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Abstract: The globally increasing prevalence of obesity is associated with the development of metabolic
diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads
to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is
an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which
provides structural support to the cells as well as participating in the regulation of their functions,
such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized
ECM, referred to as the basement membrane (BM), which is an important functional unit that lies
between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of
them, especially the BM-associated collagens, support AT functions and participate in the regulation
of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis,
characterized by the accumulation of large collagen bundles, which disturbs the natural functions
of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are
important for AT development and function and include basic information on some other important
ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT
collagens in certain metabolic diseases in which they have been shown to play central roles.

Keywords: adipogenesis; basement membrane; collagen; diabetes; dyslipidemia; extracellular matrix;
fibronectin; fibrosis; lipodystrophy; obesity

1. Adipose Tissues

Adipose tissue (AT) is a type of loose connective tissue that functions as an energy
reservoir and protects other tissues and organs from lipotoxicity. AT is also an important
endocrine system that secretes adipokines (adipo-cytokines), making it a key tissue that
regulates whole-body lipid and glucose metabolism as well as general health [1,2]. There
are at least three types of ATs: white AT (WAT), brown AT (BAT), and beige or brite (brown-
in-white) AT [1]. Furthermore, bone marrow adipose tissue (BMAT) has been suggested
to form its own distinct type of AT, while lactating breast tissue is described to include
pink adipocytes [2]. In humans, BAT depots localize mainly in the cervical-supraclavicular
and perirenal regions of the body and are most prominent in infants and young adults,
and decrease upon aging. The largest AT, the WAT, can be divided into two main depots
based on its anatomical location, function, and signaling. Subcutaneous AT (SAT) is located
directly under the skin and visceral AT (VAT) localizes around internal organs in the
abdominal cavity [2,3].

Morphologically, white adipocytes are characterized by one large lipid droplet which
presses the nucleus and cell organelles against the cell membrane, which reflects their
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obvious function of fat storage [4]. The properties of white adipocytes can differ depending
on their location. VAT adipocytes are larger and metabolically more active, more prone to
lipogenesis and lipolysis, and release more pro-inflammatory cytokines. In contrast, SAT
produces higher levels of favorable adipokines, which include adiponectin and leptin, and
is more vascularized and less vulnerable to the adverse effects of obesity. While both types
of depots expand in obesity, an increase in VAT around internal organs is more detrimental
to metabolic health. Increased VAT also correlates with metabolic dysfunctions [5].

Brown adipocytes are functionally and morphologically distinct from white adipocytes.
They are smaller in size than white adipocytes and have a multilocular lipid reservoir [4].
While WAT stores lipids, BAT consumes fatty acids for heat production (thermogene-
sis) by disengaging the respiratory chain from energy production in the mitochondria
via a brown-adipocyte-specific protein called uncoupling protein 1 (UCP1) [2,4,6]. Beige
adipocytes are spread amongst WATs, and, upon activating signals, such as a cold tem-
perature, they upregulate the production of brown-adipocyte-specific proteins and begin
to resemble brown-like cells [7]. After the identification of physiologically active BAT in
adult humans [8–10], its activation as a therapeutic strategy for the treatment of obesity
and related disorders has attracted substantial interest. In cell and animal models, the
transdifferentiation or browning of white adipocytes, for example via cold-, nutrient-, or
noradrenaline-stimulated upregulation of UPC1, promotes energy expenditure, reduces
adiposity, and protects against diet-induced obesity and insulin resistance. In humans, the
pharmacological activation of BAT combined with physical exercise and a healthy diet is
the most promising strategy to control weight gain [1,4,11–14].

1.1. Pathological Conditions in AT

In this review, we focus on the roles of collagens (Figure 1) in the pathological conditions
that primarily affect WAT. We performed a search of the literature on collagen family members
in AT and adipogenesis, and in metabolic disorders including obesity, metabolic syndrome,
T2D, AT fibrosis, and dyslipidemias. We summarize the current findings in the following
chapters. In addition to these disorders, many other metabolic diseases are associated with
obesity and dysfunctions of AT. For example, ectopic lipid accumulation in the liver, which
causes non-alcoholic fatty liver disease, as well as cardiovascular diseases, renal dysfunction,
infertility, and many types of cancer, are often consequences or comorbidities of problems in
AT functions [15]. The roles of ECM and collagens in these diseases are discussed in several
other review articles [16–21], and, therefore, are not addressed in this article.
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Figure 1. Structure and supramolecular assembly of the collagen types reported to contribute to AT
physiology and pathology. Domain organizations of collagen α chains of different subfamilies are
depicted in boxes. Collagens I, III, and V form collagen fibrils. Collagens XII and XIV bind to the fibrils
and regulate their organization. Collagen XVIII binds to collagen IV network in the BM. Collagen XV
resides at the interphase of the BM and collagen fibrils. Collagen IV forms beaded filaments at the fibrillar
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matrix-BM interphase. Collagen VIII forms hexagonal lattices at the BM. Triple helix, collagenous
domains. Non-collagenous domains of different collagens are shown with different colours. En-
dotrophin domain of collagen VI and frizzled domain of collagen XVIII are indicated. The sizes of
collagens and their assemblies are not presented at their correct scale. Post-translational modifications
such as glycosaminoglycan chains in collagens XII, XIV, XV, and XVIII are not illustrated.

1.1.1. Obesity and Type 2 Diabetes

Obesity is characterized by abnormal and excessive fat accumulation and is a risk factor
for many pathological conditions and diseases, such as insulin resistance, type 2 diabetes
(T2D), and cardiovascular diseases [15]. AT accommodates to the increased requirement
for fat storage in obesity via adipocyte differentiation (adipogenesis and hyperplasia) and
enlargement (hypertrophy) [22]. The expanding WAT accumulates many types of immune
cells, which, together with hypertrophic adipocytes, secrete pro-inflammatory cytokines
that sustain persistent low-grade inflammation. This leads to harmful changes in the
metabolism and gene expression profiles of adipocytes [15]. Chronic inflammation drives
the development of T2D, where adipocytes do not respond to insulin signaling and, as a
result, the uptake of glucose from the circulation via insulin-sensitive glucose transporter 4
(GLUT4) is reduced [23]. Insulin inhibits lipolysis in healthy WAT; however, in T2D, this
pathway is dysregulated. Reduced insulin sensitivity leads to the increased breakdown of
stored lipids, increases the lipid supply to circulation, and enhances the accumulation of
fat to internal organs such as liver, which further complicates metabolic problems [24].

