Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Fuzzy Oil Drop Model Description
2.3. Programs Used
3. Results
- Analysis of exemplary structures of different proteins:
- 1.1.
- globular one (distribution O close to T distribution, K = 0.0),
- 1.2.
- protein acting in periplasmic environment (hydrophobic core absent = K = 0.7)
- 1.3.
- membrane domain of transmembrane protein playing the role of channel—hydrophobicity distribution opposite to micelle-like—exposure of hydrophobicity on the surface.
- Analysis of the amyloid forms of A-Syn structures available in PDB [16].
3.1. Exemplary Proteins of Different Status in the FOD-M Model Assessment
3.1.1. Proteins with a High Degree of Micelle-like Order
3.1.2. Protein Folded in the Periplasmic Environment
3.1.3. The Influence of the Membrane Environment Expressed by the Value of the K Parameter
3.2. Analysis of A-Syn Amyloid Forms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goedert, M. Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2001, 2, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Norris, E.H.; Giasson, B.I.; Lee, V.M.-Y. α-Synuclein: Normal Function and Role in Neurodegenerative Diseases. Curr. Top. Dev. Biol. 2004, 60, 17–54. [Google Scholar] [CrossRef] [PubMed]
- Bougea, A. Synuclein in neurodegeneration. Adv. Clin. Chem. 2021, 103, 97–134. [Google Scholar] [CrossRef] [PubMed]
- Surguchev, A.A.; Emamzadeh, F.N.; Surguchov, A. Cell Responses to Extracellular α-Synuclein. Molecules 2019, 24, 305. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Goedert, M. Neurodegeneration and the ordered assembly of alpha-synuclein. Cell Tissue Res. 2018, 373, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Jucker, M.; Walker, L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013, 501, 45–51. [Google Scholar] [CrossRef]
- Lavedan, C. The Synuclein Family. Genome Res. 1998, 8, 871–880. [Google Scholar] [CrossRef]
- Barinova, K.V.; Kuravsky, M.L.; Arutyunyan, A.M.; Serebryakova, M.V.; Schmalhausen, E.V.; Muronetz, V.I. Dimerization of Tyr136Cys alpha-synuclein prevents amyloid transformation of wild type alpha-synuclein. Int. J. Biol. Macromol. 2017, 96, 35–43. [Google Scholar] [CrossRef]
- Williams, J.K.; Yang, X.; Baum, J. Interactions between the Intrinsically Disordered Proteins β-Synuclein and α-Synuclein. Proteomics 2018, 18, e1800109. [Google Scholar] [CrossRef]
- Köppen, J.; Schulze, A.; Machner, L.; Wermann, M.; Eichentopf, R.; Guthardt, M.; Hähnel, A.; Klehm, J.; Kriegeskorte, M.-C.; Hartlage-Rübsamen, M.; et al. Amyloid-Beta Peptides Trigger Aggregation of Alpha-Synuclein In Vitro. Molecules 2020, 25, 580. [Google Scholar] [CrossRef]
- Sawner, A.S.; Ray, S.; Yadav, P.; Mukherjee, S.; Panigrahi, R.; Poudyal, M.; Patel, K.; Ghosh, D.; Kummerant, E.; Kumar, A.; et al. Modulating α-Synuclein Liquid–Liquid Phase Separation. Biochemistry 2021, 60, 3676–3696. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.N.; Hirpa, D.; Zheng, K.H.; Banerjee, R.; Gunawardena, S. The Non-amyloidal Component Region of α-Synuclein Is Important for α-Synuclein Transport Within Axons. Front. Cell. Neurosci. 2020, 13, 540. [Google Scholar] [CrossRef] [PubMed]
- Roterman, I.; Stapor, K.; Fabian, P.; Konieczny, L.; Banach, M. Model of Environmental Membrane Field for Transmembrane Proteins. Int. J. Mol. Sci. 2021, 22, 3619. [Google Scholar] [CrossRef] [PubMed]
