilic and hydrophobic qualities owing to
the existence of hydroxyl groups within the head region, which can form H-bonds with
water in an aqueous solution and hydrocarbon chains in the tail [24]. Furthermore, GMO
is a biodegradable, biocompatible and non-toxic substance classified as GRAS (generally
recognized as safe) and included in FDA inactive ingredients guide, widely used as an
emulsifier.

6.1.2. Phytantriol (PHYT)

It is a common constituent in cosmetic products, used as an alternative to GMO in
cubosome preparations. It has the ability to form a bicontinuous cubic structure in aqueous
media under physiological conditions and temperature. Due to its high chemical stability,
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enhanced skin penetration properties, and improved moisture retention PHYT has gained
more interest in the biomedical field. Also, it has the ability to sustain the release of various
drug molecules, especially drugs having hydrophilic properties [38].

6.2. Stabilizers

When cubosomes are dispersed in aqueous media, the dispersed particles become
kinetically unstable, as they tend to aggregate due to the exposure of hydrophobic portions
to the external hydrophilic aqueous media. A surfactant is required to keep cubosomes
colloidally stable and prevent them from re-coalescing into the bulk cubic phase. The
stabiliser provides an electrostatic barrier between particles to prevent close contact of
particles hence keeping the dispersed particles in a highly stable form. The most commonly
used stabilising agents are Pluronics. Poloxamer 407 (F127), a PEO99–PPO67–PEO99 tri-
block copolymer, is a widely utilised surfactant for the production of cubosomes, with
the PPO parts arranged at the surface or within the bilayer structure, and the PEO chains
exposed to the surrounding water phase. In the case of cubosomes, the stabilising technique
of F127 appears to be different from that in the case of simple dispersions like emulsions.
The stabilising effect of F127 is due to the result of the adsorption of a hydrophobic portion
(PPO) onto the surface of the particles, while the hydrophilic portion (PEO) extends out into
the aqueous media, providing steric shielding. The stabiliser interacts with the scattered
particles’ structure and manipulates the phase behaviour in cubosomes [14]. Stabilisers are
used with a concentration of up to 20% w/w depending on the dispersed particles. A few
examples of lipids and stabilising agents used in the preparation of cubosomes are shown
in Table 4.

Table 4. Lipids and stabilizing agents used in cubosome preparation [38].

Stabiliser Lipids

Monoolein Laponite, Pluronic F 127, Modified starch
Monoelaidin Pluronic F127

Monoolein or phytantriol Pluronic F108
Sodium octyl sulphate (SCS) Arginine-based cationic surfactant

Phytantriol Myrj 59
β-XP (1-O-phytanyl-β-D-xyloside) Pluronic F127

7. Drug Loading in Cubosomes

An adequate amount of small-molecule drugs, peptides, biologics, or bioactives can be
loaded onto the synthesized cubosomes. The three main mechanisms of loading the cargo
include loading within the lipid bilayer, attaching to the lipid membrane, or localising the
drug within the water channels in the cubic phase. The loading of the drug moieties could
be achieved either by adding the therapeutic agent to the molten lipid or by co-lyophilising
with the lipid film before dispersion. Alternatively, drug moieties could also be loaded after
dispersion onto already prepared cubosomes by incubation method. Most of the small-
molecule drugs, peptides, and proteins are loaded within the lipid bilayer. Additionally,
cubosomes are synthesised by using single or binary lipid compositions, mainly comprising
phytantriol and monoolein. Although drug loading can be quantified using a multitude of
methods, small-angle X-ray scattering (SAXS) remains the most employed. Therefore, these
studies revealed the potential of using cubosomes as a drug delivery modality, especially
for the delivery of anticancer agents [39].

The major advantage of cubosomes over other particles, like liposomes, is their larger
hydrophobic region, which allows a larger loading capacity of hydrophobic drugs while
still permitting the loading of hydrophilic ones. The research revealed that curcumin in
phytantriol cubosomes has a larger loading capacity compared to curcumin liposomes [40].
Furthermore, due to the cubosomes lattice structure, the particle membrane curvature
can be tuned independently of its size. This characteristic is particularly important in the
mimicry of highly curved structures, which are characterised by a higher membrane to
surface area to volume ratio and increased membrane loading capacities [40].
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The cubic structure of cubosomes has the ability to entrap the drugs and then release
them based on different molecular weights and polarities, which follows the law of Higuchi-
diffusion-controlled kinetics.

Q = [DmCd (2A − Cd)t]1/2

According to this equation, the release (diffusion) of agents from the matrix depends
on the square root of time. Q is the quantity of the agents released per unit area of the
matrix, Dm is the diffusion coefficient of the agents in the cubic matrix, Cd is the solubility
of the agents in the matrix, A is the primary quantity of the drug per unit volume of the
matrix, and t is the time. From this equation, the quantity and rate of drug release can be
determined [41].