1.1.2. AT Fibrosis

AT expansion involves an acute remodeling of the extracellular matrix (ECM) to allow
for larger adipocytes and vascular growth in the tissue (angiogenesis) [25,26]. In obesity, the
rapid growth of AT mass is associated with limited oxygen supply due to defects in tissue
vascularization. The resulting hypoxic tissue environment activates the hypoxia-inducible
factor-1 (HIF-1) pathway, which induces transcriptional programs that sustain AT inflamma-
tion and fibrosis. Infiltrated macrophages, as well as adipocytes, secrete pro-inflammatory
chemokines and growth factors, such as tumor necrosis factor alfa (TNF-α), interleukin
6 (IL-6), and transforming growth factor beta (TGF-β), which further drive the immune
progenitors toward pro-inflammatory phenotypes. Hypoxia and inflammation upregulate
the expression of ECM genes, including collagens, fibronectin (FN), and hyaluronan, as
well as ECM crosslinking enzymes lysyl oxidase (LOX) and transglutaminases, which leads
to the excessive accumulation and rigidity of ECM elements in obese AT [25–33]. The stiff,
fibrotic tissue environment in AT is believed to limit adipocyte size growth [34]. Therefore,
the excess lipids may accumulate as ectopic fat depots elsewhere in the body, including in
the liver, skeletal muscle, and other organs, as well as in the bloodstream [15]. AT fibrosis
also promotes insulin resistance, and AT ECM has been suggested to play a major role in
defining how severely obesity impacts the metabolic health of an individual [35,36].

Fibrosis manifests as large collagen I and III bundles which are deposited in AT, re-
placing the functional AT parenchyma, as well as pericellular fibrosis gathering around the
adipocytes [37]. Furthermore, fibrotic bundles can also concentrate around blood vessels,
leading to compromised angiogenesis [37,38]. The suppression of angiogenesis is associ-
ated with impaired tissue oxygenation and, thus, with an increase in the negative effects of
AT fibrosis on metabolic health [30,39,40]. In mice, a high-fat diet (HFD) induces a tran-
scription signature in VAT adipocytes, characterized by the upregulation of genes for ECM
and cytoskeletal proteins which, together, cause the cells to experience mechanical stress
from both inside and outside [41]. This leads to the promotion of fibrotic processes, and at
the same time, the suppression of adipocyte programs, including many lipolytic genes and
mitochondrial genes [41]. In fact, AT fibrosis involves a switch in the adipocyte phenotype
towards a more fibrotic gene expression profile [41,42]. For example, macrophage-derived
platelet-derived growth factor receptor α (PDGFRα) is a known pro-fibrotic signal which
directly activates adipocytes and control ECM dynamics [40,43,44]. Recently, the Hippo
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pathway has been indicated as a key regulator of AT fibrosis in mice. In cooperation
with TGF-β activity, inactivation of the Hippo pathway appears to induce AT fibrosis by
promoting a shift in the adipocyte gene expression profile toward a myofibroblast-like gene
expression [45].

1.1.3. Lipodystropy

Lipodystrophies, also known as lipoatrophies, refer to diseases characterized by a
loss of AT [46]. Lipoatrophy can be generalized, taking place in all parts of the body,
or can be a local phenomenon that occurs in a certain fat depot or depots. The disease
can be either genetic or, sometimes, acquired as a consequence of, e.g., autoimmune
disease or HIV infection. The severity of lipodystrophies can vary depending on the type
of condition and how much AT has been lost. Often, they are accompanied by severe
metabolic complications such as dyslipidemias, in which the circulating lipid balance
is disturbed, and insulin resistance and diabetes ensue [46]. The fact that obesity and
lipodystrophy can cause similar metabolic complications highlights the importance of
maintaining a balance where an appropriate amount of properly functioning AT maintains
an individual’s metabolic health.

2. Extracellular Matrix in AT

Comparisons between lean, healthy AT and obese, unhealthy AT have revealed that
healthy AT is characterized by a high gene expression and abundance of ECM elements
such as collagens and ECM remodeling enzymes. In contrast, metabolically unhealthy AT
presents a significant upregulation of factors that increase the rigidity of the tissue, including
the collagen-crosslinking LOX, the transglutaminases TG2 and Factor XIII-A [47–52], and
the cell adhesion-related TSP-1 [53]. Interestingly, in an in vitro setting, the decellularized
ECM of non-diabetic AT was shown to retain the functions of the adipocytes of T2D patients,
and vice versa: ECM extracted from diabetic AT had adverse effects on the adipocytes
of non-diabetic individuals, indicating that ECM plays a key role in adipocyte function
in diabetes [54]. Moreover, different AT depots, specifically SAT and VAT depots, have
their own composition of ECM molecules which are differently up- or downregulated in
obesity [53–55]. For example, in mice fed with a HFD, the expression of genes for collagen
I and IV α chains are upregulated specifically in SAT, whereas collagen III and FN are
upregulated in both SAT and VAT [54]. The fact that these depots have very different
functional roles in whole-body metabolism suggests that the influence of ECM on AT
functions is fundamental.

The cellular components of AT consist of multiple cell types, including preadipocytes,
mesenchymal stromal cells, macrophages, immune cells, and fibroblasts. AT cells, as well
as tissue structure and function, require an appropriate composition of the ECM, which is
achieved through dynamic ECM remodeling, involving both its removal and the de novo
synthesis of new ECM components. ECM modification is accomplished by regulating the
synthesis and assembly of the ECM components themselves or by influencing the factors
associated with their degradation, such as matrix metalloproteinases (MMPs) and their
inhibitors. The ECM in ATs consists mainly of collagens, especially collagen types I, IV, and
VI, as well as FN and laminins [34,56]. Many ECM molecules are produced by adipocytes
themselves, but a major portion of the collagens are synthesized by the cells in the stromal
vascular fraction [40,41].

For adipocytes, the remodeling of the ECM constitutes an important process for
preadipocyte maturation. When adipocytes achieve maturity, they surround themselves
with a basal lamina, or basement membrane (BM), which is a sheet-like specialized form of
the ECM. The main components of the BM are laminins and collagen IV, which both form
their own network and are attached to each other by various linking molecules such as
nidogen [57,58]. The basal lamina helps to keep the cells intact when they are subjected to
the mechanical stretch caused by their large lipid-storage droplets. In addition to providing
this structural support, ECM molecules are also essential regulators of many AT functions
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such as energy metabolism via storing and releasing various growth factors [58–60]. The
roles of major AT collagens in adipogenesis and AT-related disorders are further discussed
in subsequent chapters.

Other important ECM proteins in the AT include FN, which is found abundantly
together with fibrillar collagen ECM in the interstitial matrix as well as in the ECM of
the BMs [61,62], and whose presence has been described in human and mouse WAT. The
FN matrix can regulate numerous cellular functions in tissues, including cell adhesion,
migration, proliferation, and differentiation [61,63,64], as well as the activity and assembly
of other ECM components such as LOX [65], bone morphogenetic protein 1 (BMP-1) [66,67],
collagens I and III [68,69], thrombospondin-1 (TSP-1) [68], and fibrillin-1 [70,71], at least
in vitro. FN produced by tissue-resident cells is referred to as cellular FN (cFN) and contains
extra domains A (EDA) and B (EDB) as a result of the alternative splicing of the FN1/Fn1
gene [72,73]. The soluble plasma FN (pFN) is a product of the hepatocytes in the liver, from
where it is secreted into the blood and circulates at a high concentration. pFN can affect
several tissues and organ ECMs [74].

