Is Cataract in Patients under 60 Years Associated with Oxidative Stress?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurement of Oxidative Stress Parameters
2.2.1. Determination of Superoxide Dismutase Activity
2.2.2. Determination of CAT Activity
2.2.3. Determination of GPx Activity
2.2.4. Determination of MDA Concentration in Plasma and Red Blood Cells
2.2.5. Determination of Vitamin A and E Concentrations in Plasma
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef]
- Khairallah, M.; Kahloun, R.; Bourne, R.; Limburg, H.; Flaxman, S.R.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; et al. Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6762–6769. [Google Scholar] [CrossRef] [PubMed]
- Vashist, P.; Talwar, B.; Gogoi, M.; Maraini, G.; Camparini, M.; Ravindran, R.D.; Murthy, G.V.; Fitzpatrick, K.E.; John, N.; Chakravarthy, U.; et al. Prevalence of cataract in an older population in India: The India study of age-related eye disease. Ophthalmology 2011, 118, 272–278.e2. [Google Scholar] [CrossRef]
- Krishnaiah, S.; Vilas, K.; Shamanna, B.R.; Rao, G.N.; Thomas, R.; Balasubramanian, D. Smoking and its association with cataract: Results of the Andhra Pradesh eye disease study from India. Investig. Ophthalmol. Vis. Sci. 2005, 46, 58–65. [Google Scholar] [CrossRef]
- Lamoureux, E.L.; Fenwick, E.; Pesudovs, K.; Tan, D. The impact of cataract surgery on quality of life. Curr. Opin. Ophthalmol. 2011, 22, 19–27. [Google Scholar] [CrossRef]
- Truscott, R.J. Age-related nuclear cataract-oxidation is the key. Exp. Eye Res. 2005, 80, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.D.; Devamanoharan, P.S.; Morris, S.M. Prevention of cataracts by nutritional and metabolic antioxidants. Crit. Rev. Food Sci. Nutr. 1995, 35, 111–129. [Google Scholar] [CrossRef]
- Spector, A.; Wang, G.M.; Wang, R.R. A brief photochemically induced oxidative insult causes irreversible lens damage and cataract. II. Mechanism of action. Exp. Eye Res. 1995, 60, 483–493. [Google Scholar] [CrossRef]
- Gupta, S.K.; Trivedi, D.; Srivastava, S. Lycopene attenuates oxidative stress induced experimental cataract development: An in vitro and in vivo study. Nutrition 2003, 19, 794–799. [Google Scholar] [CrossRef]
- Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R18–R36. [Google Scholar] [CrossRef]
- Simon, H.; Zieve, D. New York: Time Health Guide. Cataract-Risk Factors. Available online: http://health.nytimes.com/health/guides/disease/cataract/risk-factors.html (accessed on 16 April 2011).