8. Methods of Preparation

Based on the energy sources employed to split the bulk phases, cubosome preparation
methods can be divided into top-down and bottom-up approaches. On the one hand,
top-down approaches use sonication and high-pressure homogenisation, whereas bottom-
up strategies use hydrotropes to lower energy inputs. Poloxamer-407 (P407 or Pluronic
F127 or PF127), a triblock polymer comprising of polyethylene oxide–polypropylene oxide–
polyethylene oxide (PEO–PPO–PEO) copolymer, assists in stabilising lyotropic non-lamellar
liquid-crystalline nanoparticles (LCNs) by preserving the liquid-crystalline inner struc-
ture of the nanoparticles and creating a steric barrier, is used in both approaches [42].
Comparison of various formulation techniques have been shown is Table 5.

8.1. Top-Down Approach

The most common approach for producing cubosomes is the top-down method, which
involves two parts, as shown in Figure 3. The first step is to make a viscous bulk cubic
phase by combining lipid with a stabiliser to prevent aggregation; the second step is to
disperse the previous steps resulting in an aqueous medium using high-energy methods
like high-pressure homogenisation or sonication, finally generating cubosomes. Although
a bulk cubic phase resembles a translucent stiff gel composed of cross-linked water-swollen
polymer chains, cubic phases are distinct because they are distinct thermodynamic phases
with a periodic liquid-crystalline structure. For up to a year, this approach yields cubosomes
that are impervious to aggregation. Vesicles, such as distributed nanoparticles of lamellar
liquid-crystalline phase or vesicle-like structures, always coexist with cubosomes created
via the top-down approach. At high oscillation frequencies, cubic phases become relatively
elastic [43].
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8.2. Bottom-Up Approach

The bottom-up process starts with the creation of nanostructure basic building blocks,
which are then put together to create the final product, shown in Figure 4. It is a more
recently established method of cubosome production. Cubosomes can also be created at
room temperature via a technique known as crystallisation from precursors. This procedure
is referred to as the liquid precursor or solvent dilution method, according to Spicer et al.
To make discrete nanoparticles, a polymer, a liquid crystal-forming lipid, and a hydrotrope
are dispersed in surplus water with low energy input [27]. Hydrotrope is a vital component
of the bottom-up strategy because it may prevent the formation of liquid crystals at high
concentrations and break down water-insoluble lipids to make liquid precursors. Unlike
the top-down technique, this dilution-based procedure can produce cubosomes without
the requirement for time-consuming fragmentation. As a result, less energy is used. In
addition, this approach is far more efficient in producing small particles. The method
through which cubosomes originate could be the reason behind this. The top-down method
is more like giant particle attrition, but the dilution-based method is more akin to small
particles aggregating into larger particles, which is similar to using precipitation processes
to generate nanoparticles [44].

The dilution-based strategy has certain distinct advantages over the top-down method
when combining the different primary methods for creating cubosomes. For starters, it
necessitates less energy input, avoiding lengthy fragmentation procedures. It can also be
bonded with temperature-sensitive materials, which is an important differentiator. This
technique is substantially more effective in creating smaller particles due to the unique
production mechanisms of cubosomes. Finally, due to the homogenous dispersion of
stabilisers onto the surface of nanostructured particles, the resulting cubosomes have
long-term stability. Furthermore, using hydrotrope speeds up the set-up while producing
cubosomes that are equivalent to or better than most of those created by other methods;
also, the bottom-up method is best suited for scaling up to commercial batches [14]. Sherif
et al. compared both approaches to discover that the bottom-up strategy results in small
cubosomes with superior entrapment efficiency as well as slow dissolution rates. The
bottom-up strategy, unlike the top-down approach, cannot successfully avoid the formation
of vesicles [45].

Dispersion of cubosomes can be done by techniques like sonication, high-pressure
homogenisation, spontaneous emulsification and spray drying. Sonication and high-
pressure homogenisation provide the formation of complex dispersions containing vesicles
and cubosomes with time-dependent ratios of each particle type. The difference between
the top-down approach and the bottom-up approach is shown in Figure 5.
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8.3. Heat Treatment

