Exploring the Potential of Zirconium-89 in Diagnostic Radiopharmaceutical Applications: An Analytical Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Simulation
2.2. WinAct Data
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zakaly, H.M.H.; Mostafa, M.Y.A.; Zhukovsky, M. Biokinetic Model Development of177Lu-labeled Methylene Diphosphonate as a Radiopharmaceutical Treatment. Int. J. Drug Deliv. Technol. 2022, 12, 1802–1807. [Google Scholar] [CrossRef]
- Meijs, W.E.; Haisma, H.J.; Klok, R.P.; Van Gog, F.B.; Kievit, E.; Pinedo, H.M.; Herscheid, J.D.M. Zirconium-labeled monoclonal antibodies and their distribution in tumor- bearing nude mice. J. Nucl. Med. 1997, 38, 112–118. [Google Scholar] [PubMed]
- Holland, J.P.; Divilov, V.; Bander, N.H.; Smith-Jones, P.M.; Larson, S.M.; Lewis, J.S. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 2010, 51, 1293–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, J.P.; Caldas-Lopes, E.; Divilov, V.; Longo, V.A.; Taldone, T.; Zatorska, D.; Chiosis, G.; Lewis, J.S. Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab. PLoS ONE 2010, 5, e8859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggiero, A.; Holland, J.P.; Lewis, J.S.; Grimm, J. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med. 2010, 51, 1123–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110, 2858–2902. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Ma, H.; Li, F.; Cai, H.; Liang, R.; Chen, X.; Lan, T.; Yang, J.; Liao, J.; Yang, Y.; et al. PET imaging of VEGFR and integrins in glioma tumor xenografts using 89Zr labelled heterodimeric peptide. Bioorg. Med. Chem. 2022, 59, 116677. [Google Scholar] [CrossRef]
- Park, J.A.; Lee, Y.J.; Lee, J.W.; Yoo, R.J.; Shin, U.C.; Lee, K.C.; Kim, B., II; Kim, K.M.; Kim, J.Y. Evaluation of [89Zr]-oxalate as a PET tracer in inflammation, tumor, and rheumatoid arthritis models. Mol. Pharm. 2016, 13, 2571–2577. [Google Scholar] [CrossRef]
- Zakaly, H.M.H.; Mostafa, M.Y.A.; Zhukovsky, M. Internal dosimetry modelling for 89Zr-labelled chimeric monoclonal antibody U36 based on real clinical results. AIP Conf. Proc. 2020, 2313, 20011. [Google Scholar]
- Zakaly, H.M.H.; Mostafa, M.Y.A.; Zhukovsky, M. Biokinetic Modelling of 89Zr-Labelled Monoclonal Antibodies for Dosimetry Assessment in Humans. Int. J. Radiat. Res. 2020, 18, 825–833. [Google Scholar] [CrossRef]
- Zakaly, H.M.H.; Mostafa, M.Y.A.; Deryabina, D.; Zhukovsky, M. Comparative studies on the potential use of 177Lu-based radiopharmaceuticals for the palliative therapy of bone metastases. Int. J. Radiat. Biol. 2020, 96, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Meijs, W.E.; Haisma, H.J.; Van Der Schors, R.; Wijbrandts, R.; Van Den Oever, K.D.; Klok, R.P.; Pinedo, H.M.; Herscheid, J.D.M. A facile method for the labeling of proteins with zirconium isotopes. Nucl. Med. Biol. 1996, 23, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Perk, L.R.; Vosjan, M.J.W.D.; Visser, G.W.M.; Budde, M.; Jurek, P.; Kiefer, G.E.; Van