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Abstract: Parkinson’s Disease (PD), the second most common neurodegenerative disorder, is charac-
terised by the severe loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc)
and by the presence of Lewy bodies. PD is diagnosed upon the onset of motor symptoms, such as
bradykinesia, resting tremor, rigidity, and postural instability. It is currently accepted that motor
symptoms are preceded by non-motor features, such as gastrointestinal dysfunction. In fact, it has
been proposed that PD might start in the gut and spread to the central nervous system. Growing
evidence reports that the gut microbiota, which has been found to be altered in PD patients, influences
the function of the central and enteric nervous systems. Altered expression of microRNAs (miRNAs)
in PD patients has also been reported, many of which regulate key pathological mechanisms involved
in PD pathogenesis, such as mitochondrial dysfunction and immunity. It remains unknown how gut
microbiota regulates brain function; however, miRNAs have been highlighted as important players.
Remarkably, numerous studies have depicted the ability of miRNAs to modulate and be regulated
by the host’s gut microbiota. In this review, we summarize the experimental and clinical studies
implicating mitochondrial dysfunction and immunity in PD. Moreover, we gather recent data on
miRNA involvement in these two processes. Ultimately, we discuss the reciprocal crosstalk between
gut microbiota and miRNAs. Studying the bidirectional interaction of gut microbiome–miRNA
might elucidate the aetiology and pathogenesis of gut-first PD, which could lead to the application of
miRNAs as potential biomarkers or therapeutical targets for PD.
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1. Introduction
Parkinson’s Disease

Parkinson’s disease (PD) was first described by James Parkinson more than two
centuries ago, in “An Essay on the Shaking Palsy” in 1817. PD is the second most com-
mon progressive neurodegenerative disorder, after Alzheimer’s Disease, with more than
10 million people affected worldwide in 2021. Its incidence and prevalence increase steadily
with age (median age at onset is 60 years old), and men are 1.5 times more likely to suffer
from the disease than women [1].

PD is clinically characterised by the development of numerous motor symptoms,
including bradykinesia, resting tremor, rigidity, and postural instability [2]. These motor
symptoms develop as a consequence of the severe loss of dopaminergic neurons in the
Substantia Nigra pars compacta (SNpc), and only emerge when striatal dopamine levels are
decreased by 60–70% as a result of the degeneration of 40–60% of neurons in the SNpc [3].
The presence of intracytoplasmic protein inclusions of α-synuclein, known as Lewy bodies
(LBs), is another important pathological hallmark of PD. Furthermore, it is believed that
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PD progression might also affect non-dopaminergic pathways prior to the onset of nigral
neurodegeneration, leading to the manifestation of several non-motor symptoms that
appear at a prodromic stage, up to 15–20 years before the onset of motor symptoms
(Figure 1) [2]. Based on various population studies, a multitude of non-motor symptoms
have been commonly associated with prodromal PD, namely, hyposmia, constipation,
depression, dysautonomia, and rapid eye movement (REM) sleep behaviour disorder
(RBD) (Figure 1) [2,3].
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structures simultaneously, Braak and colleagues conducted various studies, which culmi-
nated in the formulation of a six-stage hypothesis for the progression of Lewy pathology 
(LP) in sporadic PD [5]. According to Braak’s hypothesis, PD pathogenesis might initiate 
in non-dopaminergic areas, such as the olfactory bulb and the enteric nervous system 
(ENS), years and even decades before spreading, via the olfactory tract and the vagal 
nerve, respectively, towards the central nervous system (CNS), eventually reaching the 
SNpc and triggering the emergence of motor symptoms [6]. The earliest stages of LP (be-
fore SNpc involvement) have been linked to the prodromal non-motor symptoms of PD, 
such as olfactory impairment and gastrointestinal dysfunctions [7], since consistent evi-
dence has demonstrated the presence of α-synuclein aggregates in the gut and in the neu-
rons of the olfactory bulb during the prodromal phase, before the clinical diagnosis of PD 
[6,8]. Nonetheless, studies showed that some PD cases cannot be staged by the Braak stag-
ing system, as some patients presented with evident LB pathology first in the locus co-
eruleus, SNpc, and the amygdala, and then in the dorsal motor nucleus of the vagus 
(DMV) and gut, representing a rostro-caudal route of α-synuclein transmission from the 

Figure 1. Motor and non-motor symptoms associated with Parkinson’s disease. Diagnosis of
Parkinson’s disease occurs with the onset of motor symptoms (early-stage Parkinson’s disease) but
can be preceded by a prodromal phase of several years, which is characterised by specific non-motor
symptoms (prodromal Parkinson’s disease). Created with Biorender.

Since the discovery of LBs, it has been clear that a variety of other neuronal populations
were affected by these proteinaceous inclusions, and not only the neurons in the SNpc [4].
In order to determine whether the pathology affects the nigral and extranigral structures
simultaneously, Braak and colleagues conducted various studies, which culminated in
the formulation of a six-stage hypothesis for the progression of Lewy pathology (LP) in
sporadic PD [5]. According to Braak’s hypothesis, PD pathogenesis might initiate in non-
dopaminergic areas, such as the olfactory bulb and the enteric nervous system (ENS),
years and even decades before spreading, via the olfactory tract and the vagal nerve,
respectively, towards the central nervous system (CNS), eventually reaching the SNpc
and triggering the emergence of motor symptoms [6]. The earliest stages of LP (before
SNpc involvement) have been linked to the prodromal non-motor symptoms of PD, such
as olfactory impairment and gastrointestinal dysfunctions [7], since consistent evidence
has demonstrated the presence of α-synuclein aggregates in the gut and in the neurons of
the olfactory bulb during the prodromal phase, before the clinical diagnosis of PD [6,8].
Nonetheless, studies showed that some PD cases cannot be staged by the Braak staging
system, as some patients presented with evident LB pathology first in the locus coeruleus,
SNpc, and the amygdala, and then in the dorsal motor nucleus of the vagus (DMV) and
gut, representing a rostro-caudal route of α-synuclein transmission from the CNS to the
ENS [9]. This neuropathological evidence gave rise to two distinct hypotheses: body-first
PD vs. brain-first PD. In the body-first subtype of PD, LP begins in the enteric or autonomic