New hydrotrope-free cubosome manufacturing methods have recently been devel-
oped, which may help solve these problems. Muir et al. found that adding phosphate
buffer saline (PBS) to a binary lipid system containing PYTH and a charged lipid, dodecyl
dimethylammonium bromide (DDAB), can result in cubosome formation. When PBS is
added to the DDAB, a charge-shield forms on the surface, changing the bilayer curvature
and restoring the bicontinuous cubic phase. In this situation, heat treatment may be a
viable choice. Heat treatment, in the strictest sense, is not an integrated method for the
generation of cubosomes because it just facilitates the transition from non-cubic vesicles to
well-ordered cubic particles [46]. As a result, a basic processing procedure that comprises a
homogenisation and heat-treatment step can be used to create dispersed particles. Heat
treatment minimises the small particle size fraction that corresponds to vesicles, resulting in
the production of bigger cubic phases with narrow particle dispersion and strong colloidal
stability, according to the research. When the full preparation procedure is considered,
it is evident that the transition happens during the heat-treatment operation. Elevated
temperatures could lead to a decrease in solubility and stability, which can be the cause of
the transition. The surfactant has a high solubility when the temperature is below cloud
point, allowing the particles to exist in a stable form with little fusion. When the surfactant
solubility falls below a particular threshold, vesicles begin to fuse quickly [46].
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8.4. Spray Drying

Another method of cubosome preparation is the spray-drying process. Spray-dried
encapsulated particles are made from an emulsion of liquid droplets or dispersions of
solid particles in concentrated water-polymer solutions [47]. Both phases are sprayed
through a curated nozzle, creating suspension droplets to collide with a dry, hot airflow.
Excess water quickly evaporates, leaving dry powder particles made composed of the
dispersed phase surrounded by an encasing of the previously dissolved polymer. The
spray-drying process is easy to scale up and is now frequently utilised in consumer goods
such as detergents and meals. Furthermore, the method makes it simple to preload actives
into cubosomes before drying [40]. Finally, the polymer coating on the powder gives
the hydrated cubosomes surface properties, which can be changed by identifying the
perfect encapsulating polymer. The liquid feed can be changed to alter the resulting
powder’s properties. For the production of starch-coated cubosomes powder precursors,
high shear treatment of monoolein in aqueous starch solution produces a coarse cubosomes
dispersion that is then pushed through a nozzle and dried. According to gravimetric
measurements, drying removes approximately all of the water in the powder, resulting in a
final composition of around 72% starch, 4% w/w water, and 24% monoolein in the finished
powders [29], as shown in Figure 6.
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Table 5. Comparison of formulation techniques.

Techniques Benefits Drawbacks References

Bottom-up approach
Requires low energy input; hence it can be
used safely for drugs that are temperature

sensitive

This method can be preferred only for
thermosensitive drugs, formulations are

stable for a short period
[47]

Top-down approach Reduces aggregation and improves the
stability of formulations for up to one year

High-energy input is required to disperse
the aggregates into cubosomes [47]

Solvent evaporation method Produce cubosomes of smaller particle size
with higher physical stability

Due to the large-scale mixing of water and
ethanol high polydispersity index is

reported
[48]

Spray-drying method
A highly versatile, cheap and scalable

method. The best method for drying labile
products, such as proteins and vaccines

Difficulty in spray drying of the
formulation as a cubic phase is formed

immediately upon hydration of monoolein
[48]

9. Characterisation of Cubosomes

For compositions consisting predominantly of vesicle-forming bilayer lipids, DSC,
NMR, and fluorescence microscopy have historically been used to detect phase transition
borders and quantify fundamental material properties as a function of temperature and
composition. Lipid phases are assigned via small-angle scattering (mostly X-ray). The
lipid sample is bombarded with high-energy X-rays, and the ensuing diffraction pattern
provides a discrete set of rings. This information is used to create the preponderance of
phase diagrams as a function of lipid concentrations, hydration, pressure, and temperature.
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Using small-angle X-ray scattering, cryotransmission electron microscopy, or Cryo-TEM, is
a strong tool for characterising soft matter dispersions and assigning phases (SAXS). Cryo-
TEM was used to obtain high-resolution images of cubosomes, permitting direct imaging of
the interior cubic phase structure for dispersion confirmation, surface structure information,
and exact size estimation. The process of cryo-TEM entails passing a stream of electrons
through an ultrathin object and reacting with it as they pass through. The interaction of
electrons travelling through the specimen produces an image that is magnified onto a
screen, such as a layer of photographic film, a fluorescent screen, or sensors to be detected.
Cryo-TEMs can photograph at much higher resolutions since electrons have a smaller
wavelength [49].

Sub-tomogram averaging, which was previously employed for protein structure
reconstructions, has now been demonstrated to work on cubosomes. DLS, or dynamic
light scattering, is a method for sizing and stabilising cubosome dispersions to ensure that
they are monodisperse and that no aggregation occurs throughout the required periods.
Although nanoparticle tracking analysis (NTA), which characterises single particles and
generates a population of sizes rather than bulk measurements like DLS, is not widely
in use for cubosomes, it has been used for vesicles and can be used to confirm the exact
particle concentration as well as size information. For determining the dispersions’ particle
size distribution, photon correlation spectroscopy may be performed. At a temperature of
250 ◦C, 100-s intervals are used to measure the refractive index (RI). Samples are diluted
with water to change the signal level. The average particle size and the polydispersity
index are computed [49,50].