The FN matrix inhibits preadipocyte differentiation to mature adipocytes by maintain-
ing cellular adhesions and fibroblastic preadipocyte morphology [75–77]. In preadipocyte
cultures, FN is expressed at the early pre-adipocyte stage, and its role is associated with
the maintenance of the pre-adipocyte phenotype via the preadipocyte factor 1 (Pref-1) [78];
however, it is not established if the form involved in pre-adipocyte maintenance is pFN or
cFN. pFN is a well-known substrate for Factor XIII-A transglutaminase, which promotes
its self-assembly and crosslinking to collagen type I [79,80]. This covalent modification
stabilizes the pFN matrix (but not the cFN matrix) in 3T3-E1 preadipocytes, which, in turn,
modulates insulin signaling [52]. Knockout mice of FXIII-A, which are protected from
HFD-induced insulin resistance and inflammation, have less pFN and a less collagenous
matrix in their WAT compared to their wild type controls [51]. Obese HFD-fed mice show
a significant increase in the circulating EDA-FN (cFN), which, possibly through interaction
with toll-like receptor 4, may mediate the development of insulin resistance in mice [81].

The SAT and VAT of obese humans were shown to have decreased FN1 mRNA
expression compared to lean control tissues and presented a negative correlation with the
body mass index (BMI). However, in a lean–obese monozygotic twin study, it was also
shown that FN1 mRNA was increased in isolated SAT adipocytes in the heavier, obese twin
and correlates with pre-diabetic markers [47]. The circulating pFN was found to be higher
in obese individuals with normal or fatty livers [82,83].

Another notable matrix molecule in the AT is the ECM glycoprotein osteopontin (OPN).
In AT, it is produced by mature adipocytes as well as by stromal cells: both macrophages
and senescent T cells [84–86]. OPN expression is significantly increased in obese and
overweight patients, and even moreso in patients with obese-induced T2D, as compared
with lean subjects [85]. In mice fed with a HFD, OPN deficiency leads to numerous
beneficial outcomes including lower body weight, better insulin sensitivity, decreased
hepatosteatosis, decreased AT fibrosis, and improved BAT function [87,88]. In addition, in
the absence of OPN, both systemic and AT inflammation are decreased. The mechanisms of
OPN action in AT are related to ECM remodeling, as demonstrated by reduced MMP and
TGF-β production in AT, as well as to the regulation of inflammation, shown by a reduced
infiltration of macrophages and monocytes into AT deficient of OPN [87,88]. These findings
suggest that OPN has a role in linking obesity and the development of insulin resistance.

OPN mediates signals via integrins, and via the CD44 receptor, which can also bind
another common ECM molecule, the glycosaminoglycan hyaluronan (HA) [89]. HA affects,
for example, monocyte recruitment into AT, as well as the process of adipogenesis [90,91]. It
has been reported to inhibit the differentiation of preadipocytes in vitro, either by knocking
down or overexpressing HA synthases in the culture system [92–94]. In in vivo mouse
models, HA accumulated in AT with HFD, and exogenous HA-degrading hyaluronidase
or HA synthesis inhibitor reduced VAT accumulation and hepatosteatosis and increased
insulin sensitivity [91,94]. Worth mentioning as an example of an ECM molecule of VAT
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is also TSP-1, a glycoprotein that contributes to obesity and insulin resistance [95,96]. In
addition to these, MMPs and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs)
that control the degradation and turnover of collagens and other ECM components, play
important and variable roles in AT formation and function [59].

3. AT Collagens and Their Roles in Adipogenic Differentiation and Dysfunctional AT
3.1. Collagens in Adipogenesis

Adipogenesis is the process of adipocyte differentiation from fibroblast-like precursor
cells to lipid-filled mature adipocytes [22,97–100]. The first stage in the two-stage process of
adipogenesis is the commitment of mesenchymal stem cell-derived adipose progenitor cells
to the adipocyte lineage (Figure 2). The commitment step concludes with the formation of a
preadipocyte, which still has the outer appearance of a fibroblast and expresses common
fibroblast and adipose progenitor cell markers, such as α smooth muscle actin (αSMA) and
PDGFRα and PDGFRβ [22]. The expression of Zinc-finger protein 423 (ZFP423) by the
preadipocytes promotes adipogenic differentiation by sensitizing the cells to the BMP signal,
which facilitates adipogenic progression [101]. Peroxisome proliferator-activated receptor
gamma (PPARγ), together with the CCAAT/enhancer-binding protein alpha (C/EBPα), are
widely accepted as the master regulators of adipocyte differentiation [22,102,103]. In the
second stage, differentiating adipocytes lose their cuboidal shape and change to a morpho-
logically round mature adipocyte shape and accumulate lipid droplets [22]. Adiponectin and
leptin hormone secretion indicates that the adipocyte has fully matured. ECM attachments
play a major role in regulating the pre- and mature adipocyte shape and size [22,99,102].

Biomedicines 2023, 11, x FOR PEER REVIEW 7 of 22 
 

 
Figure 2. Key collagens associated with white adipocyte differentiation. During the adipogenic dif-
ferentiation of adipocyte stem cells to mature adipocytes, the expression of collagens shifts from the 
fibrillar collagens I and III to the BM-associated collagens IV, VI, XV, and XVIII. This view is largely 
based on the in vitro model of murine 3T3-L1 preadipocytes, as discussed in the main text. The gray 
boxes present some common cell markers expressed at different stages of adipocyte differentiation. 
Abbreviations: αSMA—α smooth muscle actin; BM—basement membrane; C/EBP—CCAAT/en-
hancer-binding proteins; Col—collagen; GLUT4—glucose transporter 4; PDGFR—platelet-derived 
growth factor receptor; PPARγ—peroxisome proliferation-activated receptor γ; ZFP423—Zinc-fin-
ger protein 423. 

3.2. Collagens in Dysfunctional AT and Metabolic Diseases 
Many of the 28 different vertebrate collagen types [60,110] are linked with various 

metabolic diseases in which AT is affected. In Table 1, we have summarized the current 
data on the collagens that are expressed in pathological AT and that are suggested to con-
tribute to AT dysfunction and/or metabolic diseases. These collagens and their roles in 
adipogenesis and pathological AT are discussed in the subsequent paragraphs. To date, 
and to the best of our knowledge, no detailed data have been reported on the function of 
collagen types VII, X, XI, XVI, XVII, XIX–XXIII, and XXV–XXVIII in relation to AT and the 
pathological conditions associated with it; although, transcriptome analyses have re-
vealed changes in the expression of some of these collagens upon adipogenic differentia-
tion in vitro or in obese versus lean individuals, as discussed in Section 3.9. 