Biomedicines 2023, 11, 1349 3 of 24

nervous system and spreads to the CNS via the vagal nerve, which aligns with Braak’s
proposed staging [10]. These patients display more autonomic symptoms and a longer
prodromal phase, with the development of non-motor symptoms such as gastrointestinal
dysfunction, RBD, and hyposmia [9]. The opposite is true for the brain-first subtype of PD,
where brain pathology presumably initiates in the amygdala or in closely connected areas
such as the olfactory bulb [9]. These patients present with fewer autonomic symptoms and
a shorter prodromal phase, with less frequent development of non-motor symptoms such
as RBD or hyposmia [9]. Present evidence reveals that most PD cases follow the body-first
subtype [10].

Despite all the efforts and contributions of the scientific community, the primary
cause of sporadic PD remains largely unknown; however, it has been hypothesised that the
disease has a multifactorial aetiology, resulting from the interaction between environmental,
genetic, and age-associated factors [8]. Several environmental and lifestyle risk factors
have been linked to PD, including environmental toxins, pesticide and heavy metals
exposure, traumatic lesions, and bacterial or viral infections [11]. An interesting report from
2022 evaluated the correlation between some risk factors, including coffee consumption,
cigarette smoking, and physical activity, and clinical symptoms [12]. Remarkably, coffee
consumption is positively correlated with milder motor symptoms, whereas physical
exercise is positively correlated with milder non-motor symptoms.

Moreover, while most cases occur in a sporadic manner, approximately 5–10% of
PD cases are of genetic origin [11]. The era of PD genetics started when several families
seemed to exhibit a Mendelian inheritance pattern (dominant or recessive) of Parkinson’s,
suggesting a genetic cause of the disease [2]. In 1997, the first PD-associated mutation was
discovered in the SNCA gene [13], originating a highly productive period of gene hunting
that resulted in the identification of several PD-related genes, with either autosomal domi-
nant (e.g., SNCA, LRRK2, VPS35) or autosomal recessive (e.g., PRKN, PINK1, DJ1) modes of
inheritance [14]. Although genetic PD corresponds to a small fraction of all cases, focusing
the research on genetic forms has proved to be valuable to understanding the pathophysi-
ology of PD, since some of the proteins encoded by PD-associated genes are involved in
key neuropathological mechanisms linked to the development and progression of both
sporadic and familial PD [15]; these include α-synuclein aggregation and accumulation,
mitochondrial dysfunction, proteasomal and autophagic impairment, oxidative stress, and
neuroinflammation [2].

For several decades, numerous epidemiological studies have consistently shown that
increased PD prevalence positively correlates with increasing age, highlighting aging as
one of the most important contributing factors for PD. Indeed, the aging process is strongly
associated with mitochondrial dysfunction, increased oxidative stress, neuroinflammation,
and impairment of protein clearance (which facilitates α-synuclein accumulation even
in the normal ageing brain [16]), all of which have also been considered pathological
hallmarks of PD [4,17].

James Parkinson optimistically stated that “there appears to be sufficient reason for
hoping that some remedial process may ere long be discovered, by which, at least, the
progress of the disease may be stopped” [18]. Over 200 years later, no cure or neuroprotec-
tive therapy has been discovered for PD; nevertheless, researchers have been making huge
progress in understanding neurodegeneration in PD, which will bring us closer to finding
new effective disease-modifying therapies [8]. The currently available diagnostic methods
are not able to predict the onset of the disease early on; therefore, the existing pharmaco-
logical and neurosurgical treatments are symptomatic, in order to ameliorate motor and
non-motor symptoms and attempt to slow down the progression of the neurodegenerative
process, but are not able to fully stop it [1].

The relationship between microRNAs (miRNAs) and PD has been intensively studied
for several years, leading to the hypothesis that miRNAs might play an important role in
the pathogenesis and progression of PD. Numerous miRNAs found to be dysregulated
in PD were shown to target key molecular mechanisms linked to the pathogenesis and
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progression of PD, namely, α-synuclein aggregation and accumulation, mitochondrial
dysfunction, oxidative stress, and inflammation. Herein, we will summarize evidence
regarding mitochondrial dysfunction and inflammation involvement in PD and, in addi-
tion, will review the impact of miRNA dysregulation in these two important molecular
mechanisms implicated in PD pathophysiology.

To carry out this state-of-the-art review, which aims for a comprehensive search
of the current literature, we performed a methodical search of the literature using the
database PubMed. Relevant articles were searched without year limitations. The search
strategy consisted of a combination of the keywords “Parkinson’s disease” together with
(AND) “mitochondrial dysfunction” (OR) “inflammation” (OR) “innate and adaptive
immunity”; “Parkinson’s disease” together with (AND) “miRNA” (AND) “mitochondrial
dysfunction” (OR) “inflammation” (OR) “innate and adaptive immunity” (OR) and (AND)
“gut microbiota”. The present review includes an extensive collection and evaluation of the
published studies (1245 papers), where 210 were used, and evaluations were independently
performed by two authors (Guedes BFS and Esteves AR).