9.1. Characterization of Non-Lamellar Liquid Crystalline

Various methodologies are utilised to characterise the physicochemical features of
LCPs. These techniques were recently divided into two groups by Amar-Yuli et al.: direct
techniques and indirect techniques [51]. Direct techniques include small-angle X-ray
and neutron scattering, as well as optical and electron microscopy. Indirect approaches
that provide extra information include spectroscopy, which includes nuclear magnetic
resonance, dynamic light scattering, and rheology. A few strategies will now be discussed
in greater detail.

9.1.1. Electron Microscopy

Cryogenic transmission electron microscopy (cryo-TEM) allows for direct observation
of samples in their hydrated state by vitrifying them in a thin film suspended between
polymer-coated grids. Traditional (negative staining) transmission electron microscopy
(TEM), in which materials are dried on carbon grids before being seen under the microscope,
is not suggested because of the complications connected with dehydration. [49].

Cryo-TEM is a powerful supplement to scatter data since it allows for direct visu-
alisation and verification of lattice symmetry. The gold standard for characterising the
structure type of non-lamellar liquid-crystalline dispersions is a combination of cryo-TEM
and scattering. Cubosomes are faceted cubic particles with a cubic shape. Cryogenic
field-emission scanning electron microscopy (cryo-FESEM) has recently been reported as a
useful supplementary imaging technique for studying the nanostructure of non-lamellar
mesophases [51,52]. Dispersions can be seen in a frozen, close-to-natural form using cryo-
FESEM. The reported data in studies by Rizwan et al. support differential geometry-based
descriptions of lipid cubic phase nanostructures, especially cubosomes, in which a single
continuous lipid bilayer is distorted to split space into two congruent and non-intersecting
water channels. Cryo-FESEM revealed that the nanostructure of the dispersions was
comparable to the microstructure of the non-dispersed phases [52].

Compared to transmission microscopy, one of the limitations of using scanning mi-
croscopy to probe the structure of submicron particles is the lower resolution (50–100 nm)
and the potential formation of ice crystals during sample transfer [52,53]. Ice crystals
are frequently large and can cover important areas. Frozen condensed water droplets, in
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addition to large ice crystals, can make data interpretation difficult and misleading. It has
been demonstrated that plunge freezing in liquid propane reduces ice crystal size lower
than the resolution of the microscope. Additionally, prior to coating, samples are usually
sublimed for a few minutes to remove any unwanted surface ice [54].

9.1.2. X-ray Scattering

Scattering techniques are essential for unambiguously establishing the structure of
the mesophase of interest. Three types of radiation are commonly utilised in scattering
studies: light, neutron and X-ray. By measuring the intensity of scattered X-rays at small
angles, small-angle X-ray scattering (SAXs) investigations are frequently employed to
explore structure at the mesoscale. Although SAXs is an invaluable tool for identifying
mesophases, it is not without its demerits. Weak reflections when using a lab source are a
problem with SAXs, especially in dispersed liquid-crystalline systems due to their small
non-uniform crystallographic microstructure. Furthermore, some systems may have two
or more coexisting mesophases, making it challenging to assign peaks to specific space
groups [47]. SAXs is based on the Bragg formula [55]. Bragg’s law explains the relationship
between an X-ray light shooting and its reflection from a crystal surface. It is useful for
measuring wavelengths and determining the lattice spacing of crystals.

S =
2sinθ

λ
=

q
2π

where S is the scattering vector, q is the scattering factor, θ is the scattering angle, λ is the
wavelength of the X-ray [55].

9.2. Particle Size Distribution

Particle size is determined by dynamic laser light scattering (DLS) using a zeta sizer
(photon correlation spectroscopy). It is a simple, non-invasive method to characterise
the particles in suspension. The sample diluted with a suitable solvent is adjusted to a
light scattering intensity of about 300 Hz and measured at 25 ◦C in triplicate. The data is
collected and shown by using average volume weight size [56]. The major drawback of DLS
measurements is that larger and heavier particles contribute strongly to the overall mean
decay rate of a poly-disperse solution, often leading to an overestimation of such larger
particles. Another important parameter to be determined for liquid-crystalline systems is
the zeta potential. Zeta-potential measurements can only be performed indirectly, where
the velocity of a charged particle that moves under the influence of an applied electric field
(electrophoretic mobility) can be calculated. For pharmaceutical applications, to determine
the existence of cationic or anionic particles in solution, it is crucial to measure the zeta
potential. [57]. Polarising microscopy can be used to determine the morphology of liquid
crystalline based on the optical birefringence phenomena of liquid crystalline [58].