Dongen, G.A.M.S. P-Isothiocyanatobenzyl-desferrioxamine: A new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Oude Munnink, T.H.; Arjaans, M.E.; Timmer-Bosscha, H.; Schröder, C.P.; Hesselink, J.W.; Vedelaar, S.R.; Walenkamp, A.M.; Reiss, M.; Gregory, R.C.; Lub-de Hooge, M.N.; et al. PET with the 89Zr-labeled transforming growth factor-β antibody fresolimumab in tumor models. J. Nucl. Med. 2011, 52, 2001–2008. [Google Scholar] [CrossRef] [Green Version]
- Tinianow, J.N.; Gill, H.S.; Ogasawara, A.; Flores, J.E.; Vanderbilt, A.N.; Luis, E.; Vandlen, R.; Darwish, M.; Junutula, J.R.; Williams, S.P.; et al. Site-specifically 89Zr-labeled monoclonal antibodies for ImmunoPET. Nucl. Med. Biol. 2010, 37, 289–297. [Google Scholar] [CrossRef]
- Rama Sastry, B.V.; Owens, L.K.; Ball, C.O.T. Differences in the distribution of zirconium-95 and niobium-95 in the rat. Nature 1964, 201, 410–411. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.R. The radiological hazards of zirconium-95 and niobium-95. Health Phys. 1969, 16, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Abou, D.S.; Ku, T.; Smith-Jones, P.M. In vivo biodistribution and accumulation of 89Zr in mice. Nucl. Med. Biol. 2011, 38, 675–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkers, E.C.F.; Kosterink, J.G.W.; Rademaker, A.P.; Perk, L.R.; Van Dongen, G.A.M.S.; Bart, J.; De Jong, J.R.; De Vries, E.G.E.; Lub-de Hooge, M.N. Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging. J. Nucl. Med. 2009, 50, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Bensch, F.; Smeenk, M.M.; van Es, S.C.; de Jong, J.R.; Schröder, C.P.; Oosting, S.F.; Lub-de Hooge, M.N.; Menke-van der Houven van Oordt, C.W.; Brouwers, A.H.; Boellaard, R.; et al. Comparative biodistribution analysis across four different 89Zr-monoclonal antibody tracers-The first step towards an imaging warehouse. Theranostics 2018, 8, 4295–4304. [Google Scholar] [CrossRef]
- Mostafa, M.Y.A.; Zakaly, H.M.H.; Tekin, H.O.; Issa, S.A.M.; Erdemir, R.U.; Zhukovsky, M. Assessment of absorbed dose for Zr-89, Sm-153 and Lu-177 medical radioisotopes: IDAC-Dose2.1 and OLINDA experience. Appl. Radiat. Isot. 2021, 176, 109841. [Google Scholar] [CrossRef] [PubMed]
- Eckerman, K.F.; Leggett, R.W. WinAct1.0; Winact Technologies Pvt. Ltd.: Hyderabad, India, 2002. [Google Scholar]
- Zakaly, H.M.H.; Mostafa, M.Y.A.; Zhukovsky, M. Dosimetry Assessment of Injected 89Zr-Labeled Monoclonal Antibodies in Humans. Radiat. Res. 2019, 191, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Zakaly, H.M.H.; Mostafa, M.Y.A.; Zhukovsky, M.V. Radiopharmaceutical Dose Distribution in Different Organs and Tissues for Lu-177 with Different Carrier. In Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc., 2019; Volume 2174, p. 20029. Available online: https://aip.scitation.org/doi/abs/10.1063/1.5134421 (accessed on 27 February 2023).