2. Mitochondrial Dysfunction in Parkinson’s Disease

Mitochondria are dynamic membrane-bound organelles known to play a critical role in
multiple cellular functions, including ATP production, Ca2+ homeostasis, ROS generation,
and programmed cell death [19]. The first evidence that mitochondrial dysfunction is a key
player in PD pathogenesis dates back to 1983, when Langston and colleagues [20] reported
several cases of a parkinsonian syndrome in humans caused by the use of a synthetic drug
containing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These events rapidly
received the attention of the scientific community, leading to a better understanding of how
MPTP caused parkinsonism. The lipophilic nature of MPTP allows it to cross the blood–
brain barrier and, once inside the brain, it is metabolised to 1-methyl-4-phenylpyridinium
(MPP+), which is taken up by dopaminergic neurons through the dopamine transporter
(DAT), inhibiting complex I activity from the mitochondrial electron transport chain (ETC)
and resulting in energy depletion and oxidative stress [19]. Mitochondrial dysfunction
associated with PD pathogenesis can result from ETC dysfunction, impaired mitochondrial
biogenesis, increased oxidative stress, defective mitophagy, altered mitochondrial dynamics,
compromised trafficking, and aberrant Ca2+ homeostasis [21]. The complex interplay
between these compromised cellular functions leads to progressive cellular dysfunction
that ultimately results in dopaminergic neurodegeneration that underlies PD pathogenesis.

The hypothesis that PD can be triggered by mitochondrial dysfunction [22] was val-
idated when decreased activity of complex I was found in PD brain samples [23–26],
platelets [27–30], lymphocytes [30], fibroblasts [31,32], skeletal muscle [33–35], and PD
cytoplasmic hybrids (cybrids) [36]. Cybrids are created through transfer of platelet mi-
tochondria from either PD or control subjects to mitochondrial DNA (mtDNA)-depleted
recipient cells (rho0 cells). The end result are cybrid cell lines that express the nuclear genes
of the recipient rho0 cell line and the mitochondrial genes of the platelet donor [37]. In
addition to MPP+, other toxins and pesticides (like rotenone and paraquat) that impair mi-
tochondrial complex I activity also cause parkinsonism symptomatology and dopaminergic
neuron loss in animals [38]. Mitochondrial dysfunction may be potentiated by impaired
mitochondrial biogenesis, a complex process essential for the maintenance of a healthy
mitochondrial network [19]. Mitochondrial respiration, mitochondrial antioxidant defence,
as well as mitochondrial biogenesis are regulated by PGC-1α (peroxisome proliferator-
activated receptor-gamma coactivator-1alpha), which is significantly reduced in diverse
PD models [39–42], therefore adversely affecting cellular bioenergetics. On the other hand,
PGC-1α overexpression has been shown to alleviate α-synuclein oligomerization [39] and
protect dopaminergic neurons [43].

The production of ROS through mitochondrial respiration is physiologic; however,
disruption of respiratory chain complexes causes excessive production of ROS and leads
to oxidative stress, which is detrimental to cells [44]. Remarkably, mitochondria are, si-
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multaneously, the main source and the primary targets of ROS. Under normal conditions,
antioxidant proteins like superoxide dismutase (SOD) and glutathione (GSH) prevent
ROS levels from rising too high, but malfunction of these defence mechanisms leads to
oxidative stress. Consequently, high ROS levels damage the components of the respiratory
chain, as well as mtDNA. Complex I was found to be oxidatively damaged in PD brain
biopsies, which compromises its appropriate assembly and function [25], leading to further
inhibition and greater ROS production. In addition, post-mortem samples from PD patients
displayed increased lipid peroxidation with glutathione pathway impairment [45]. ROS
possess the ability to damage mtDNA by causing single- and double-strand breaks that,
when repaired inefficiently, originate mtDNA deletion mutations that affect the genes
coding for essential proteins involved in the mitochondrial respiratory chain [44]. The
mitochondrial genome is packaged in nucleoids by the mitochondrial transcription fac-
tor A (TFAM), in order to protect it from oxidative insults; however, TFAM deficiency
has been observed in dopaminergic neurons of sporadic PD subjects [46,47], suggesting
an enhanced exposure of mtDNA to ROS damage in PD. Several studies have detected
accumulation of deletions in the mtDNA of aged SNpc neurons of both healthy and PD
individuals [46,48–50]. Additionally, mtDNA copy numbers have been found to increase
with age in healthy individuals [50], allowing the neurons to adapt to mitochondrial dys-
function and maintain a healthy population of mitochondria. However, failure of such
regulatory mechanisms of mtDNA copy numbers has been found in PD patients, leading to
mtDNA copy number depletion [46,48,50,51], despite accumulating mutations. Evidence
has shown that oxidative stress is linked to dopamine metabolism, justifying the selective
neurodegeneration of dopaminergic neurons [52]. Auto-oxidation of dopamine generates
free radicals and active quinones, which in turn interact with ROS scavengers, respiratory
chain complexes, and proteins involved in mitophagy [52], contributing to increased levels
of ROS and defective mitophagy processes. Indeed, autophagic alterations occur in PD, as
demonstrated by an increased number of autophagosomes observed in post-mortem PD
patient brains [53]. Moreover, substantia nigra neurons from PD patients display abnormal
mitochondria within autophagosomes, indicating defects in mitophagy [54]. Mitophagy
alterations were also observed in several PD models, including toxin-induced and genetic
models [55,56]. Most interestingly, PD-associated gene mutations such as PINK1 and
Parkin are known to be involved in this selective process of mitochondrial degradation [57].
Remarkably, α-synuclein is also a known target of autophagic degradation [58].

Oxidative damage has also been implicated in impaired proteasomal ubiquitination
and degradation of proteins, facilitating the accumulation of aggregated α-synuclein in
the form of LBs [59]. α-synuclein accumulation has been noted to induce redox imbalance
and mitochondrial fragmentation in in vitro and in vivo models of PD [60,61]. Moreover,
α-synuclein has been proven to build up inside mitochondria, damaging complex I of the
ETC, resulting in mitochondrial dysfunction and oxidative stress [62–64].