9.3. Entrapment Efficiency

Entrapment efficiency and drug loading of cubosomes can be accessed using chro-
matography techniques, dialysis, small-angle X-ray scattering, or ultra-filtration techniques.
The amount of unentrapped drug can be further analysed using a UV spectrophotometer,
HPLC analysis, and fluorescence correlation spectroscopy. The unentrapped drug concen-
tration is determined, which is subtracted from the total drug added in the formulation,
and the amount of drug is analysed by using a spectrophotometer or radioactivity [59].

9.4. Measurement of Drug Release

The drug release mechanism from cubosomes is based on the principle of drug dif-
fusion, and the drug concentration gradient across the cubosomes is the driving force
for diffusion. The factors influencing the drug release rate are the solubility of the drug,
diffusion and partition coefficient, cubic liquid-crystalline geometry, pore size and distri-
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bution, temperature, pH and ionic strength of the release medium. The drug release from
cubosomes can be evaluated by the pressure ultra-filtration method [60].

9.5. Stability Studies

The physical stability can be studied by investigating the organoleptic and morpho-
logical aspects of cubosomes as a function of time. Particle size distribution, zeta potential,
drug content and entrapment efficiency of cubosomes at various temperatures can be
determined at different time intervals to evaluate the possible variations by time [61]. The
phase transition in liquid crystalline is accompanied by exothermic or endothermic energy
changes. To investigate the stability of liquid crystalline, DSC can be used to determine the
phase transition temperature of the binary liquid-crystalline system. Also, the viscosity of
cubosome formulations must be determined at different angular velocities using a rotary
viscometer [62].

10. Applications of Cubosomes

Cubosomes, which are bicontinuous cubic phase liquid crystals, have a number of
characteristics that make them a possible universal medium for the transport of diverse
therapeutic actives. Like conventional drug delivery systems, these nanoparticles utilise
surfactant and/or polymer systems to create supra-assemblies, frequently used as active
transport vesicles. Adequate concentrations of small-molecule drugs must be loaded for
the cubosomes to act as viable drug delivery vehicles. Cubosomes are used to deliver
anticancer medications in several investigations, with encapsulation efficiencies ranging
from 71 to 103%. As a result, these investigations highlight the potential of cubosomes
as a drug delivery vehicle, particularly for anticancer drugs [63]. Pharma companies are
trying to use cubosomes as stabilisers and pollutant adsorbents in cosmetics. They have
been formulated as cosmetic products like skincare, hair care, and antiperspirants, and a
few companies have filed patents too. Alpha-lipoic acid (ALA) is a naturally occurring
fatty acid with a potent antioxidant activity which exists in the mitochondria of all kinds of
prokaryotic and eukaryotic cells. A recent study has demonstrated that the formulation of
ALA in cubosome dispersion showed excellent results in reducing facial lines with almost
complete resolution of fine lines in the periorbital region and upper lip area with improved
skin texture and colour in volunteers.

To overcome the obstacles in dispensing these bio-macromolecular medications, such
as interference by membrane barriers and drug instability, a variety of drug delivery pro-
tocols have been developed in recent years. The development of highly effective active
drug carrier systems is accelerated by the synergistic integration of different nanoparticles
with target ligands. Recent research has found parallels between the bicontinuous struc-
tures created in human skin layers and those found in cubic phases, promising a better
understanding and treatment of skin transport. Cubosome-based triglyceride–monoolein
combinations paired with the antibiotic metronidazole have been developed as commercial
applications for periodontal disease. The lipid–drug mixture is applied to the gums of
the mouth. When it comes in contact with the saliva, it hydrates to form a bulk cubic
phase, which subsequently distributes the drug in a uniform manner. Cubosomes have
the ability to target diseases at the location of the problem and can circulate in the body
after being injected. Cubosomes are particularly useful in cancer therapy because of this
property. When it comes to cancer targeting, the size of the delivery system is crucial
because of the increased permeability and retention effect. Examples of cubosomes for
various drug delivery are shown in Tables 6–10. Attaching ligands (proteins, folic acid
derivatives, peptides) to cubosome surfaces can also be used to target diseased cells [63,64].

Cubosomes have been considered an excellent candidate for oral drug delivery. They
enhance the oral bioavailability of poorly water-soluble drugs. cubosome formulations
containing the protein ovalbumin were developed with a high entrapment efficiency and
slow-release behaviour in vitro, showing the potential of cubosomes as a novel vaccine
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delivery system. Additionally, the unique crystalline structure of cubosomes protects the
entrapped drug from degradation in the gastrointestinal tract [65].