- Roterman, I.; Stapor, K.; Fabian, P.; Konieczny, L. The Functional Significance of Hydrophobic Residue Distribution in Bacterial Beta-Barrel Transmembrane Proteins. Membranes 2021, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Roterman, I.; Stapor, K.; Fabian, P.; Konieczny, L. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Int. J. Mol. Sci. 2021, 22, 10587. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Li, B.; Ge, P.; Murray, K.A.; Sheth, P.; Zhang, M.; Nair, G.; Sawaya, M.R.; Shin, W.S.; Boyer, D.R.; Ye, S.; et al. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat. Commun. 2018, 9, 3609. [Google Scholar] [CrossRef]
- Guerrero-Ferreira, R.; Taylor, N.M.; Arteni, A.-A.; Kumari, P.; Mona, D.; Ringler, P.; Britschgi, M.; Lauer, M.E.; Makky, A.; Verasdonck, J.; et al. Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. eLife 2019, 8, e48907. [Google Scholar] [CrossRef]
- Boyer, D.R.; Li, B.; Sun, C.; Fan, W.; Zhou, K.; Hughes, M.P.; Sawaya, M.R.; Eisenberg, D.S.J. The α-synuclein hereditary mutation E46K unlocks a more stable, pathogenic fibril structure. Proc. Natl. Acad. Sci. USA 2020, 117, 3592–3602. [Google Scholar] [CrossRef]
- Hojjatian, A.; Dasari, A.K.R.; Sengupta, U.; Taylor, D.; Daneshparvar, N.; Yeganeh, F.A.; Dillard, L.; Michael, B.; Griffin, R.G.; Borgnia, M.; et al. Distinct cryo-EM Structure of α-synuclein Filaments derived by Tau. biorxiv 2021. [Google Scholar] [CrossRef]
- Lövestam, S.; Schweighauser, M.; Matsubara, T.; Murayama, S.; Tomita, T.; Ando, T.; Hasegawa, K.; Yoshida, M.; Tarutani, A.; Hasegawa, M.; et al. Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. FEBS Open Bio 2021, 11, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- McGlinchey, R.P.; Ni, X.; Shadish, J.A.; Jiang, J.; Lee, J.C. The N terminus of α-synuclein dictates fibril formation. Proc. Natl. Acad. Sci. USA 2021, 118, e2023487118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, C.; Luo, F.; Liu, Z.; Gui, X.; Luo, Z.; Zhang, X.; Li, D.; Liu, C.; Li, X. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 2018, 28, 897–903. [Google Scholar] [CrossRef]
- Zhao, K.; Li, Y.; Liu, Z.; Long, H.; Zhao, C.; Luo, F.; Sun, Y.; Tao, Y.; Su, X.-D.; Li, D.; et al. Parkinson’s disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nat. Commun. 2020, 11, 2643. [Google Scholar] [CrossRef]
- Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A.G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K.; et al. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. eLife 2020, 9, e56825. [Google Scholar]
- Guerrero-Ferreira, R.; Taylor, N.M.; Mona, D.; Ringler, P.; Lauer, M.E.; Riek, R.; Britschgi, M.; Stahlberg, H. Cryo-EM structure of alpha-synuclein fibrils. elife 2018, 7, e36402. [Google Scholar] [CrossRef]
- Ni, X.; McGlinchey, R.P.; Jiang, J.; Lee, J.C. Structural Insights into α-Synuclein Fibril Polymorphism: Effects of Parkinson’s Disease-Related C-Terminal Truncations. J. Mol. Biol. 2019, 431, 3913–3919. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Long, H.; Xia, W.; Wang, K.; Zhang, X.; Sun, B.; Cao, Q.; Zhang, Y.; Bin Dai, B.; Li, D.; et al. The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein. Nat. Commun. 2021, 12, 6252. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, S.; Zhao, K.; Long, H.; Liu, Z.; Gao, J.; Zhang, Y.; Su, X.-D.; Li, D.; Liu, C. Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation. Cell Res. 2020, 30, 360–362. [Google Scholar] [CrossRef]
- Boyer, D.R.; Li, B.; Sun, C.; Fan, W.; Sawaya, M.R.; Jiang, L.; Eisenberg, D.S. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nat. Struct. Mol. Biol. 2019, 26, 1044–1052. [Google Scholar] [CrossRef]
- Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A.G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K.; et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 2020, 585, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Zheng, W.; Liu, Y.; Sun, Y.; Zhao, K.; Liu, Z.; Xia, W.; Lv, S.; Liu, Z.; Li, D.; et al. Wild-type α-synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. Proc. Natl. Acad. Sci. USA 2021, 118, e2012435118. [Google Scholar] [CrossRef]
- Tuttle, M.D.; Comellas, G.; Nieuwkoop, A.J.; Covell, D.J.; Berthold, D.A.; Kloepper, K.D.; Courtney, J.M.; Kim, J.K.; Barclay, A.M.; Kendall, A.; et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 2016, 23, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M. A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 1976, 104, 59–107. [Google Scholar] [CrossRef] [PubMed]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Banach, M.; Konieczny, L.; Roterman, I. Why do antifreeze proteins require a solenoid? Biochimie 2018, 144, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Stapor, K.; Konieczny, L.; Fabian, P.; Roterman, I. Downhill, Ultrafast and Fast Folding Proteins Revised. Int. J. Mol. Sci. 2020, 21, 7632. [Google Scholar] [CrossRef]
- Sałapa, K.; Kalinowska, B.; Jadczyk, T.; Roterman, I. Measurement of Hydrophobicity Distribution in Proteins-Non-redundant Protein Data Bank. Bams 2012, 8, 327–338. [Google Scholar] [CrossRef]
- Dułak, D.; Gadzała, M.; Banach, M.; Konieczny, L.; Roterman, I. Alternative Structures of α-Synuclein. Molecules 2020, 25, 600. [Google Scholar] [CrossRef]
- Roterman, I.; Dułak, D.; Gadzała, M.; Banach, M.; Konieczny, L. Structural analysis of the Aβ(11–42) amyloid fibril based on hydrophobicity distribution. J. Comput. Mol. Des. 2019, 33, 665–675. [Google Scholar] [CrossRef]
- Available online: https://www.ks.uiuc.edu/Research/vmd/ (accessed on 1 July 2022).
- Johansson, M.U.; de Château, M.; Wikström, M.; Forsén, S.; Drakenberg, T.; Björck, L. Solution structure of the albumin-binding GA module: A versatile bacterial protein domain. J. Mol. Biol. 1997, 266, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.L.; Lamosa, P.; Rodríguez, A.; Martínez, B. Structure and properties of lactococcin 972 from lact lactis. J. Mol. Struct. 2013, 1031, 207–210. [Google Scholar] [CrossRef]
- Roterman, I.; Sieradzan, A.; Stapor, K.; Fabian, P.; Wesołowski, P.; Konieczny, L. On the need to introduce environmental characteristics in ab initio protein structure prediction using a coarse-grained UNRES force field. J. Mol. Graph. Model. 2022, 114, 108166. [Google Scholar] [CrossRef]
- Lai, J.Y.; Poon, Y.S.; Kaiser, J.T.; Rees, D.C. Open and shut: Crystal structures of the dodecylmaltoside solubilized mechanosensitive channel of small conductance from Escherichia coli and Helicobacter pylori at 4.4 Å and 4.1 Å resolutions. Protein Sci. 2013, 22, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Prymula, K.; Jadczyk, T.; Roterman, I. Catalytic residues in hydrolases: Analysis of methods designed for ligand-binding site prediction. J. Comput. Mol. Des. 2011, 25, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Dygut, J.; Kalinowska, B.; Banach, M.; Piwowar, M.; Konieczny, L.; Roterman, I. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes. Int. J. Mol. Sci. 2016, 17, 1741. [Google Scholar] [CrossRef]