Oxidative stress unquestionably contributes to PD pathology, and it is now acknowl-
edged that ROS are a result of mitochondrial dysfunction and further contribute to exacer-
bating cell death [65]. The interaction between these numerous mechanisms associated with
mitochondrial impairment forms a positive feedback loop that drives cellular dysfunction,
resulting in the development and progression of PD.

Importantly, as previously mentioned, men have a higher risk of developing PD than
women, and mitochondria seem to play a significant role in this fact. Interestingly, brain
mitochondria from female mice and post-mortem samples have higher electron transport
chain activity and lower oxidative stress [66]. A recent transcriptomic study observed that
male PD patients show increases in oxidative stress, inflammation, and angiogenesis when
compared to females [67].

3. Innate and Adaptive Immunity Activation in Parkinson’s Disease

The immune system is the result of the complex interplay between innate and adap-
tive immunity. The innate immune system, which is the first line of defence, is ancient,
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highly conserved, and nonspecific. It consists of tissue-resident macrophages, dendritic
cells, monocytes, granulocytes, and neutrophils. Interestingly, in addition to immune cells,
there is a plethora of non-immune cells capable of inducing innate immune responses,
such as epithelial cells, epidermal keratinocytes, mesenchymal cells, stromal cells, and
neurons [68]. A significant amount of evidence has demonstrated the expression of pattern
recognition receptors (PRRs), such as Toll-like receptors (TLRs), on intestinal epithelial cells
and neurons, suggesting that these non-immune cells possess adequate machinery to act
against pathogens through the activation of innate immunity checkpoints [69]. Remark-
ably, the expression of TLR4 has been found to be altered in inflammatory bowel diseases
patients [70]. Colonic epithelial cells isolated from these patients were shown to secrete
Interleukin (IL)-1β, produced through activation of the inflammasome [69]. Likewise, it has
been demonstrated that neurons express TLR3 and TLR4 [71,72] and also produce inflam-
matory cytokines, such as IL-6, tumour necrosis factor alpha (TNF-α), and interferon, that
may mediate innate immunity in the absence of microglial cells [73]. Furthermore, evidence
shows that neurons can activate NF-κB-dependent nucleotide-binding oligomerization
domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome
under ischemic conditions without microglia contribution [74]. Moreover, work from our
group demonstrated that both enriched mesencephalic and cortical neuronal cultures ex-
posed to BMAA, a bacterial neurotoxin, activated the NLRP3 inflammasome, accompanied
by the release of IL-1β, indicating that neurons can initiate this activation without microglia
contribution [71,72].

Overall, the innate immune system provides a rapid line of defence against threats to
the host, while adaptive immunity is highly specific and is able to recognize and memorize
a specific pathogen and effectively produce an immune response against the previously
encountered pathogen [75]. The innate and adaptive immune systems work very closely
to produce effective and protective immune responses. However, under pathological
conditions, the immune system’s unbalanced activation could lead to tissue damage [75].
Antigen-presenting cells (APCs), such as macrophages and dendritic cells, are the ones
responsible for sensing danger and initiating inflammatory processes, upon activation of
PRRs by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs), and through antigen presentation to T cells. Microglia, the main tissue-
resident macrophages, and therefore the predominant APCs of the brain, are the most
abundant population of innate immune cells in the CNS, and during CNS inflammation
they further contribute to the inflammatory process.

The involvement of the immune system in PD has been hypothesised since it was
considered a multisystemic disorder, and evidence has grown significantly to support the
hypothesis that (neuro)inflammation initiates and/or drives the progression of PD and that
it occurs long before symptomatology becomes apparent. In 1988, McGeer and colleagues
showed for the first time the presence of HLA-DR+ (a component of the human MHCII)
reactive microglia in the post-mortem SNpc of PD patients [76]. Similarly, another group
reported increased levels of activated microglia around dopaminergic neurons in MPTP-
induced parkinsonism in post-mortem human brains [77]. Additionally, several groups
demonstrated the existence of a pro-inflammatory phenotype or innate immunity activation
of microglia through histological studies [78–83] and positron emission tomography (PET)
imaging studies [84–88]. Extracellular α-synuclein can directly activate microglia early
on, as shown in transgenic mice overexpressing wild-type or mutated α-synuclein [89,90].
Additional studies demonstrated that α-synuclein directly promotes microglia activa-
tion [91–94], inducing production and release of pro-inflammatory cytokines [91,92] and
increasing expression of antioxidant enzymes [92]. Moreover, in addition to microglial
activation, intranigral injection of α-synuclein also resulted in the upregulation of mRNA
expression of major pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and the expression
of endothelial markers of inflammation [94]. Furthermore, mitochondrial toxins, such
as MPTP, 6-OHDA, and rotenone, have the ability to initiate an immune reaction in the
striatum and SNpc, showing that specific damage to the ETC can trigger microglial acti-
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vation and neuroinflammation [95–98]. Rotenone and 6-OHDA were depicted to activate
microglia in mice [99], human microglial cell lines [100], and in rats [101–103].

Innate and adaptive immune responses are indeed activated in the CNS of PD patients
and are known to cause upregulation of inflammatory responses. There is considerable
evidence that inflammatory cytokines are secreted in the brain of PD subjects, as shown
by increased levels of TNF-α in both the caudate and putamen [104]. Moreover, several
studies performed on the cerebrospinal fluid (CSF) of PD patients revealed higher lev-
els of IL-1β [105–108], IL-6 [105–107,109], and TNF-α [104,108,109]. Furthermore, higher
levels of inflammatory cytokines are also found in the blood (the major pathway for im-
mune cell circulation throughout the body) of PD patients, including IL-1β [110–114],
IL-6 [110,112,115], TNF-α [112,116–118], and IFN-γ [117–119]. Together, these results vali-
date the hypothesis that PD is indeed a multisystemic disorder.