- Liniecki, J.; Martin, C.J.; Rehani, M.M.; Vetter, R.J.; Vañó, E.; Rosenstein, M. Chapters 1–5. Ann. ICRP 2011, 39, 15–49. [Google Scholar] [CrossRef]
- Zhukovsky, M.V.; Zakaly, H.M.H. Dose Coefficients for Monoclonal Antibodies and Antibody Fragments Labeled By Zirconium-89. RAD Assoc. J. 2019, 3, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xie, X.; Qu, D.; Ning, J.; Zhou, H.; Pan, J.; Yang, G. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model. J. Radiat. Res. 2016, 57, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Azadbakht, B.; Afarideh, H.; Ghannadi-Maragheh, M.; Bahrami-Samani, A.; Yousefnia, H. Absorbed doses in humans from188Re-Rituximab in the free form and bound to superparamagnetic iron oxide nanoparticles: Biodistribution study in mice. Appl. Radiat. Isot. 2018, 131, 96–102. [Google Scholar] [CrossRef]
- Andersson, M.; Johansson, L.; Eckerman, K.; Mattsson, S. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017, 7, 88. [Google Scholar] [CrossRef] [Green Version]
Tissue | 1-h | 5-h | 24-h | 48-h |
---|---|---|---|---|
Blood | 25.27 ± 3.01 | 15.90 ± 1.44 | 4.71 ± 0.53 | 1.95 ± 0.30 |
Muscle | 1.63 ± 0.35 | 1.48 ± 0.41 | 1.41 ± 0.73 | 0.77 ± 0.30 |
Lung | 7.69 ± 1.33 | 5.63 ± 1.25 | 3.11 ± 0.39 | 2.55 ± 0.30 |
Liver | 4.73 ± 0.74 | 4.48 ± 0.45 | 4.43 ± 0.40 | 4.73 ± 0.98 |
Spleen | 4.25 ± 0.59 | 3.48 ± 0.82 | 3.41 ± 0.70 | 4.07 ± 0.85 |
Stomach | 2.63 ± 0.85 | 2.32 ± 0.53 | 1.25 ± 0.35 | 0.94 ± 0.26 |
Intestine | 2.73 ± 0.41 | 2.81 ± 0.33 | 1.18 ± 0.22 | 1.00 ± 0.22 |
Kidney | 6.89 ± 1.22 | 5.77 ± 0.73 | 5.80 ± 0.81 | 5.37 ± 0.95 |
Bone | 6.38 ± 1.89 | 11.76 ± 4.31 | 20.67 ± 6.35 | 28.63 ± 9.63 |
Brain | 0.79 ± 0.18 | 0.37 ± 0.08 | 0.21 ± 0.06 | 0.14 ± 0.02 |
Inflammation | 3.29 ± 0.94 | 6.28 ± 1.34 | 9.04 ± 2.68 | 7.96 ± 0.94 |
Tumor | 5.27 ± 1.16 | 9.13 ± 1.85 | 7.45 ± 0.81 | 6.22 ± 0.73 |
Inflammation/Blood | 0.13 ± 0.03 | 0.39 ± 0.06 | 1.94 ± 0.64 | 4.09 ± 0.27 |
Inflammation/Muscle | 2.19 ± 1.17 | 4.50 ± 1.59 | 6.90 ± 1.57 | 11.14 ± 3.07 |
Tumor/Blood | 0.21 ± 0.06 | 0.57 ± 0.08 | 1.59 ± 0.25 | 3.20 ± 0.24 |
Tumor/Muscle | 3.44 ± 1.41 | 6.36 ± 1.22 | 5.99 ± 1.87 | 8.68 ± 2.27 |
Organ | Organ to Blood | Blood to Organ |
---|---|---|
Blood | 0.000 | 1.937 |
Muscle | 0.312 | 0.391 |
Lung | 0.684 | 1.846 |
Liver | 18.222 | 1.135 |
Spleen | 17.014 | 1.020 |
Stomach | 0.613 | 0.631 |
Intestine | 0.579 | 0.655 |
Kidney | 11.716 | 1.654 |
Bone | 21.540 | |
Brain | 1.451 | 0.190 |
Inflammation | 6.602 | |
Tumor | 0.000 | 10.354 |
Organ Mass in Humans (g) | Organ Mass in Mice (g) | Coefficient from Mouse to Human | |
---|---|---|---|
Organs | Male | Male | Male |
Liver | 2360 | 2.01 | 0.45 |
Kidney | 422 | 0.48 | 0.34 |
Spleen | 228 | 0.13 | 0.66 |
Muscles | 29,784 | 17.12 | 0.67 |
Brains | 1517 | 0.44 | 1.32 |
Bone | 10,000 | 1.82 | 2.11 |
Lungs | 1200 | 0.10 | 4.81 |
Stomach | 150 | 0.17 | 0.34 |
Small intestine | 640 | 0.88 | 0.28 |
Urinary bladder | 51.10 | 0.14 | 0.14 |