- Relini, A.; Cavalleri, O.; Rolandi, R.; Gliozzi, A. The two-fold aspect of the interplay of amyloidogenic proteins with lipid membranes. Chem. Phys. Lipids 2009, 158, 1–9. [Google Scholar] [CrossRef]
- O’Leary, E.I.; Lee, J.C. Interplay between α-synuclein amyloid formation and membrane structure. Biochim. Biophys. Acta-Proteins Proteom. 2019, 1867, 483–491. [Google Scholar] [CrossRef]
- So, M.; Kimura, Y.; Yamaguchi, K.; Sugiki, T.; Fujiwara, T.; Aguirre, C.; Ikenaka, K.; Mochizuki, H.; Kawata, Y.; Goto, Y. Polyphenol-solubility alters amyloid fibril formation of α-synuclein. Protein Sci. 2021, 30, 1701–1713. [Google Scholar] [CrossRef]
- Ziaunys, M.; Sakalauskas, A.; Mikalauskaite, K.; Smirnovas, V. Polymorphism of Alpha-Synuclein Amyloid Fibrils Depends on Ionic Strength and Protein Concentration. Int. J. Mol. Sci. 2021, 22, 12382. [Google Scholar] [CrossRef]
- Toleikis, Z.; Ziaunys, M.; Baranauskiene, L.; Petrauskas, V.; Jaudzems, K.; Smirnovas, V. S100A9 Alters the Pathway of Alpha-Synuclein Amyloid Aggregation. Int. J. Mol. Sci. 2021, 22, 7972. [Google Scholar] [CrossRef] [PubMed]
- Gilan, S.S.T.; Rayat, D.Y.; Mustafa, T.A.; Aziz, F.M.; Shahpasand, K.; Akhtari, K.; Salihi, A.; Abou-Zied, O.K.; Falahati, M. α-synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency. Int. J. Nanomed. 2019, 14, 4637–4648. [Google Scholar] [CrossRef] [PubMed]
- Cholak, E.; Bucciarelli, S.; Bugge, K.; Johansen, N.T.; Vestergaard, B.; Arleth, L.; Kragelund, B.B.; Langkilde, A.E. Distinct α-Synuclein:Lipid Co-Structure Complexes Affect Amyloid Nucleation through Fibril Mimetic Behavior. Biochemistry 2019, 58, 5052–5065. [Google Scholar] [CrossRef] [PubMed]
- Pálmadóttir, T.; Malmendal, A.; Leiding, T.; Lund, M.; Linse, S. Charge Regulation during Amyloid Formation of α-Synuclein. J. Am. Chem. Soc. 2021, 143, 7777–7791. [Google Scholar] [CrossRef]
- Stöckl, M.; Zijlstra, N.; Subramaniam, V. α-Synuclein Oligomers: An Amyloid Pore? Insights into mechanisms of α-synuclein oligomer-lipid interactions. Mol. Neurobiol. 2013, 47, 613–621. [Google Scholar] [CrossRef]
- Di Scala, C.; Chahinian, H.; Yahi, N.; Garmy, N.; Fantini, J. Interaction of Alzheimer’s β-Amyloid Peptides with Cholesterol: Mechanistic Insights into Amyloid Pore Formation. Biochemistry 2014, 53, 4489–4502. [Google Scholar] [CrossRef]
- Medvedeva, M.; Barinova, K.; Melnikova, A.; Semenyuk, P.; Kolmogorov, V.; Gorelkin, P.; Erofeev, A.; Muronetz, V. Naturally occurring cinnamic acid derivatives prevent amyloid transformation of alpha-synuclein. Biochimie 2020, 170, 128–139. [Google Scholar] [CrossRef]
- Werner, T.; Kumar, R.; Horvath, I.; Scheers, N.; Wittung-Stafshede, P. Abundant fish protein inhibits α-synuclein amyloid formation. Sci. Rep. 2018, 8, 5465. [Google Scholar] [CrossRef]
- Wentink, A.S.; Nillegoda, N.B.; Feufel, J.; Ubartaitė, G.; Schneider, C.P.; De Los Rios, P.D.L.; Hennig, J.; Barducci, A.; Bukau, B. Molecular dissection of amyloid disaggregation by human HSP70. Nature 2021, 589, E2. [Google Scholar] [CrossRef]
- Roterman, I.; Stapor, K.; Gądek, K.; Gubała, T.; Nowakowski, P.; Fabian, P.; Konieczny, L. Dependence of Protein Structure on Environment: FOD Model Applied to Membrane Proteins. Membranes 2021, 12, 50. [Google Scholar] [CrossRef]
- Khammari, A.; Arab, S.S.; Ejtehadi, M.R. The hot sites of α-synuclein in amyloid fibril formation. Sci. Rep. 2020, 10, 2175. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.hsls.pitt.edu/obrc/index.php?page=URL1098813924Robetta (accessed on 1 July 2022).