As previously referred, α-synuclein pathology has also been found in the gut and in
the vagus nerve. Chronic constipation, which is linked to peripheral inflammation [65],
is one of the most frequent non-motor symptoms of PD. Enteric inflammation occurs in
PD, and it has been demonstrated by increased levels of inflammation markers in the
gastrointestinal tract, such as glial fibrillary acidic protein (GFAP) and pro-inflammatory cy-
tokines, including IL-1β, IL-6, TNF-α, and IFN-γ, further reinforcing the role of peripheral
inflammation in the initiation and/or progression of PD [120]. Remarkably, higher cytokine
levels in the gut occur earlier during disease progression and decrease over time, possi-
bly suggesting that gut inflammation could happen early during PD pathogenesis [121].
The occurrence of gastrointestinal dysfunction and gut inflammation in PD patients led
to the investigation of variations in the gut microbiome of these individuals [121]. In
fact, several studies have reported alterations in the gut microbiome of PD patients from
multiple geographical populations [117,122–127]. For instance, Roseburia spp. and Faecal-
ibacterium have been found to be decreased in PD stool. Roseburia spp. has been shown to
have an anti-inflammatory role through (1) enhancement of intestinal barrier health [128],
(2) downregulation of pro-inflammatory cytokines (e.g., IL-17) and differentiation of Treg
cells [129], and (3) upregulation of anti-inflammatory cytokines (e.g., IL-10, TGFβ) [130].
Similarly, Faecalibacterium has been shown to reduce inflammation [131–134]. Together,
these alterations indicate that the PD gut is more susceptible to inflammation. In general,
the composition of gut microbiota is evidently altered in PD, and these findings are con-
sistent with the hypothesis that gut dysbiosis is linked to an inflammatory environment
that may contribute to the initiation and/or progression of PD pathology (Figure 2). The
data presented suggest the crucial role of the immune system in both the pathogenesis
and progression of PD, as several observations of aberrant innate and adaptive immune
responses in the CNS, blood, and gut of PD patients link the immune system to PD risk.
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Figure 2. Dysregulation of the microbiota–gut–brain axis in the pathogenesis of Parkinson’s disease.
Gut dysbiosis increases intestinal barrier permeability and leakage of bacterial products from the
lumen to the lamina propria, activating inflammatory responses and leading to gut inflammation.
These inflammatory processes induce misfolding of α-synuclein, which results in its aberrant aggre-
gation and accumulation in the gut and enteric neurons. α-synuclein aggregates are then transported
from the gut to the brain through the vagus nerve, eventually triggering an inflammatory response of
the microglia. Alternatively, pro-inflammatory cytokines released during gut inflammation might
infiltrate the bloodstream, leading to a systemic inflammation that further increases the permeability
of the blood–brain barrier and allows the infiltration of immune cells into the brain. These processes
result in neuroinflammation and consequent neurodegeneration. Created with Biorender.

4. The Interplay between Mitochondria and Innate Immunity

Upon microbial infection, the innate immune system is triggered through the recog-
nition of PAMPs by PRRs expressed on the cells’ surface. Invading microorganisms and
infected cells are then removed following an orchestrated pro-inflammatory immune re-
sponse [65]. Nevertheless, PRRs have the ability to initiate innate immune responses
independently of infection—a process known as sterile inflammation—through recognition
of DAMPs, which are endogenous signals released upon injury or stress [135]. Mitochon-
dria have been recognised as an important source of DAMPs; the reason behind this is the
fact that mitochondria share a common origin with bacteria, and both display some similar-
ities: circular DNA with CpG motifs, double-membrane structure with an abundance of
cardiolipin in the inner membrane, secretion of N-formylated proteins, and reproduction
by binary fission [135]. Upon injury or stress, the mitochondrial release of DAMPs activates
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the innate immune system, similarly to bacterial PAMPs, triggering sterile inflammation
that mimics the response to infection [65,135].

Numerous studies have identified a critical role for mitochondria in regulating and
activating the NLRP3 inflammasome [136], an intracellular immune sentinel activated
upon changes in cellular homeostasis, which activates pro-inflammatory cytokines (IL-1β
and IL-18) to trigger pyroptotic cell death [137,138]. Several studies demonstrate that
mitochondrial dysfunction through ROS production is required for NLRP3 inflamma-
some activation [139,140]. Additional data have also revealed that mtDNA translocated
to the cytosol can directly activate the NLRP3 inflammasome by binding to it [140,141].
Moreover, cardiolipin, a phospholipid found solely in inner mitochondrial and bacterial
membranes [142,143], can also bind to and activate the NLRP3 inflammasome [144]. Mito-
chondria, along with mitochondrial DAMPs (mtDNA, ROS, and cardiolipin), are crucial
for the activation and regulation of the NLRP3 inflammasome (Figure 3), which in turn
incorporates mitochondrial dysfunction in a pro-inflammatory signalling response, thus
elucidating the association of mitochondrial damage with inflammation [135]. Remarkably,
exposure of neuronal and microglial cell lines to mitochondrial lysates led to an increase in
inflammation markers, with mtDNA being proposed as the candidate DAMP, causing the
inflammatory alterations detected [145]. Moreover, injecting mice with isolated mitochon-
dria into the brain also resulted in an increase in inflammation markers, namely increased
TNF-α, NF-κB phosphorylation, GFAP protein, and decreased Trem2 mRNA [146].
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Figure 3. NLRP3 inflammasome activation. The activation of the NLRP3 inflammasome is triggered
by a number of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs). PAMPs bind to Toll-like receptors (TLR) present on the cell membrane and
upregulate the transcription of NLRP3 inflammasome components. DAMPs, such as ROS, mtDNA,
or the externalization of cardiolipin to the outer mitochondrial membrane, also activate NLRP3.
Assembly of the inflammasome activates caspase 1, which in turn cleaves pro-IL-1β and pro-IL-18
into IL-1β and IL-18, respectively. Created with Biorender.