Table 1. Expression of selected collagens in dysregulated human and mouse adipose tissue (AT). 

Collagen Pathological Condition Expression/Manifestation References 

I Fibrotic AT 
T1D 

Increased expression in obese AT compared to lean subjects 
Decreased level of crosslinked telopeptide in the serum of 
T1D patients with retinopathy 

[34,37,111,112] 

II T2D Increased expression in epididymal AT in diabetic (db/db) 
mice 

[34] 

III 
Fibrotic AT 
T1D 
T2D 

Increased expression in obese AT compared to lean subjects 
and in patients with T1D with retinopathy 
Increased levels of procollagen aminopeptide in patients 
with T2D and progressing diabetic nephropathy 

[37,111,113] 

IV T2D 

Increased Col4a1 and Col4a2 expression in the WAT of dia-
betic mice 
Downregulation of COL4A1 in SAT after gastric bypass and 
improvement of HOMA-IR 

[34,107] 

V 
Fibrotic AT 
Impaired glucose metabolism 
Insulin resistance 

Increased expression in the WAT of diabetic mice 
Increased expression in obesity; accumulation in fibrotic ar-
eas, especially around large blood vessels. 
Fibrotic promotion causes insulin resistance 
Lack of Col5a3 leads to impaired glucose metabolism 

[34,38,114,115] 

VI  Fibrotic AT 
Altered glucose metabolism 

Increased expression in obese patients associates with peri-
cellular fibrosis 

[34,37,116–121] 

Figure 2. Key collagens associated with white adipocyte differentiation. During the adipogenic differen-
tiation of adipocyte stem cells to mature adipocytes, the expression of collagens shifts from the fibrillar
collagens I and III to the BM-associated collagens IV, VI, XV, and XVIII. This view is largely based on the
in vitro model of murine 3T3-L1 preadipocytes, as discussed in the main text. The gray boxes present
some common cell markers expressed at different stages of adipocyte differentiation. Abbreviations:
αSMA—α smooth muscle actin; BM—basement membrane; C/EBP—CCAAT/enhancer-binding pro-
teins; Col—collagen; GLUT4—glucose transporter 4; PDGFR—platelet-derived growth factor receptor;
PPARγ—peroxisome proliferation-activated receptor γ; ZFP423—Zinc-finger protein 423.

Decades ago, an electron microscopic study suggested the need for a three-dimensional
collagen fibril-rich environment for proper adipocyte differentiation and maturation [104].
Later, a widely used in vitro model of adipogenesis, the 3T3-L1 murine preadipocytes,
confirmed that, during the differentiation process from fibroblasts to adipocytes, the gene
expression profiles of collagens shift from fibrillar to BM type collagens (Figure 2). During
the undifferentiated fibroblast stage, the 3T3-L1 cells generally express the fibrillar collagen
types I, III, and V, whereas collagen types IV and VI are expressed when they differentiate
into mature adipocytes [105]. Interestingly, this shift is accompanied by changes in the
expression and modification of cytoskeleton components and integrin-attachment modes.
Further, the cell morphology changes from the elongated shape of pre-adipocytes to the
round one of adipocytes [105] (Figure 1); this is believed to be driven by the change from
fibrillar collagen and FN adhesion and signaling through integrin α5β1 to collagen IV
and laminin adhesion/signaling through integrin α6β1. In addition to the morphological
transformation, the transcription profiles of the cells are also impacted by the different cues
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from the different ECMs associated with preadipocytes and mature adipocytes [106–108].
In summary, the collagenous matrix surrounding the adipocytes is actively modified during
the differentiation process (Figure 1) and impacts the regulation of adipogenesis during
development as well as in AT expansion [22,56,109].

3.2. Collagens in Dysfunctional AT and Metabolic Diseases

Many of the 28 different vertebrate collagen types [60,110] are linked with various
metabolic diseases in which AT is affected. In Table 1, we have summarized the current
data on the collagens that are expressed in pathological AT and that are suggested to
contribute to AT dysfunction and/or metabolic diseases. These collagens and their roles in
adipogenesis and pathological AT are discussed in the subsequent paragraphs. To date,
and to the best of our knowledge, no detailed data have been reported on the function of
collagen types VII, X, XI, XVI, XVII, XIX–XXIII, and XXV–XXVIII in relation to AT and the
pathological conditions associated with it; although, transcriptome analyses have revealed
changes in the expression of some of these collagens upon adipogenic differentiation
in vitro or in obese versus lean individuals, as discussed in Section 3.9.

Table 1. Expression of selected collagens in dysregulated human and mouse adipose tissue (AT).

Collagen Pathological Condition Expression/Manifestation References

I Fibrotic AT
T1D

Increased expression in obese AT compared to lean subjects
Decreased level of crosslinked telopeptide in the serum of T1D
patients with retinopathy

[34,37,111,112]

II T2D Increased expression in epididymal AT in diabetic (db/db) mice [34]

III
Fibrotic AT
T1D
T2D

Increased expression in obese AT compared to lean subjects and in
patients with T1D with retinopathy
Increased levels of procollagen aminopeptide in patients with T2D
and progressing diabetic nephropathy

[37,111,113]

IV T2D
Increased Col4a1 and Col4a2 expression in the WAT of diabetic mice
Downregulation of COL4A1 in SAT after gastric bypass and
improvement of HOMA-IR

[34,107]

V
Fibrotic AT
Impaired glucose metabolism
Insulin resistance

Increased expression in the WAT of diabetic mice
Increased expression in obesity; accumulation in fibrotic areas,
especially around large blood vessels.
Fibrotic promotion causes insulin resistance
Lack of Col5a3 leads to impaired glucose metabolism

[34,38,114,115]

VI Fibrotic AT
Altered glucose metabolism

Increased expression in obese patients associates with
pericellular fibrosis
Biomarker in AT fibrosis
Conflicting results in glucose metabolism; insulin resistance vs.
improved glucose metabolism
Increased expression in obese/diabetic mice while downregulated in
obese humans

[34,37,116–121]

VIII Obesity In the twins study, an increased expression of COL8A2 was found in
the heavier twin [47]

XII Insulin resistance
In the twins study, COL12A1 expression positively associated with
LDL cholesterol, and low expression associated with increased
insulin sensitivity

[47]

XV Obesity Increased expression in AT in HFD-induced obesity in mice
Regulates adipocyte apoptosis and inflammation in AT [122–124]