- Available online: https://zhanggroup.org/I-TASSER/ (accessed on 1 July 2022).
- Available online: https://unres.pl/ (accessed on 1 July 2022).
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Ben-Amotz, D. Electric buzz in a glass of pure water. Science 2022, 376, 800–801. [Google Scholar] [CrossRef] [PubMed]
- Chau, E.; Kim, J.R. α-synuclein-assisted oligomerization of β-amyloid (1-42). Arch. Biochem. Biophys. 2022, 717, 109120. [Google Scholar] [CrossRef]
- Sawada, M.; Yamaguchi, K.; Hirano, M.; Noji, M.; So, M.; Otzen, D.E.; Kawata, Y.; Goto, Y. Amyloid Formation of α-Synuclein Based on the Solubility- and Supersaturation-Dependent Mechanism. Langmuir 2020, 36, 4671–4681. [Google Scholar] [CrossRef]
- Falke, M.; Victor, J.; Wördehoff, M.M.; Peduzzo, A.; Zhang, T.; Schröder, G.F.; Buell, A.K.; Hoyer, W.; Etzkorn, M. α-Synuclein-derived lipoparticles in the study of α-Synuclein amyloid fibril formation. Chem. Phys. Lipids 2019, 220, 57–65. [Google Scholar] [CrossRef]
- Burré, J.; Sharma, M.; Südhof, T.C. Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harb. Perspect. Med. 2018, 8, a024091. [Google Scholar] [CrossRef]
- Brás, I.C.; Outeiro, T.F. Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 2021, 10, 375. [Google Scholar] [CrossRef]
- Olanow, C.W.; Brundin, P. Parkinson’s Disease and Alpha Synuclein: Is Parkinson’s Disease a Prion-Like Disorder? Mov. Disord. 2013, 28, 31–40. [Google Scholar] [CrossRef]
- Schulz-Schaeffer, W.J. Is Cell Death Primary or Secondary in the Pathophysiology of Idiopathic Parkinson’s Disease? Biomolecules 2015, 5, 1467–1479. [Google Scholar] [CrossRef]
- Bernal-Conde, L.D.; Ramos-Acevedo, R.; Reyes-Hernández, M.A.; Balbuena-Olvera, A.J.; Morales-Moreno, I.D.; Argüero-Sánchez, R.; Schuele, B.; Guerra-Crespo, M. Alpha-Synuclein Physiology and Pathology: A Perspective on Cellular Structures and Organelles. Front. Neurosci. 2020, 13, 1399. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M.; Jakes, R.; Spillantini, M.G. The Synucleinopathies: Twenty Years On. J. Parkinsons Dis. 2017, 7 (Suppl. S1), S51–S69. [Google Scholar] [CrossRef] [PubMed]
- Vijiaratnam, N.; Simuni, T.; Bandmann, O.; Morris, H.R.; Foltynie, T. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021, 20, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Athauda, D.; Foltynie, T. Drug Repurposing in Parkinson’s Disease. CNS Drugs 2018, 32, 747–761. [Google Scholar] [CrossRef]