The cause of the neuronal loss observed in PD brains is still poorly understood. Ac-
cumulating evidence leads to the hypothesis that the activation of innate immunity in
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dopaminergic neurons, through the exposure to DAMPs originating from mitochondrial
dysfunction, bacteria, or even their metabolites targeting the mitochondria, could promote
low-grade inflammation [135]. The mitochondrial network was found to be highly frag-
mented in cellular and animal models of PD [147], which is a pre-requisite for the selective
degradation by mitophagy [147,148]. It was demonstrated that cardiolipin exposure, as
a result of mitochondrial fission, is an important intervenient in the disposal of dysfunc-
tional mitochondria [149]. Because cardiolipin is only present in mitochondrial or bacterial
membranes, it has been considered a mitochondrial-derived DAMP that is detected by
the NLRP3 [150]. Hence, cardiolipin exposure increases due to mitochondrial dysfunction,
leading to the activation of neuronal innate immunity.

5. miRNA Involvement in Parkinson’s Disease
5.1. Human and Animal Studies

Cells, either within the same tissue or in different tissues/organs, can communicate
across a long distance by sending information from one cell to another to coordinate their
behaviours in order to grow, develop and survive [151]. Recent studies proposed that
miRNAs contribute to cell-to-cell communication, by being secreted and transported to
other cells via circulation to affect recipient cells [151]. This hypothesis has been validated by
the detection of extracellular/circulating miRNAs in a multitude of biological fluids, such
as blood, CSF, saliva, breast milk, urine, and others [152]. miRNAs can be found circulating
in vesicles (exosomes, microvesicles, apoptotic bodies) or associated with proteins (AGO2),
and, contrary to cellular RNA, extracellular miRNAs present high stability, providing a
desirable characteristic for long-distance cellular communication [153]. It is now accepted
that extracellular/circulating miRNAs can be used as biomarkers and as a therapeutic
approach for a wide range of diseases but are also important in cell-to-cell communication.

In the last few years, miRNA dysregulation has been implicated in several neurode-
generative diseases, including PD, where it contributes to neurodegeneration and disease
progression [153].

The importance of miRNAs for CNS integrity has been demonstrated by inducing
a selective depletion of Dicer in midbrain dopaminergic neurons in mice, which impairs
miRNA biogenesis and results in neurodegeneration and locomotor symptoms mimick-
ing PD [154]. Furthermore, a multitude of screening studies have reported differentially
expressed miRNAs in the brain [155–160], CSF [161–164], and blood [165–174] of PD in-
dividuals. In PD, some miRNAs have been associated with mitochondrial dysfunction,
neuroinflammation, and dopaminergic neuron demise, thereby worsening disease patho-
genesis. Moreover, several studies have demonstrated that specific miRNAs regulate
PD-related genes, such as SNCA, PRKN, DJ-1, and LRRK2, modulating their functions in
different cellular and animal PD models [175]. It has been observed that overexpression of
miR-494 significantly decreased the levels of DJ-1 both in vitro, in 3T3-L1 and Neuro-2a
cell lines, rendering cells more susceptible to oxidative stress, and in vivo, in a MPTP
mouse model, exacerbating MPTP-induced neurodegeneration [176]. On the other hand,
miR-7 was shown to exert a protective role by repressing expression of α-synuclein and
accelerating the clearance of α-synuclein and its aggregates through autophagy [177]. The
reduced levels of miR-7 in the SNpc of a MPTP PD mouse model correlated to nigrostriatal
neurodegeneration and α-synuclein upregulation [178]. A protective role for miR-153 in PD
was also hypothesised, since its overexpression decreased MPP+-induced neurotoxicity in
murine cortical neurons [179]. Kabaria and co-workers observed that miR-34b and miR-34c
bind to SNCA mRNA and reduce α-synuclein expression. In contrast, downregulation of
these miRNAs led to increased α-synuclein levels and formation of α-synuclein aggregates.
The same group also detected a polymorphism in the binding site of miR-34b, interfer-
ing with its binding and consequently leading to α-synuclein overexpression [180]. Both
miR-34b and miR-34c have been found to be downregulated in PD brains [160]. In vitro
studies in differentiated SH-SY5Y cells concluded that depletion of miR-34 b/c resulted in
cell death associated with mitochondrial dysfunction and oxidative stress [160]. LRRK2
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gain-of-function mutations have been implicated in both genetic and sporadic PD [181,182].
Accordingly, LRRK2 levels were found to be increased in PD patients’ brains compared with
healthy controls; however, no significant differences in LRRK2 transcripts were detected
between both groups, suggesting a post-transcriptional modification of LRRK2 protein
expression. In order to understand the reason behind this, Cho and colleagues proceeded
to analyse the 3’UTR of LRRK2 and found a binding site for miR-205, a miRNA found to
be downregulated in the brain of PD patients. Further studies confirmed that miR-205
upregulation in cell lines and primary neuron cultures resulted in the downregulation of
LRRK2, possibly having a protective effect in the brains of PD patients [156]. Additionally,
mutated LRRK2 seems to be able to negatively regulate miRNA-mediated translational
repression in Drosophila melanogaster brains. Briefly, mutated LRRK2 inhibits the expression
of two miRNAs (let-7 and miR-184) known to target E2F transcription factor 1 and dimer-
ization partner transcription factor, leading to defective cell division and neuronal death.
These results indicate that mutated LRRK2 might also play a key role in PD pathogenesis
by modulating the miRNA pathway [183]. On the other hand, miRNAs can directly or
indirectly modulate the expression of PD-related genes. In fact, a recent study found that
miR-421 targets Pink1. Mice treated with MPTP and SH-SY5Y cells treated with MPP+ were
shown to overexpress miR-421. Downregulation of miR-421 attenuated neurodegeneration
in MPTP-treated mice and promoted mitophagy in MPP+-treated SH-SY5Y cells, high-
lighting the role of miR-421 in regulating mitophagy via the Pink1/Parkin pathway [184].
Moreover, Zeng and colleagues highlighted the protective role of miR-135b, since it inhibits
pyroptosis by targeting FoxO1 in MPP+-treated SH-SY5Y and PC-12 cells [185]. A report
from 2018 showed that miR-494-3p negatively regulates sirtuin 3 (SIRT3) expression in
both MPP+-treated SH-SY5Y cells and in a MPTP-induced PD mouse model, worsening
motor impairment of these mice [186]. Another study revealed that miR-486-3p targets
sirtuin 2 (SIRT2) and reduces its expression levels. However, the authors reported a PD
risk-conferring polymorphism in the SIRT2 gene and showed that a single nucleotide
polymorphism (SNP) in this gene alters the binding efficiency of miR-486-3p to SIRT2,
thereby increasing the expression level of SIRT2, which could increase α-synuclein ag-
gregation and toxicity [187]. Furthermore, miRNAs have been shown to target several
genes involved in neuroinflammation, a major hallmark of PD. Specifically, miR-155 was
demonstrated to have an important role in the regulation of inflammation. The mentioned
miRNA was found to be upregulated in a PD mouse model overexpressing α-synuclein.
Deficiency of miR-155 prevented the increase in MHCII and the death of dopaminergic
neurons triggered by α-synuclein overexpression. Oppositely, upregulation of miR-155
restored the inflammatory response to α-synuclein fibrils [188]. miR-7, in addition to
having a role in the regulation of α-synuclein as previously described, emerged in the
context of neuroinflammation as directly targeting the NLRP3 inflammasome gene. In fact,
a study from 2016 determined that transfection of BV2 cells with miR-7 inhibited microglial
NLRP3 inflammasome activation, while anti-miR-7 had the opposite effect, aggravating
inflammasome activation in vitro. The same group reported that injecting miR-7 mimics
directly into the striatum of a MPTP mouse model of PD suppressed NLRP3 inflammasome
activation and ameliorated dopaminergic neuronal death [189]. Studies demonstrated the
regulation of TNF-α levels by miR-7116-5p in a microglial cell culture model, where MPP+