The drug contained in cubosomes can easily penetrate the epidermis of mucosal and
skin, resulting in an improved bioavailability of drugs. Cubosomes are used as carriers for
dexamethasone and flurbiprofen for ocular treatment, and the studies revealed that the
apparent permeability and the bioavailability of these drugs were greatly increased [66].

Cubosomes have been developed as an excellent delivery system due to their unique
solubilisation, high encapsulation, sustained release behaviour and in vivo stabilisation.
It is demonstrated that the terminal half-life of somatostatin cubosomes given as an in-
travenous injection in rats was significantly improved as compared to the corresponding
somatostatin solution [67].

Due to their unique structure, cubosomes provide a promising vehicle for transdermal
drug delivery. Cubosomes and microneedles have been used as a synergistic approach for
vaccine delivery through the skin. Results showed that the use of microneedles enhanced
the permeation of the aqueous peptide mixture through the skin layers, and cubosomes
showed longer retention of the formulated peptide within the skin. The topical delivery of
cubosomes is based on the unique properties of liquid crystals. Due to their bioadhesive
nature, the liquid crystal systems facilitate the delivery of drugs to mucosal surfaces like
the buccal, ophthalmic and vagina [68].

Table 6. Marketed lipid-based products in clinical development.

Products Drugs Target Diseases Status References

SPI-077 (Alza) Cisplatin Solid tumours
Phase II

(Development
terminated)

[69]

CPX-351
(Celator) Cytarabine:daunorubicin Acute myeloid

leukaemia Phase II [69]

CPX-1
(Celator)

Irinotecan
HCI:floxuridine Colorectal cancer Phase II [70]

Brakiva
(Talon) Topotecan Relapsed solid tumours Phase I [71]

Lipoplatin
(Reglon) Cisplatin Non-small cell lung

cancer Phase III [71]

ThermoDo
x(Cesion)

Thermosensitive
doxorubicin

Primary hepatocellular
carcinoma Phase III [72]

Exparel (Pacira) Bupivacaine Nerve block Phase II [73]
Stimuvax

(Oncothyreon/Merck)
Anti-MUC1 cancer

vaccine
Non-small cell lung

cancer Phase III [73]

Table 7. List of drugs loaded in cubosomes for anticancer drug delivery.

Active Ingredients Polymers Used Applications References

20 (S)-protopanaxadiol,
Piperine

Monoolein (MO), Poloxamer 407
(PF127) Drug Delivery [74]

3-bromopyruvate Monoolein (MO), Poloxamer 407
(PF127), Folic acid Tumour Targeted Delivery [75]

Camptothecin
Squarain-based NIR-emitting

fluorescent probe, Pluronic F108
(PF108), Monoolein

Theranostic and Bioimaging [75]

Curcumin Polyethylene glycol 400 (PEG-400),
RH40, and Monoolein (MO) Anticancer activity [76]

Doxorubicin (DOX) Monolinolein, Pyridinylmethyl
linoleate Tumour Targeted Delivery [76]

Gambogenic acid Monoolein (MO) Drug delivery in cancer
therapy [77]

Meso-Tetraphenylporphine-
Mn (III)
chloride

Monoolein (MO), Polyethylene
glycol (PEG), Phospholipids Bioimaging [77]

Metformin Monoolein (MO), Poloxamer (Pol.)
407 (PF127) Drug Delivery [78]

Paclitaxel (PTX) Monoolein (MO), Poloxamer 407
(PF127), Polyethylene glycol (PEG) Drug Delivery [78]
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Table 7. Cont.

Active Ingredients Polymers Used Applications References

Pemetrexed and Resveratrol Monoolein (MO) Drug Delivery in lung cancer [79]

Dacarbazine GMO, Pol. 407 First-line chemotherapy
medication against melanoma [79]

5-fluorouracil (5-FU) GMO, Pol. 407

For the treatment of advanced
gastrointestinal cancers,
including hepatocellular

carcinoma

[80]

20 (S) protopanaxadiol (PPD) GMO, Pol. 407 Anticancer drug [80]
Folic-acid-modified etoposide

cubosomes
Polyethylene glycol 400 (PEG-400),

RH40, and Monoolein Breast cancer [81]

Cisplatin- and
paclitaxel-loaded cubosomes

Monoolein (MO), Poloxamer 407
(PF127), Polyethylene glycol (PEG) Liver cancer [81]

Icariin cubosomes Monoolein (MO), Poloxamer (Pol.)
407 (PF127) Ovarian Cancer [81]

Cisplatin and metformin
nanocubosomes Monoolein (MO), Poloxamer (Pol.)

407 (PF127) Colorectal cancer [82]

Table 8. Applications of cubosomes as ocular drug delivery system.