- Li, L.; Duker, J.S.; Yoshida, Y.; Niki, E.; Rasmussen, H.; Russell, R.M.; Yeum, K.-J. Oxidative stress and antioxidant status in older adults with early cataract. Eye 2009, 23, 1464–1468. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.J.; Chen, Y.N.; Tsao, Y.T.; Cheng, C.M.; Wu, W.C.; Chen, H.C. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int. J. Mol. Sci. 2022, 23, 1255. [Google Scholar] [CrossRef] [PubMed]
- Vîrgolici, B.; Stoian, I.; Muscurel, C.; Mărăcine, M.; Popescu, L.; Moraru, C.; Dinu, V. Systemic redox modifications in senile cataract. Rom. J. Intern. Med. 2009, 47, 279–287. [Google Scholar] [PubMed]
- Kharb, S.; Singh, V.; Ghalaut, P.S.; Sharma, A.; Singh, G.P. Glutathione levels in health and sickness. Indian. J. Med. Sci. 2000, 54, 52–54. [Google Scholar]
- Ohmori, K.; Ebihara, S.; Kuriyama, S.; Ugajin, T.; Ogata, M.; Hozawa, A.; Matsui, T.; Tsubono, Y.; Arai, H.; Sasaki, H.; et al. The relationship between body mass index and a plasma lipid peroxidation biomarker in an older, healthy Asian community. Ann. Epidemiol. 2005, 15, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Beers, R.F.; Sizer, J. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- Bartoli, M.L.; Novelli, F.; Costa, F.; Malagrinò, L.; Melosini, L.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Di Franco, A.; Vagaggini, B.; et al. Malondialdehyde in Exhaled Breath Condensate as a Marker of Oxidative Stress in Different Pulmonary Diseases. Mediat. Inflamm. 2011, 2011, 891752. [Google Scholar] [CrossRef] [PubMed]
- Wielinski, S.; Olszanowski, A. Simultaneous determination of retinol acetate, retinol palmitate, cholecalciferol, α-tocopherol acetate and alphacalcidol in capsules by non-aqueous reversed-phase HPLC and column backflushing. Chromatographia 1999, 50, 109–112. [Google Scholar] [CrossRef]
- Sergent, O.; Morel, I.; Cogrel, P.; Chevanne, M.; Pasdeloup, N.; Brissot, P.; Lescoat, G.; Cillard, P.; Cillard, J. Simultaneous measurements of conjugated dienes and free malondialdehyde, used as a micromethod for the evaluation of lipid peroxidation in rat hepatocyte cultures. Chem. Phys. Lipids 1993, 65, 133–139. [Google Scholar] [CrossRef]
- Buss, H.; Chan, T.P.; Sluis, K.B.; Domigan, N.M.; Winterbourn, C.C. Protein carbonyl measurement by a sensitive ELISA method. Free Radic. Biol. Med. 1997, 23, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Artur, Y.; Herbeth, B.; Guémouri, L.; Lecomte, E.; Jeandel, C.; Siest, G. Age-related variations of enzymatic defenses against free radicals and peroxides. EXT 1992, 62, 359–367. [Google Scholar]
- Boscia, F.; Grattagliano, I.; Vendemiale, G.; Micelli-Ferrari, T.; Altomare, E. Protein oxidation and lens opacity in humans. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2461–2465. [Google Scholar]
- Chang, D.; Zhang, X.; Rong, S.; Sha, Q.; Liu, P.; Han, T.; Pan, H. Serum antioxidative enzymes levels and oxidative stress products in age-related cataract patients. Oxid. Med. Cell. Longev. 2013, 2013, 587826. [Google Scholar] [CrossRef]
- Woźniak, A. Signs of oxidative stress after exercise. Biol. Sport 2003, 20, 93–113. [Google Scholar]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Zarkovic, N.; Cipak, A.; Jaganjac, M.; Borovic, S.; Zarkovic, K. Pathophysiological relevance of aldehydic protein modifications. J. Proteom. 2013, 92, 239–247. [Google Scholar] [CrossRef]