potentiated TNF-α production by downregulating miR-7116-5p. Consistently, overexpress-
ing miR-7116-5p in the microglia of an MPTP mouse model prevented the overproduction
of TNF-α and the activation of glia, further reducing the loss of dopaminergic neurons [190].
Although research on this topic is still in its preliminary stages, and future studies are
needed to better understand the role of miRNAs in neuroinflammation, these findings
might help identify new therapeutic targets to downregulate microglial activation and
potentially diminish dopaminergic neuron death in PD. Importantly, other non-coding
RNAs may be involved in PD development progression. As an example, circular RNAs
can function as miRNA sponges and act as competitive endogenous RNA to deregulate
mRNA by miRNA. For instance, CircSLC8A1, which is increased in the SN of PD patients,
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regulates miR-128 function and/or activity affecting oxidative stress [191]. In addition, a
recent study showed that transfer RNA fragment profiles, which were hypothesised to
function as microRNAs, revealed disease-specific patterns in the CSF and blood of PD
patients [192].

5.2. Gut Microbiota and microRNAs

Given the important involvement of gut dysbiosis and inflammation in PD and the
potential of miRNAs to serve as diagnostic biomarkers, Kurz and colleagues [193] investi-
gated the expression of miRNAs in routine colonic biopsies from PD patients and detected
several differentially expressed miRNAs; amongst all, miR-486–5p upregulation showed
the highest specificity for PD and correlated with age and disease severity in PD. In a
follow-up analysis, 301 target genes of miR-486–5p were identified, as well as the biological
processes affected by the mentioned miRNA, with brain development and post-synapse
organization processes having the strongest functional association with the miR-486-5p
target gene network [193].