XVIII

Visceral obesity in
T2D
Dyslipidemia
Lipodystrophy

Specific SNPs associate with obesity in patients with
T2D (c.1136C > T) and with abnormal circulating lipid content
(c.331G > A, p.Gly111Arg)
Patients with Knobloch syndrome due to COL18A1 null mutation
have fasting hypertriglyceridemia
Lack of Col18a1 in mice causes lipodystrophy, T2D, and increased
serum triglyceride levels
Expression of long isoforms of collagen XVIII in visceral fat positively
correlates with free fatty acid levels in the plasma

[125–130]

XXIV T2D Increased expression in insulin-resistant obese VAT [131]

Abbreviations: AT—adipose tissue; HFD—high-fat diet; HOMA-IR—homeostatic model assessment for insulin
resistance; LDL—low-density lipoprotein; SAT—subcutaneous adipose tissue; T1D/T2D—type 1/2 diabetes;
WAT—white AT.
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3.3. Collagen I

Collagen I belongs to the subfamily of fibrillar collagens and is the most common
collagen type in vertebrates and an important structural component in multiple tissues. In
healthy tissues, collagen I molecules usually occur as heterotrimers which are composed of
two α1 polypeptide chains and one α2 chain, encoded by COL1A1 and COL1A2 genes in
humans, respectively [110] (Figure 1). Collagen I synthesis is high in AT in general, but it
is enriched in SAT compared to VAT in healthy rodents. In contrast, in healthy humans,
the expression levels of Col1a1 do not vary significantly between the two depots [53,132].
Its expression is high during the early stages of adipogenesis both in vivo and in the 3T3-
L1 in vitro model; however, in rat VAT, the expression decreases when the adipocytes
mature and the collagen gene expression profile shifts from fibrillar collagens toward
BM-associated collagens (Figure 2). In SAT, collagen I synthesis does not diminish during
adipocyte maturation [105,132,133].

Remodeling of the collagen I scaffold is essential for the proper differentiation and func-
tioning of adipocytes. For example, the degradation of collagen I by the membrane-tethered
matrix metalloproteinase 1 (MT1-MMP), also known as MMP14, is crucial for the differen-
tiation of WAT (but not BAT) [134]. Without the action of this protease, the preadipocytes
are entrapped within a dense fibrillar collagen meshwork that compromises the proper tis-
sue architecture and signaling required for adipocyte differentiation. In the db/db animal
model of T2D, the collagen I synthesis rate is notably increased in WAT [34], while in fibrotic
SAT and VAT of obese humans, collagen I is typically found as fibrous bundles of various
thicknesses alongside collagen III [37]. Macrophage-driven stimuli were shown to induce
collagen I as well as other ECM proteins [29]. Further, constitutively active HIF-1α in a
transgenic mouse model resulted in an increased expression of the genes of fibrillar collagens
and their crosslinking enzymes, as well as increased local inflammation, leading to AT fibrosis
and dysfunction [30]. Last, HFDs were shown to further stimulate collagen I production in
db/db mice [135]. Differing from T2D and obesity, the serum biomarkers of collagen I were
downregulated in patients with T1D with retinopathy. A decreased amount of collagen I was
suggested to reduce the vascular integrity in such patients [111].

Although collagen I is often considered to be a primarily structural collagen, certain
intriguing functional properties have been observed for it in relation to AT as well. The
coating of collagen I has been reported to promote the migration and proliferation of
undifferentiated mouse 3T3-L1 preadipocytes in vitro. Collagen I may induce these effects
via reactive-oxygen-species generation and the activation of p65-dependent NF-κB signal-
ing [136]. Another explanation for collagen I-induced adipocyte migration is that it occurs
due to the activation of the Hippo/YAP pathway, which promotes primary cilia growth,
leading to increased 3T3-L1 cell migration [137]. However, the effect that collagen I has on
preadipocyte differentiation seems to be detrimental instead. Further, 3T3-L1 preadipocytes
cultured on collagen I present an increased YAP expression, which leads to a reduction
in the synthesis of adipogenic factors, such as PPARγ and C/EBPα, and the inhibition of
adipocyte maturation [138]. Another study showed that interaction between collagen I and
aortic carboxypeptidase-like protein, which is a secreted protein that is highly expressed
in preadipocytes but downregulated during adipogenesis, leads to a reduced expression
of these adipogenic factors, thus providing evidence of ECM-derived cues that influence
adipogenic differentiation [139]. Moreover, the collagen I coating was found to repress
autophagy in adipocytes through YAP activation and increase their mitochondrial content,
causing adipogenesis inhibition and accelerated energy metabolism in 3T3-L1 cells, which
was verified by an enhanced glucose uptake, reduced fatty acid release, and increased ATP
production [140,141].

3.4. Collagen III

Collagen III is another abundant fibrillar collagen that is found in normal tissues in the
same stromal areas as collagen I [110], as well as in the fibrotic ATs of obese humans [37]
(Figure 1). However, in all types of mouse fat depots, collagen III synthesis appears
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to be significantly lower compared to collagen I synthesis [34]. Similar to collagen I,
collagen III is also upregulated in mice fed with a HFD, or in mice that experience the
constitutive expression of Hif1a [30,135]. In patients with T1D-induced retinopathy, unlike
collagen I, elevated collagen III levels were reported [111]. Further, patients with T2D-
induced nephropathy present increased levels of type III procollagen aminopeptide in
their blood, thus suggesting that this peptide could be a possible biomarker for diabetic
nephropathy [113].

Collagen III is downregulated during the differentiation of 3T3-L1, but the depletion
of collagen III in 3T3-L1 preadipocytes was shown to prevent adipogenesis, indicating that
it serves an important function in this process [133,142]. Collagen III was suggested to
convey its effects through its established binding partner, the G protein-coupled receptor
56 (GPR56), as the phenotype of 3T3-L1 cell with CRISPR/Cas9-mediated Col3a1 knockout
strongly resembled the phenotype of GPR56 knockout cells. The Col3a1 knockout led
to a decrease in the adipogenic markers PPARγ, C/EPBα, and aP2, and reduced cell
adhesion and lipid accumulation while maintaining constant canonical Wnt/beta-catenin
activity [142], which is known to impair adipogenesis [143]. The knockout of Col3a1 also
downregulated the expression of several ECM transcripts during the in vitro differentiation
process, including collagens IV and VI [142]. Interestingly, the Col3a1 deficiency also
downregulated the expression of FN in undifferentiated 3T3-L1 cells but upregulated its
expression in mature adipocytes, suggesting that the functions of these ECM components
are interlinked [142].

3.5. Collagen IV

The non-fibrillar collagen IV is a heterotrimer that is composed of various combinations
of six different α chains, and these subtypes are often classified into their own category
of BM collagens [110] (Figure 1). Collagen IV is the most important structural element
of BMs, where it binds laminins, nidogens, and other ECM components, and stabilizes
the structure [57]. Adipocytes are encircled by a thin BM, and collagen IV is naturally a
prominent ECM component in AT [58]. The synthesis of collagen IV in AT appears to vary
between developmental stages and in different adipose depots [107,132].