- Pizzimenti, S.; Ciamporcero, E.; Daga, M.; Pettazzoni, P.; Arcaro, A.; Cetrangolo, G.; Minelli, R.; Dianzani, C.; Lepore, A.; Gentile, F.; et al. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front. Physiol. 2013, 4, 242. [Google Scholar] [CrossRef]
- Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher, J.; Grune, T.; et al. Pathological aspects of lipid peroxidation. Free Radic. Res. 2010, 44, 1125–1171. [Google Scholar] [CrossRef]
- Thiagarajan, R.; Manikandan, R. Antioxidants and cataract. Free Radic. Res. 2013, 47, 337–345. [Google Scholar] [CrossRef]
- Babizhayev, M.A. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: Disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Cell Biochem. Funct. 2011, 29, 183–206. [Google Scholar]
- Bartfay, W.; Bartfay, E. A case-control study examining the effects of active versus sedentary lifestyles on measures of body iron burden and oxidative stress in postmenopausal women. Biol. Res. Nurs. 2014, 16, 38–45. [Google Scholar] [CrossRef]
- Nam, S.W.; Lim, D.H.; Cho, K.Y.; Kim, H.S.; Kim, K.; Chung, T.Y. Risk factors of presenile nuclear cataract in health screening study. BMC Ophthalmol. 2018, 18, 263. [Google Scholar]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Gartaganis, S.P.; Georgakopoulos, C.D.; Patsoukis, N.E.; Gotsis, S.S.; Gartaganis, V.S.; Georgiou, C.D. Glutathione and lipid peroxide changes in pseudoexfoliation syndrome. Curr. Eye Res. 2005, 30, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Selin, J.Z.; Lindblad, B.E.; Rautiainen, S.; Michaëlsson, K.; Morgenstern, R.; Bottai, M.; Basu, S.; Wolk, A. Are increased levels of systemic oxidative stress and inflammation associated with age-related cataract? Antioxid. Redox Signal. 2014, 21, 700–704. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.; Xie, Z.; Wu, W.; Zhang, D. Vitamin E and risk of age-related cataract: A meta-analysis. Public Health Nutr. 2015, 18, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- Teikari, J.M.; Rautalahti, M.; Haukka, J.; Järvinen, P.; Hartman, A.M.; Virtamo, J.; Albanes, D.; Heinonen, O. Incidence of cataract operations in Finnish male smokers unaffected by alpha tocopherol or beta carotene supplements. J. Epidemiol. Community Health 1998, 52, 468–472. [Google Scholar] [CrossRef]
- Delcourt, C.; Carrière, I.; Delage, M.; Descomps, B.; Cristol, J.P.; Papoz, L. Associations of cataract with antioxidant enzymes and other risk factors: The French age-related eye diseases (POLA) prospective study. Ophthalmology 2003, 110, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Age Related Eye Disease Group. Risk factors associated with age-related nuclear and cortical cataract: A case-control study in the Age-Related Eye Disease Study, AREDS Report No. 5. Ophthalmology 2001, 108, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Chitra, P.S.; Chaki, D.; Boiroju, N.K.; Mokalla, T.R.; Gadde, A.K.; Agraharam, S.G.; Reddy, G.B. Status of oxidative stress markers, advanced glycation index, and polyol pathway in age-related cataract subjects with and without diabetes. Exp. Eye Res. 2020, 200, 108230. [Google Scholar] [CrossRef] [PubMed]
- Chandrasena, L.G.; Chackrewarthy, S.; Perera, P.T.; de Silva, D. Erythrocyte antioxidant enzymes in patients with cataract. Ann. Clin. Lab. Sci. 2006, 36, 201–204. [Google Scholar] [PubMed]