Loaded Drug Lipids & Stabilisers Therapeutic Uses References

Dexamethasone (DEX) GMO, Pol. 407 Treatment of anterior ocular
inflammation [83]

Flurbiprofen (FB) GMO, Pol. 407 For treatment of ocular inflammation [83]

Ketorolac GMO, Pol. 407 For treatment of ocular symptoms
due to allergies [84]

Timolol (TM) GMO, Pol. 407 Non-selective beta-blocker drug for
the treatment of glaucoma [84]

Cyclosporine A GMO, Pol. 407
Immunosuppressive agent for

treating inflammatory and
immune-related ocular diseases

[85]

Pilocarpine GMO, Pol. 407 To treat open-angle glaucoma and
acute angle-closure glaucoma [85]

Table 9. Dermatological applications of cubosomes.

Loaded Drug Oil
Stabiliser Therapeutic Use References

Capsaicin GMO, PYT, Pol. 407 Used in the treatment of psoriasis,
pruritus, and contact allergy [86]

Silver sulfadiazine GMO, Pol. 407 Used for the treatment of infected
burns [86]

Indomethacin GMO, Pol. 407 Anti-inflammatory drug [87]
Hydroxypropyl β

cyclodextrin/minoxidil complex GMO, Pol. 407 Minoxidil for hair growth [87]

Antimicrobial peptide (AMP)
LL-37 GMO, Pol. 407

Used for treatment of skin
infection caused by

Staphylococcus aureus
[88]

Erythromycin GMO, Pol. 407

Treatment and prevention of
several types of acne as a result of
its bacteriostatic activity against

Propionibacterium acnes

[89]

Dapsone GMO, Pol. 407 For treatment of acne, leprosy &
systemic lupus erythematosus [89]

Vaccination through
transcutaneous immunization

(TCI)

Microneedle enhances the
permeation of the peptide
mixture in water through

the skin layers, and
cubosomes with peptide
showed longer retention

within the skin

Microneedles (MNs) and
cubosomes have been used
successfully as a synergistic
method for the delivery of

vaccines via skin

[90]
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Table 10. Oral drug delivery utilising cubosomes formulation.

Loaded Drug Lipids & Stabilisers Therapeutic Uses References

Insulin GMO, Pol. 407 For treating type 1 diabetic-induced
rats (insulin-dependent diabetes) [91]

Ibuprofen PYT, Pol. 407 Non-steroidal anti-inflammatory
drug with analgesic properties [92]

Simvastatin GMO, Pol. 407 For cholesterol control in the body [92]

Piperine GMO, Pol. 407 with Tween 80
and Cremophor RH 40

Natural alkaloids with
memory-enhancing potentials used

in the treatment of Alzheimer’s
disease (AD)

[92]

Amphotericin B PYT, Pol. 407
For several types of fungal infections,

such as histoplasmosis and
Leishmaniasis

[93]

Table 11 describes the list of drugs that are incorporated into cubosomes for their
effective and targeted delivery against various conditions.

Table 11. Examples of drugs embedded in cubosomes and the outcome of the study.

Drugs Objective of Study Outcome of Study References

Antimicrobial peptide LL-37
The antimicrobial potential of cubosomal
LL-37 was evaluated using in vitro and

ex-vivo skin irritation models.

The formulation provides superior protection
to LL-37 against enzymatic degradation and

significant bactericidal effects.
[94]

Erythromycin Topical delivery of erythromycin for the
treatment and prevention of acne.

The prepared cubosomes were effective in
the topical delivery of erythromycin in a

non-invasive and sustained manner.
[94]

Ketorolac
Monoolein and poloxamer cubic

nanoparticles for ocular delivery of
ketorolac.

Formulated cubosomes loaded with
Ketorolac provided trans-corneal permeation

and retention.
[95]

Simvastatin Enhanced bioavailability of simvastatin to
lower bad cholesterol and fats.

Prepared cubosomes enhanced the
bioavailability of the lipophilic simvastatin

when administered orally.
[95]

Indomethacin Evaluation of Indomethacin-fabricated
cubosomes for anti-inflammatory activity.

Homogenised monoolein and
poloxamer-containing cubosomes prolonged

the delivery of the drug.
[96]

Piperine Evaluation of the memory-enhancing
potentials (used in Alzheimer’s disease).

Prepared cubosomes were found to be safe
with superior effects over free drugs and

were effectively restoring cognitive functions.
[96]

Flurbiprofen (FB)
A non-steroidal anti-inflammatory drug

used for the treatment of ocular
inflammation.

The formulation showed less ocular irritation
and enhanced transcorneal permeation of FB. [18]

Insulin
Tested against the

C-Type-1-diabetic-induced rat
(insulin-dependent diabetes).