When 3T3-L1 preadipocytes undergo the adipogenic differentiation process, collagen IV
production, or, more accurately, the production of α1(IV) and α2(IV) chains, increases signif-
icantly alongside some other basal lamina elements [133,144]. Another study reported that
the secretion of collagen IV is increased in hypoxia by as much as 10 times, but the mRNA
levels of α1(IV) and α2(IV) are not affected by the low oxygen pressure [145]. Interestingly,
bone marrow stromal cells do not undergo adipogenic differentiation when cultured on
the native structural form of the collagen IV scaffold but do undergo differentiation in a
denatured collagen IV matrix. Adipogenic differentiation with denatured collagen IV was
shown to occur through integrin αvβ3 integrin signaling [108]. These findings reiterate the
important role of matrix remodeling and the balance of ECM-degrading MMP levels and
MMP-inhibiting TIMP levels in adipogenesis and suggest that the inhibition of collagen IV
denaturation in AT could serve as a strategy for obesity treatment.

In obesity, collagen IV synthesis is upregulated alongside other BM elements in SAT
and is associated with the inflammatory and fibrotic factors TGF-β1 and TGF-β3, as well
as with insulin resistance [107]. However, in an in vitro setting, TGF-β1 and TGF-β3
stimulated COL4A1 expression only in endothelial cells isolated from the SAT of patients,
and not in isolated adipocytes. After the gastric bypass surgery of severely obese patients
and the subsequent weight loss, COL4A1 expression was downregulated in SAT, and
this reduction correlated with improved glucose metabolism parameters, such as insulin
resistance assessment (HOMA-IR) in the studied patients [107].

3.6. Collagen V

Collagen V is a widely occurring low abundance fibrillar collagen with three dif-
ferent α chains, namely α1(V), α2(V), and α3(V), which form distinct heterotrimeric
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collagen V molecules. The most common combination which occurs in tissues is com-
posed of two α1(V) chains and one α2(V) chain that assemble into heterotypic collagen
fibrils with collagens I and III, thus regulating the fibril geometry [146] (Figure 1). During
the differentiation of 3T3-L1 cells and bovine intramuscular preadipocytes, collagen V
synthesis rises rapidly at early stages of adipogenesis and, later, the collagen V network
undergoes extensive modifications, causing the thickening of fibrils [133,147]. Mice with
a Col5a2 knockout do not survive embryonic development [148], but the Ubc-CreERT2;
Col5a2fl/fl mice with the tamoxifen-induced postnatal ubiquitous ablation of the α2(V) chain
present a drastic reduction in dermal and abdominal AT, with small adipocytes and fi-
brotic abdominal fat pad seams, highlighting the importance of collagen α2(V) for AT
maintenance [149].

Mast cells, which gather and possibly mature in AT during obesity and diabetes
progression, excrete inflammatory mast cell protease 6 (MCP-6), which has been shown
to promote collagen V, specifically Col5a1, expression [114]. Collagen V is then said to
promote AT fibrosis, and it seems to also suppress preadipocyte differentiation [114].
The co-culturing of adipocytes and M2 macrophages also appears to increase collagen V
production in the adipocytes, possibly via TGF-β signaling [38], further suggesting crosstalk
between immune cells and adipocytes to regulate collagen V levels in AT. In fibrous AT,
collagen V bundles gather around blood vessels in significant quantities [37]. Obese
individuals have fewer capillaries but more large vessels in their SAT depots than lean
individuals, pointing to impaired angiogenesis in the obese individuals [38]. Collagen V
inhibits angiogenesis in endothelial cell cultures, suggesting a link between collagen V
levels and impaired angiogenesis in AT [38].

The α3(V) chain has more limited tissue distribution and is found in skeletal muscle,
pancreas, and WAT in vertebrates and associates into heterotrimers with one α1(V) and
one α2(V) chain [150]. In fact, Col5a3 is highly expressed in human adipocytes and mouse
WAT [115], and its expression is increased in 3T3-L1 cells upon adipogenic differentia-
tion [115]; however, it is decreased when adipogenic differentiation is compromised [134].
Thus, α3(V) seems to have AT-specific functions beyond its structural roles in collagen
fibrils [115,146]. Yet, the normal-chow-fed mice with Col5a3 deletion present only a sub-
tle reduction in SAT and no reduction in abdominal fat. However, feeding them with
HFD resulted in a significant decrease in the total body weight of the Col5a3 knockout
females, suggesting a sex-specific resistance to diet-induced obesity in the absence of
this collagen chain [115]. Col5a3 ablation also leads to a significant decrease in insulin-
stimulated Pparg expression in mouse WAT, further indicating a role of α3(V) in adipocytic
differentiation [115].

The same study associated the α1(V), α2(V), and α3(V) chains with the regulation of
glucose metabolism [115]. The ablation of α3(V) in mice led to impaired insulin sensitivity
and hyperglycemia due to the incorrect deployment of glucose transporter GLUT4 receptors
in their WAT and muscles, and this finding was replicated in the 3T3-L1 cell line. However,
it should be noted that the knockout Col5a3 gene led to impaired glucose-stimulated
insulin secretion from pancreatic β cells which can also contribute to the observed glucose
imbalance in these mutant mice [115].

3.7. Collagen VI

Collagen VI is a prominent component of the ECM and usually forms heterotrimers
composed of α1(VI), α2(VI), and α3(VI) chains. In addition to these, genes for three other
α(VI) chains, i.e., α4(VI), α5(VI), and α6(VI), have been annotated; however, at least the
COL6A4 gene is most likely not functional [121,151] (Figure 1). Collagen α(VI) chains form
a separate subfamily among collagens because they assemble into a distinct network of
beaded microfilaments that are located in the interphase between BMs and interstitial ECM.
It is widely expressed in tissues such as muscle, bone, cartilage, and tissue, as well as in the
nervous system, and serves both biomechanical and biochemical functions that regulate
cell survival, differentiation, and proliferation [151].
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Collagen VI is an abundant component of AT and is produced by adipocytes [121,151,152].
Collagen VI binds to the collagen IV network in the adipocyte BMs, contributing to the
rigidity of the pericellular ECM [56]. In humans, collagen VI genes show fat depot-specific
expression profiles and are produced in greater quantities in the SAT than in the VAT, and
collagen VI mRNA transcripts are enriched in the stromal vascular fraction containing
adipocyte precursors over the mature adipocytes [116]. In mice, collagen VI is the most
abundant collagen in mature adipocytes [34]. Collagen VI production increases during the
adipogenic differentiation of 3T3-L1 cells and bovine intramuscular preadipocytes, and its
fiber network undergoes significant thickening during differentiation (Figure 2), which is
similar to the collagen V network modification [133,147].