- Fletcher, E.J.R.; Kaminski, T.; Williams, G.; Duty, S. Drug repurposing strategies of relevance for Parkinson’s disease. Pharmacol. Res. Perspect. 2021, 9, e00841. [Google Scholar] [CrossRef]
- Albert, K.; Kälvälä, S.; Hakosalo, V.; Syvänen, V.; Krupa, P.; Niskanen, J.; Peltonen, S.; Sonninen, T.-M.; Lehtonen, S. Cellular Models of Alpha-Synuclein Aggregation: What Have We Learned and Implications for Future Study. Biomedicines 2022, 10, 2649. [Google Scholar] [CrossRef]
- Roterman, I.; Stapor, K.; Gądek, K.; Gubała, T.; Nowakowski, P.; Fabian, P.; Konieczny, L. On the Dependence of Prion and Amyloid Structure on the Folding Environment. Int. J. Mol. Sci. 2021, 22, 13494. [Google Scholar] [CrossRef]
- Fabian, P.; Banach, M.; Stapor, K.; Konieczny, L.; Ptak-Kaczor, M.; Roterman, I. The Structure of Amyloid Versus the Structure of Globular Proteins. Int. J. Mol. Sci. 2020, 21, 4683. [Google Scholar] [CrossRef]
PDB ID | Chain | Fragment | Ref. |
---|---|---|---|
6CU8 | E | 43–83 | [17] |
6CU7 | D | 43–83 | [17] |
6L1T | C | 1–100 | [17] |
6RTB | C | 36–98 | [18] |
6SST | C | 14–96 | [18] |
6SSX | C | 14–97 | [18] |
6RT0 | A | 37–97 | [18] |
6UFR | A | 36–99 | [19] |
7L7H | B | 61–98 | [20] |
7NC1 | C | 37–97 | [21] |
7NCJ | C | 14–96 | [21] |
7NCA | D | 37–97 | [21] |
7NCG | A | 14–91 | [21] |
7NCH | C | 14–91 | [21] |
7NCK | C | 9–93 | [21] |
7LC9 | A | 46–96 | [22] |
7LC9 | C | 46–98 | [22] |
6A6B | C | 38–97 | [23] |
6L4S | A | 46–96 | [24] |
6XYO | B | 21–99 | [25] |
6XYP | B | 36–99 | [25] |
6XYP | A | 14–94 | [25] |
6XYO | A | 14–94 | [25] |
6H6B | E | 37–97 | [26] |
6FLT | E | 38–95 | [26] |
6OSL | E | 37–96 | [27] |
6OSJ | E | 39–97 | [27] |
6OSM | E | 38–95 | [27] |
7E0F | B | 37–99 | [28] |
6LRQ | B | 37–99 | [29] |
6PEO | A | 36–99 | [30] |
6PES | A | 14–94 | [30] |
6XYQ | B | 36–99 | [31] |
6XYQ | A | 14–94 | [31] |
7C1D | A | 37–97 | [32] |
2N0A | B | 1–140 | [33] |
B | 38–100 |
Chain | Proto-Fibrils | Super-Fibrils | ||||||
---|---|---|---|---|---|---|---|---|
PDB ID | Chains | Fragment | RD | K | RD | K | RD | K |
6CU8 | E | 43–83 | 0.384 | 0.2 | 0.458 | 0.3 | 0.437 | 0.3 |
6RTB | C | 36–98 | 0.438 | 0.3 | 0.489 | 0.3 | 0.738 | 2.1 |
6UFR | A | 36–99 | 0.453 | 0.3 | 0.453 | 0.3 | 0.673 | 1.1 |
7L7H | B | 61–98 | 0.463 | 0.3 | 0.495 | 0.4 | 0.808 | 4.4 |
7NCI | C | 37–97 | 0.468 | 0.3 | 0.452 | 0.3 | 0.744 | 1.8 |
6SST | C | 14–96 | 0.484 | 0.3 | 0.508 | 0.4 | 0.757 | 2.0 |
7LC9 | A | 46–96 | 0.487 | 0.3 | 0.490 | 0.3 | ||