Blood | 5500 | 2.45 | 0.86 |
Tumor | 62.4002 | 0.024 | 1.00 |
Inflammation | 62.4002 | 0.024 | 1.00 |
Total weight | 70,000 | 26.92 | 1.00 |
Mice | Human | |
---|---|---|
Time (h) | 2400 | |
Blood | 7627.13 | 6581.577 |
Muscle | 23,017.23 | 15,404.01 |
Lung | 361.6992 | 1738.933 |
Liver | 2138.64 | 965.7819 |
Spleen | 309.5136 | 205.6203 |
Stomach | 240.1464 | 0.34 |
si_cont | 157.7151 | 44.21649 |
Kidneys | 123.5917 | 41.96616 |
Bone | 106,253.4 | 224,541.7 |
Brain | 93.24432 | 123.0867 |
Inflammation | 225.7128 | 225.7128 |
Tumor | 19.64088 | 19.64088 |
ub_cont | 742.4852 | 106.5157 |
Organs (mGy/MBq) | Adult Male | Adult Female |
---|---|---|
Adrenals | 0.211 | 0.325 |
Alveolar–interstitial | 0.303 | 0.331 |
Brain | 0.314 | 0.356 |
Breast | 0.074 | 0.1 |
Colon wall | 0.132 | 0.166 |
Endosteum or bone surface | 0.48 | 0.613 |
Gallbladder wall | 0.124 | 0.226 |
Heart wall | 0.2 | 0.22 |
Kidneys | 0.164 | 0.203 |
Left colon wall | 0.103 | 0.162 |
Liver | 0.164 | 0.19 |
Lung | 0.269 | 0.316 |
Lymphatic nodes | 0.213 | 0.243 |
Muscle | 0.204 | 0.271 |
Esophagus | 0.323 | 0.379 |
Oral mucosa | 0.338 | 0.483 |
Ovaries | 0 | 0.233 |
Pancreas | 0.149 | 0.178 |
Prostate | 0.211 | 0 |
Recto-sigmoid colon wall | 0.206 | 0.186 |
Red bone marrow | 0.478 | 0.535 |
Right-colon wall | 0.125 | 0.161 |
Skin | 0.117 | 0.134 |
Small intestine wall | 0.15 | 0.172 |
Spleen | 0.223 | 0.22 |
Stomach wall | 0.127 | 0.146 |
Testes | 0.082 | 0 |
Thymus | 0.272 | 0.269 |
Thyroid | 0.261 | 0.284 |
Ureters | 0.2 | 0.276 |
Urinary bladder wall | 0.21 | 0.224 |
Uterus/cervix | 0 | 0.209 |
Effective dose 60 (mSv/MBq) | 0.205 | 0.266 |
Effective dose 103 (mSv/MBq) | 0.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, A.M.A.; Zakaly, H.M.H.; Issa, S.A.M.; Uosif, M.A.M.; Alrowaili, Z.A.; Zhukovsky, M.V. Exploring the Potential of Zirconium-89 in Diagnostic Radiopharmaceutical Applications: An Analytical Investigation. Biomedicines 2023, 11, 1173. https://doi.org/10.3390/biomedicines11041173
Mostafa AMA, Zakaly HMH, Issa SAM, Uosif MAM, Alrowaili ZA, Zhukovsky MV. Exploring the Potential of Zirconium-89 in Diagnostic Radiopharmaceutical Applications: An Analytical Investigation. Biomedicines. 2023; 11(4):1173. https://doi.org/10.3390/biomedicines11041173
Chicago/Turabian StyleMostafa, Ahmed M. A., Hesham M. H. Zakaly, Shams A. M. Issa, Mohamed A. M. Uosif, Ziyad A. Alrowaili, and Michael V. Zhukovsky. 2023. "Exploring the Potential of Zirconium-89 in Diagnostic Radiopharmaceutical Applications: An Analytical Investigation" Biomedicines 11, no. 4: 1173. https://doi.org/10.3390/biomedicines11041173
APA StyleMostafa, A. M. A., Zakaly, H. M. H., Issa, S. A. M., Uosif, M. A. M., Alrowaili, Z. A., & Zhukovsky, M. V. (2023). Exploring the Potential of Zirconium-89 in Diagnostic Radiopharmaceutical Applications: An Analytical Investigation. Biomedicines, 11(4), 1173. https://doi.org/10.3390/biomedicines11041173