Collagen VI is overexpressed in fibrotic AT and accumulates in areas of pericellular
fibrosis around the adipocytes in humans [37]. Increased COL6A3 expression in obesity re-
stricts fat storage in SAT, which might lead to the lipid accumulation into VAT instead [153].
Moreover, high COL6A3 expression causes reduced oxygenation of AT, contributing to hy-
poxia and inflammation in the AT [153]. In obesity, COL6A3 expression in SAT is higher in
humans with insulin resistance than those who are sensitive to insulin [36,119]. It is worth
noting that a high BMI (>28) caused high variability in COL6A3 expression levels [153].

In mice, the Col6a3 knockout resulted in a reduction in epididymal AT mass but had no
effect on the SAT or BAT [117], suggesting significant depot-specific functions. The stromal
vascular fraction cells isolated from the SAT of Col6a3 knockout mice have an impaired
adipogenic capacity in vitro [117]. In the in vitro 3T3-L1 model, the deletion of Col6a3 results
in lipid accumulation that is comparable to that of wild type cells, while both Col6a1 and
Col6a2 knockouts in these cells lead to impaired lipid accumulation. However, impaired
lipolysis, which was observed both for Col6a3 knockout 3T3-L1 cells and Col6a3 knockout
mice, may explain the unaltered lipid accumulation in the 3T3-L1 Col6a3 knockout cells [117].

The deletion of Col6a3 in obese ob/ob mice leads to improved outcomes and a metabolic
phenotype, including lower AT inflammation, improved lipid clearance, and fewer necrotic
adipocyte deaths. Adipocyte cell size was found to be larger in ob/ob and Col6a3−/− crosses
than in ob/ob mice expressing Col6a3, which probably improved the metabolic phenotype
of these obese mice, as adipocytes were able to grow without restrictions [34]. One study
reported that, in obese humans, COL6A3 is upregulated after weight loss and downregulated
in obesity, but these fluctuations had no connection to metabolic dysfunction [116]. This is
contrary to the results reported by mouse studies and other human studies that support the
increased synthesis of collagen α3(VI) chains in obesity [34,119,153].

Animal studies suggest that the α3(VI) chain of collagen VI is the most important
α(VI) chain that regulates AT functions. The C-terminal biologically active endotrophin
fragment of the α3(VI) chain (Figure 1) has independent roles in AT. During ECM re-
modeling, endotrophin is cleaved from the parental α3(VI) by BMP-1 protease and does
not form a part of the mature collagen VI microfilament network [121]. Endotrophin is
associated with a myriad of harmful effects with regard to metabolism, such as increasing
the expression of pro-adipogenic genes and causing abnormal increased lipid accumu-
lation and lipolysis [154,155]. It promotes detrimental changes in the AT architecture
and leads to a significant increase in serum triglyceride levels during HFD in transgenic
mice that overexpress endotrophin specifically in adipocytes [155]. A high endotrophin
level has been associated with increased insulin resistance, and, interestingly, blocking
the endotrophin function with a specific antibody treatment has been shown to improve
metabolic health [155]. Moreover, endotrophin levels were increased in human patients
with diabetes [155].

Endotrophin overexpression in adipocytes increases TGF-β signaling and upregulates
ECM protein synthesis, including fibrillar collagens, which may account for several of its
detrimental effects on metabolism [155]. In another study, endotrophin was also linked to
the synthesis of the fibrosis biomarker pro-collagen III, and endotrophin itself has been
suggested as a novel biomarker of tissue fibrosis [120,121,156]. Using mice and 3T3-L1
cells, Zhao et al. [154] observed that endotrophin increases the synthesis of various fibrotic
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proteins in different cell types of AT. For example, in adipocytes, endotrophin induces
fibrillar collagen synthesis, whereas, in macrophages, it mainly promotes the expression of
the collagen cross-linking enzyme LOX and leads to an increase in AT macrophages and
a shift from the M2 phenotype to pro-inflammatory M1 [154,155]. Macrophages appear
to be the main mediator through which endotrophin induces AT inflammation, as its
pro-inflammatory effects were not observed in adipocytes themselves [154]. In a clinical
pilot study where humans with poor glycemic control in T2D were put on a diet and
exercise regime, endotrophin levels were high at the start of the study. However, they were
significantly lowered due to the change in lifestyle and were correlated with lowered serum
glycated HbA1c hemoglobin and urine albumin-creatinine ratio levels, further indicating
that α3(VI)/endotrophin expression is associated with metabolic dysfunction [157].

3.8. Multiplexin Collagens XV and XVIII

Besides the major AT collagens (types I, III, IV, and VI), other collagen types are also
expressed within AT, and some of them play intriguing structural or functional roles. For
example, the structurally homologous non-fibrillar BM-associated collagens XV and XVIII
of the multiplexin subclass are implicated in adipogenesis and lipid metabolism [158,159]
(Figure 1).

Collagen XV is expressed in many cell types of the connective tissue, including
adipocytes and fibroblasts [158]. In AT, the roles of type XV collagen are still not very
well understood. Nevertheless, in mice, Col15a1 expression appears to be higher in WAT
depots than BAT depots [122]. The adipocyte differentiation process is associated with
increased collagen XV synthesis in mice. Collagen XV promotes adipocyte differentiation
and inhibits lipolysis, possibly via changes in its DNA methylation and the inhibition of
the hormone-responsive cyclic AMP (cAMP)−protein kinase A (PKA) pathway. The cAMP
response element binding protein (CREB) suppresses collagen XV expression and, as a
result, the collagen XV-dependent promotion of adipocyte differentiation [122]. Moreover,
collagen XV levels are significantly increased in obese mice, and this upregulation has been
suggested to play a functional role in lipid deposition and adipogenesis [122]. RNA-seq
data have demonstrated the involvement of collagen XV in the regulation of abnormal
ECM remodeling, which is associated with the induction of adipocyte apoptosis via the
collagen XV-activated AMPK pathway [123]. Collagen XV is also involved in the regulation
of AT inflammation, as it promotes the polarization of pro-inflammatory M1 macrophages
and the upregulation of the endoplasmic reticulum stress-related genes [124].