The gut microbiota includes several microorganisms such as bacteria, viruses, proto-
zoans, and fungi. Gut microbiota has a crucial role in the maintenance of gut homeostasis
and integrity, since it interacts with the intestinal epithelial barrier (IEB) and intestinal
epithelial cells [194]. Moreover, gut microbiota regulates intestinal epithelium growth,
differentiation, and permeability [194]. Therefore, it comes as no surprise that alterations in
gut microbiota composition can disrupt the IEB and lead to gut dysbiosis, with consequent
immune and inflammatory response activation. Specific bacterial products (such as short-
chain fatty acids (SCFAs), vitamins, or neurotransmitters) can interfere with the regulation
of CNS immune and inflammatory processes, including microglial activity, by infiltrating
into the bloodstream and traveling to the brain [195]. Additionally, they have the ability to
directly activate circulating immune cells, which then travel to the CNS and regulate brain
physiology [195]. Importantly, the gut–brain axis depends on a tightly regulated interplay
between immunity and gut microbiota (Figure 2). As previously stated, it has been shown
that gut microbiota is significantly altered in PD patients, compared with healthy controls;
it is becoming evident that it might play an important role in the pathogenesis of PD.
In addition, recent evidence indicates that miRNAs are involved in PD pathophysiology,
suggesting a novel disease-associated mechanism that is now beginning to be explored and
positing miRNAs as potential biomarkers for PD screening. Interestingly, miRNAs were
found in human faecal samples, mainly derived from intestinal epithelial cells. Furthermore,
it was recently demonstrated that secreted miRNAs are able to enter bacteria and regulate
bacterial gene transcripts and affect their growth [196], giving rise to the possibility of the
host’s miRNAs’ affecting and shaping their own gut microbiome in PD (Figure 4). This
hypothesis was proposed after Fusobacterium nucleatum cultured with human miR-515-5p
(a miRNA present in human faeces) showed an increased ratio of 16S rRNA/23S rRNA
transcripts and altered growth [196]. Moreover, selective deletion of Dicer in mice promoted
gut microbiota imbalance and exacerbation of dextran sulphate sodium (DSS)-induced
colitis. These effects were reversed by faecal miRNA transplantation from wild-type lit-
termates [196]. These studies further corroborate the hypothesis that miRNAs regulate
gut microbiota and enhance the role of faecal miRNAs in influencing gut microbiota and
preserving intestinal homeostasis. In order to better understand the potential interactions
between miRNAs and the gut metagenome, Hewel and co-workers [197] performed an in
silico target screen for binding sites of PD-associated miRNAs on human gut metagenome
sequences, from which resulted a massive number of interactions. They found numerous
miRNAs that may be key regulators in bacterial pathways relevant to PD, including the
bacterial secretion system and lipopolysaccharide (LPS) biosynthesis [197]. On the other
hand, gut microbiota, primarily through gut microbiota metabolites, may modulate human
gene expression by affecting the host’s miRNA expression (Figure 4). In fact, Peck et al.
demonstrated that the microbiota modulates miRNA expression in intestinal epithelium
cells, which may alter intestinal homeostasis [198]. Different miRNA expression profiles
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were observed in the colon and ileum of germ-free mice colonised with gut microbiota from
pathogen-free mice, when compared with germ-free littermates [199]. The analysis of faecal
miRNA expression patterns also revealed significant differences between conventional
mice and germ-free mice [200]. Additionally, it has also been demonstrated that depletion
of gut microbiota using antibiotics induces alterations in faecal miRNA expression profiles
in vivo [201]. A report from 2014 revealed that adherent-invasive E. coli, a pathogen highly
prevalent in Crohn’s disease, upregulates miRNAs (miR-30c and miR-130a) that target
genes involved in the autophagy response (ATG5 and ATG16L1) in mouse enterocytes,
which may facilitate adherent-invasive E. coli replication and aggravation of intestinal in-
flammation [202]. Downregulation of miR-144 induced by Lactobacillus casei was reported to
enhance intestinal barrier integrity through upregulation of occludin and zonula occludens
1 levels in intestinal epithelial cells, boosting intestinal barrier function and homeosta-
sis [203]. Similarly, several probiotics have shown their ability to modulate miRNAs in
intestinal epithelial cells and immune cells, altering intestinal barrier function and intestinal
immune regulation [204–206]. A link between gut microbiota and brain miRNA expression
has been established, since abnormal brain miRNA expression profiles have been described
in the amygdala and prefrontal cortex of germ-free mice and mice treated with antibiotics to
induce microbiota depletion [207]. Moreover, Bacteroides fragilis LPS, a microbial endotoxin,
was shown to induce several miRNAs responsible for targeting genes that regulate synaptic
architecture, amyloidogenesis, and brain inflammatory signalling [208]. These studies shed
light on bidirectional communication between gut microbiota and miRNAs. Since both gut
dysbiosis and differently expressed miRNAs have been reported in PD, the bidirectional
interaction of gut microbiota–miRNAs might be involved in the pathophysiology of PD.
We can hypothesize that microbial dysbiosis can potentiate the dysregulation of certain
miRNAs, which can then target mitochondria and inflammatory pathways in the gut and
later on in the brain, triggering PD pathological hallmarks (Figure 5).
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6. Conclusions and Future Perspectives

The complexity and heterogeneity of PD have contributed to the challenging nature of
PD diagnosis and treatment. The currently used diagnostic methods for PD are based on
clinical symptoms that only emerge when the disease has already progressed to a stage of
elevated neuronal loss. Therefore, there is a growing need to identify molecular biomarkers
that allow an early and precise diagnosis. The possibility of using miRNAs as potential
biomarkers for the diagnosis of PD during the prodromal phase gained relevance with the
emergence of the hypothesis that miRNAs are involved in the pathogenesis and patho-
physiology of PD. Several promising candidate miRNAs have surfaced from the numerous
screenings performed so far on CSF, blood, and brain tissue of PD individuals or models.
However, obtaining these samples is either invasive (CSF) or only possible post-mortem
(brain tissue), making blood samples the ideal source of biomarkers, because they are easily
extracted and analysed and facilitate patient monitoring over time. Moreover, considering
the involvement of the gut in the aetiology and pathophysiology of PD, studying dysreg-
ulated miRNAs in the gut or even in the faecal material of PD patients might lead to the
surfacing of an important and useful strategy for the early detection of gut-first PD and
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for the development of therapies able to slow or halt disease progression before it reaches
the brain.

However, although microRNAs show potential to be reliable biomarkers, most of
the candidate miRNAs are not organ-specific, and their profile is highly dependent on
uncontrollable factors such as individual genetics and ethnicity, as reported in a study from
2020, where differences were observed between different ethnic cohorts of PD patients
(American, Asian, and European) [209].

The potential of using miRNA-based therapies for the treatment of PD has also gained
importance over the years. The scientific community has been developing strategies
for miRNA modulation for many years, by using miRNA-mimics and antago-miRs to
upregulate or downregulate miRNA levels, respectively. Nonetheless, the path to develop
miRNA-based therapies has been paved with numerous challenges, including the lack of
target specificity of miRNAs and their delivery to specific sites [210]. Unravelling relevant
targets of miRNAs in PD models, followed by human validation of the results, may
accelerate finding new biomarkers for an early diagnosis and novel therapeutic strategies
for PD. To find a promising gut miRNA that can be a PD biomarker candidate would
allow for therapeutic intervention in the prodromal phase of these patients, stopping PD
progression and development. Hence, further studies of the microbiome–miRNA axis are a
must in PD research.
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