6SSX | C | 14–97 | 0.490 | 0.3 | 0.496 | 0.4 | 0.689 | 1.3 |
7NCJ | C | 14–96 | 0.496 | 0.4 | 0.461 | 0.3 | 0.715 | 1.6 |
6RT0 | A | 37–97 | 0.501 | 0.4 | 0.506 | 0.4 | 0.910 | 1.3 |
7NCA | D | 37–97 | 0.502 | 0.4 | 0.481 | 0.4 | 0.703 | 1.3 |
6A6B | C | 38–97 | 0.511 | 0.3 | 0.538 | 0.4 | 0.663 | 0.9 |
7NCG | A | 14–91 | 0.516 | 0.4 | 0.483 | 0.4 | 0.758 | 1.9 |
6L4S | A | 46–96 | 0.517 | 0.4 | 0.547 | 0.5 | 0.620 | 0.7 |
7NCH | C | 14–91 | 0.518 | 0.4 | 0.472 | 0.4 | 0.672 | 1.1 |
6XYO | B | 21–99 | 0.526 | 0.4 | 0.541 | 0.5 | ||
6H6B | E | 37–97 | 0.540 | 0.4 | 0.572 | 0.5 | 0.750 | 1.6 |
6OSL | E | 37–96 | 0.540 | 0.4 | 0.549 | 0.4 | 0.697 | 1.1 |
6OSJ | E | 39–97 | 0.547 | 0.4 | 0.570 | 0.5 | 0.704 | 1.2 |
7E0F | B | 37–99 | 0.551 | 0.6 | 0.544 | 0.5 | 0.633 | 0.8 |
6LRQ | B | 37–99 | 0.553 | 0.4 | 0.571 | 0.5 | 0.765 | 2.9 |
6FLT | E | 38–95 | 0.565 | 0.4 | 0.600 | 0.6 | 0.770 | 1.8 |
6XYP | B | 36–99 | 0.569 | 0.5 | 0.581 | 0.5 | ||
6PEO | A | 36–99 | 0.581 | 0.4 | 0.581 | 0.6 | ||
6XYQ | B | 36–99 | 0.584 | 0.4 | 0.585 | 0.5 | ||
6PES | A | 14–94 | 0.584 | 0.5 | 0.582 | 0.6 | 0.769 | 2.9 |
7NCK | C | 9–93 | 0.585 | 0.4 | 0.548 | 0.5 | ||
6CU7 | D | 43–83 | 0.599 | 0.5 | 0.663 | 1.0 | 0.706 | 1.3 |
6OSM | E | 38–95 | 0.606 | 0.4 | 0.607 | 0.5 | 0.731 | 1.4 |
6L1T | C | 1–100 | 0.650 | 1.0 | 0.657 | 1.2 | 0.776 | 2.2 |
7C1D | A | 37–97 | 0.702 | 0.7 | 0.653 | 0.8 | 0.746 | 1.2 |
7LC9 | C | 46–98 | 0.710 | 1.1 | 0.669 | 1.1 | 0.660 | 1.1 |
6XYP | A | 14–94 | 0.719 | 1.0 | 0.704 | 1.3 | 0.729 | 1.6 |
6XYO | A | 14–94 | 0.720 | 1.2 | 0.706 | 1.4 | 0.711 | 1.7 |
6XYQ | A | 14–94 | 0.721 | 1.0 | 0.707 | 1.3 | 0.731 | 1.6 |
2N0A | B | 1–140 | 0.718 | 1.4 | 0.472 | 0.3 | ||
B | 38–100 | 0.495 | 0.3 | 0.492 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roterman, I.; Stapor, K.; Konieczny, L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines 2023, 11, 1324. https://doi.org/10.3390/biomedicines11051324
Roterman I, Stapor K, Konieczny L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines. 2023; 11(5):1324. https://doi.org/10.3390/biomedicines11051324
Chicago/Turabian StyleRoterman, Irena, Katarzyna Stapor, and Leszek Konieczny. 2023. "Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid" Biomedicines 11, no. 5: 1324. https://doi.org/10.3390/biomedicines11051324
APA StyleRoterman, I., Stapor, K., & Konieczny, L. (2023). Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines, 11(5), 1324. https://doi.org/10.3390/biomedicines11051324