Cubosomes protected the loaded insulin
against proteolysis. It was found to be stable

at normal temperatures and controlled
hyperglycaemia in a reproducible manner.

[18]

Dacarbazine To reduce the side effects of melanoma.

Dacarbazine delivered through cubosomes
decreases the side effects of intravenous

delivery. It also enhanced the drug efficacy,
safety, and shelf life.

[97]

20(S) protopanaxadiol To evaluate the anticancer activity.
Cubosomes improved the oral bioavailability

of the drug as a result of enhanced
absorption.

[98]

Timolol Synthesis of timolol-loaded cubosomes
and their evaluation.

The prepared cubosomes showed increased
corneal penetration, prolonged precorneal
retention time and enhanced intraocular

pressure lowering effect than the
commercially available eye drops.

[99]

Docetaxel
Synthesis and evaluation of controlled
release cubosomes incorporated with
docetaxel as a thermosensitive depot.

The depot showed gradual drug release,
preparation was free flowing at room

temperature.
[100]

11. Conclusions

Cubosomes are being widely explored and are attracting a lot of attention, especially
in preclinical investigations, because of their enticing features that are regarded as perfect
for successful drug administration. However, numerous obstacles and constraints must be
overcome before these cubosomes can be successfully implemented in a therapeutic context.
Cubosomes have a substantially greater bilayer area to volume of particles than liposomes
or vesicles with a more substantial viscous barrier to rupture. Recent breakthroughs have
made it possible to rationally develop smart cubosome systems for a variety of applications.
Cubosomes offer a lot of potential as a medication delivery system for a variety of medicinal
treatments [101].
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Solubilisation of poor water-soluble medicines, along with the regulated and pro-
longed release of loaded actives, are two primary advantages of their use as delivery
carriers. Cubosomes can be administered in a variety of ways, including intravenous,
intranasal, oral, ophthalmic, and topical routes, due to their excellent qualities. One of
the most distinguishing characteristics of cubosomes is their bioadhesive nature, which
allows them to be used in topical as well as mucosal formulations for the administra-
tion of various drugs. Material scientists are interested in the cubic phases’ twisted but
regular structure as a blueprint for complicated solid materials. An intimate understand-
ing of stabiliser–membrane interactions, demonstrations of pore size analogous to bulk
phase work, cytotoxicity studies with the study of interaction mechanisms, along with
the demonstration of smart release is all extraordinary characteristics that shall, without a
doubt, enhance the applications of cubosomes. They are transitioning into next-generation
lipid nanoparticles as the fundamental knowledge base grows. Furthermore, cubosomal
nanoparticles are being considered potential nano vehicles for loading and delivering
peptides and protein-based medicines, but the reported research studies are still in the early
stages. Cubosome has established itself as a viable technology platform with widespread
clinical acceptability.

The oral application of cubosomes showed that they can be used effectively to increase
the absorption of poorly water-soluble drugs and protects the liable drug from enzymatic
degradation and in targeted drug delivery. They provide a promising vehicle for effective
transdermal drug delivery with enhanced skin permeation and low irritation potential.
Cubosomes are used for the delivery of anticancer drugs with reduced serious side effects
of the chemotherapeutic agents and targeted drug delivery. They have been approved
as an effective ocular drug delivery system with enhanced ocular residence time and
bioavailability without irritating the eye [102].

Apart from all of these benefits of cubosomes, there are still some major outstanding
challenges that need to be addressed. It includes further enhancing the applications of
cubosomes and a deeper understanding of stabilisers as well as membrane interactions.
Several other parameters related to the structural characteristics of the cubosomes, like
the encapsulation efficiency, drug release profiles, dosing frequency, and compatibility of
the cubosomal components with the blood fluids, as well as with commonly administered
medications in co-morbid patients, should be scrupulously examined both in vitro and
in vivo. In addition, large-scale production of cubosomes is sometimes difficult due to high
viscosity, and there is a low entrapping of water-soluble components due to the presence of a
high volume of water inside the cubosomes. Although great progress has been made, more
extensive in vitro and in vivo cytotoxicity studies, including the mechanism of interaction
with cancer cells, need to be further addressed in utilising the cubosomal formulations in
the clinical setting.
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DOTAP 1,2-dioleoyl-3-trimethylammonium-propane
MO-PEG Monoolein—poly(ethylene glycol)
DDAB Dimethyldioctadecylammonium bromide
GM1 Beta-galactosidase-1
POE Polyolefin elastomers
PPO Polyphenylene oxide
DSC Differential scanning colorimetry
NMR Nuclear magnetic resonance
TEM Transmission electron microscopy
Pol. 407 Polaxamer 407
PEG Polyethylene glycol
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