- Kaur, J.; Kukreja, S.; Kaur, A.; Malhotra, N.; Kaur, R. The oxidative stress in cataract patients. J. Clin. Diagn. Res. 2012, 6, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): Design implications. AREDS report no. 1. Control Clin. Trials 1999, 20, 573–600. [Google Scholar] [CrossRef]
Demographics | Cataract Patients | Control Group |
---|---|---|
N | 28 | 37 |
Age (years) | 53 ± 9.2 | 53 ± 9.3 |
Sex (F/M) | 17/11 | 22/15 |
BMI | 26.3 ± 3.1 | 25.7 ± 3.8 |
Systolic blood pressure (mm Hg) | 129 ± 14 | 131 ± 13 |
Diastolic blood pressure (mm Hg) | 78 ± 6 | 78 ± 8 |
Enzyme | Cataract Patients | Control Group | p |
---|---|---|---|
SOD (U/g Hb) | 689.88 ± 74.47 | 763.52 ± 77.62 | 0.000511 |
CAT (104 IU/gHb) | 59.22 ± 11.35 | 60.91 ± 10.90 | 0.56 |
GPx (U/g Hb) | 7.34 ± 4.72 | 9.60 ± 4.76 | 0.02 |
Vitamin A (µg/L) | 32.40 ± 10.56 | 38.26 ± 7.75 | 0.022 |
Vitamin E (µg/L) | 919.04 ± 330.85 | 2288.23 ± 1044.12 | 0.000006 |
Cataract Patients | Control Group | p | |
---|---|---|---|
MDA in plasma (nmol/dL) | 0.803 ± 0.231 | 0.535 ± 0.113 | 0.000001 |
MDA in erythrocytes (nmol/gHb) | 0.546 ± 0.128 | 0.366 ± 0.099 | 0.0000001 |
CD in plasma (Abs./mL) | 0.022 ± 0.010 | 0.025 ± 0.010 | 0.2725 |
PC in plasma (U/mL) | 475.30 ± 136.41 | 142.17 ± 47.63 | 0.00000013 |
Parameters | r | p |
---|---|---|
Cataract patients | ||
MDA in plasma/MDA in erythrocytes | 0.438 | 0.032 |
GPx/CAT | 0.530 | 0.008 |
SOD/GPx | 0.429 | 0.037 |
CAT/PC | −0.663 | 0.004 |
CD/PC | 0.629 | 0.007 |
Control group | ||
SOD/GPx | 0.408 | 0.012 |
SOD (U/g Hb) | CAT (104 IU/g Hb) | GPx (U/g Hb) | Vitamin A (µg/L) | Vitamin E (µg/L) | MDA in Plasma (nmol/dL) | MDA in Erythrocytes (nmol/g Hb) | CD in Plasma (Abs./mL) | PC in Plasma (U/mL) | |
---|---|---|---|---|---|---|---|---|---|
Coef./p-Value | Coef./p-Value | Coef./p-Value | Coef./p-Value | Coef./p-Value | Coef./p-Value | Coef./p-Value | Coef./p-Value | Coef./p-Value | |
Study group (1—cataract patients, 0—control group) | −0.82/<0.001 | −0.17/0.419 | −0.52/0.031 | −0.47/0.029 | −0.98/<0.001 | 1.33/<0.001 | 1.20/<0.001 | −0.20/0.447 | 1.05/<0.001 |
Gender (1—Male, 0—Female) | −0.74/0.001 | 0.48/0.033 | −0.34/0.111 | ||||||
Age (years) | 0.19/0.067 | 0.22/0.057 | 0.18/0.12 | −0.22/0.071 | |||||
BMI (kg/m2) | 0.18/0.192 | 0.09/0.46 | −0.10/0.307 | ||||||
Systolic blood presure (mm Hg) | −0.21/0.146 | −0.07/0.535 | −0.10/0.313 | −0.05/0.665 | |||||
Diastolic blood presure (mm Hg) | 0.16/0.195 | −0.24/0.044 | −0.19/0.106 | 0.18/0.055 | 0.22/0.082 | 0.18/0.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesiewska, H.; Woźniak, A.; Reisner, P.; Czosnyka, K.; Stachura, J.; Malukiewicz, G. Is Cataract in Patients under 60 Years Associated with Oxidative Stress? Biomedicines 2023, 11, 1286. https://doi.org/10.3390/biomedicines11051286
Lesiewska H, Woźniak A, Reisner P, Czosnyka K, Stachura J, Malukiewicz G. Is Cataract in Patients under 60 Years Associated with Oxidative Stress? Biomedicines. 2023; 11(5):1286. https://doi.org/10.3390/biomedicines11051286
Chicago/Turabian StyleLesiewska, Hanna, Alina Woźniak, Paweł Reisner, Krzysztof Czosnyka, Joanna Stachura, and Grażyna Malukiewicz. 2023. "Is Cataract in Patients under 60 Years Associated with Oxidative Stress?" Biomedicines 11, no. 5: 1286. https://doi.org/10.3390/biomedicines11051286
APA StyleLesiewska, H., Woźniak, A., Reisner, P., Czosnyka, K., Stachura, J., & Malukiewicz, G. (2023). Is Cataract in Patients under 60 Years Associated with Oxidative Stress? Biomedicines, 11(5), 1286. https://doi.org/10.3390/biomedicines11051286