Type XVIII collagen is a multidomain collagen and heparan sulphate proteoglycan
with three alternative forms (short, medium, and long) that differ in terms of domain struc-
ture and that have tissue-specific expression patterns and different functional roles [159]
(Figure 1). Collagen XVIII production is known to increase during adipogenesis [127,129].
In mice, the effects of collagen XVIII on adipocyte differentiation appear to be largely
mediated by the two longest isoforms of collagen XVIII, whose expression is regulated by
an alternative internal promoter of the gene, and a specific lack of these isoforms leads
to reduced adiposity [126,127]. Mouse embryonic fibroblast isolated from Col18a1−/−

mice or mice specifically lacking the two longest isoforms (the Col18a1P2/P2 mice) have
an impaired adipogenic capacity, and the stromal vascular fraction of the epididymal
AT of these mice contains more adipocyte progenitor cells than wild-type mice [127].
Wnt/β-catenin signaling is an important adipogenic regulator that suppresses adipogenic
progression [143]. Interestingly, the longest isoform of collagen XVIII contains a Frizzled-
like domain (Figure 1) that has considerable similarity to the Frizzled receptors of the
Wnt ligands [159], suggesting that collagen XVIII may regulate adipogenesis through the
Wnt/β-catenin pathway. In fact, immunoprecipitation analysis indicates the binding of
the Frizzled-containing domain of collagen XVIII with the Wnt10b [127]. An impaired
capacity of Col18a1−/− and Col18a1P2/P2 mutants to store lipids in the AT causes ectopic
lipid accumulation and dyslipidemia, which leads to increased serum triglyceride levels
and higher fat accumulation in the liver compared to wild-type mice [126,127].



Biomedicines 2023, 11, 1412 13 of 21

Hypertriglyceridemia has also been observed in humans with mutations in the
COL18A1 gene [125]. Multiple single-nucleotide polymorphisms (SNP) in COL18A1 are
associated with obesity in T2D and with circulating lipid contents [128–130]. Moreover,
collagen XVIII synthesis in VAT is associated with circulating free fatty acids in obesity, and
a genetic linkage analysis shows an association between chromosome 21, where COL18A1
is located, and the familial combined hyperlipidemia-triglyceride trait, as well as increased
serum triglycerides in hypertensive pedigrees [127,160]. Knobloch syndrome patients
carrying a null mutation of COL18A have increased serum triglyceride levels after fasting
and show reduced activity and mass of plasma lipoprotein lipase (LPL), which cleaves fatty
acids from circulating lipoproteins [125,161]. The heparan sulphate side chains of collagen
XVIII are suggested to carry LPL from the ECM to its receptor on the endothelial cell mem-
brane, and a lack of this collagen may lead to the retention of LPL in the subendothelial
matrix, leading to dysregulation in blood lipid profiles and dyslipidemias [125,161].

Furthermore, a type XVIII collagen knockout in mice causes metabolic complications,
specifically reduced insulin sensitivity and glucose tolerance, which are most likely caused
by the aforementioned lack of adiposity [126]. Interestingly, collagen XVIII deficiency also
leads to increased heat production, probably due to the increased thermogenesis in mouse
BAT, as well as changes in BAT composition [126]. BAT serves an intriguing function in
AT-related lipid regulation. It appears that the increased activation of BAT thermogenesis
will positively impact the lipid profile, lowering the risk of atherosclerosis [162,163]. Inter-
estingly, Col18a1−/− mice displayed an improved triglyceride profile in circulation at cold
temperatures, likely due to the activated lipid uptake and non-shivering thermogenesis in
their BAT [126].

3.9. Other Collagens

Studies on AT-associated collagens have been focused on fibrillar and BM collagens
and collagen VI, but a few transcriptome analyses have also revealed interesting expression
patterns in AT for other collagen types. For example, the fibril-associated collagen XII and
non-fibrillar short-chain collagen VIII were found to be upregulated in the adipocytes of
obese individuals. Here, a high expression of COL12A1 is strongly associated with the
amount of LDL, the “bad cholesterol,” whereas low COL12A1 is related to improved insulin
sensitivity [47]. Collagen VIII is an understudied collagen, but it has been suggested to
have functions related to endothelial cells, smooth muscle cells, and myofibroblasts [164],
and, thus, probably also in the AT vascularization and fibrosis. Another microarray study
revealed the downregulation of COL14A1 when human mesenchymal stem cells were
induced to differentiate to mature adipocytes in vitro [165]. This deviates from the findings
of studies on 3T3-L1 cells that have reported that collagen XIV, and, specifically, its FN type
III domain, triggered adipogenic differentiation in these cells [166]. Finally, collagen XXIV
was upregulated in the VAT and skeletal muscles of HFD-fed mice, as well as in the VAT,
but not the SAT, of obese diabetic human subjects compared to lean controls, suggesting a
pathogenic function of this collagen in T2D and obesity [131].

4. Conclusions and Future Perspectives

AT is a highly active tissue that plays a vital role in metabolism and the general health
of the entire body. AT-resident ECM and its major collagen components help guide AT
growth by providing a supportive and modifiable scaffold and acting as a restrictive barrier.
AT ECM is capable of undergoing a myriad of changes in response to environmental and nu-
tritional cues. Beyond their structural role, AT collagens play significantly functional roles in
adipocyte maturation and whole-body metabolism (Figures 2 and 3). The relatively recently
discovered ECM component, collagen α3(VI)-derived endotrophin fragment, for example,
has emerged as an important regulator of adipogenesis and AT function. High endotrophic
levels are significantly associated with many chronic diseases including T2D, vascular, and
kidney diseases, and it was proposed to serve as a new prognostic biomarker for such
metabolic disorders [153,156]. In addition to the widely studied fibrillar collagens, the
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BM-associated collagen XVIII appears to majorly contribute to regulating AT development
and functions and the related metabolic complications such as dyslipidemia (Figure 3).

Biomedicines 2023, 11, x FOR PEER REVIEW 14 of 22 
 

function in AT-related lipid regulation. It appears that the increased activation of BAT 
thermogenesis will positively impact the lipid profile, lowering the risk of atherosclerosis 
[162,163]. Interestingly, Col18a1−/− mice displayed an improved triglyceride profile in cir-
culation at cold temperatures, likely due to the activated lipid uptake and non-shivering 
thermogenesis in their BAT [126]. 

3.9. Other Collagens 
Studies on AT-associated collagens have been focused on fibrillar and BM collagens 

and collagen VI, but a few transcriptome analyses have also revealed interesting 
expression patterns in AT for other collagen types. For example, the fibril-associated 
collagen XII and non-fibrillar short-chain collagen VIII were found to be upregulated in 
the adipocytes of obese individuals. Here, a high expression of COL12A1 is strongly 
associated with the amount of LDL, the “bad cholesterol,” whereas low COL12A1 is related 
to improved insulin sensitivity [47]. Collagen VIII is an understudied collagen, but it has 
been suggested to have functions related to endothelial cells, smooth muscle cells, and 
myofibroblasts [164], and, thus, probably also in the AT vascularization and fibrosis. 
Another microarray study revealed the downregulation of COL14A1 when human 
mesenchymal stem cells were induced to differentiate to mature adipocytes in vitro [165]. 
This deviates from the findings of studies on 3T3-L1 cells that have reported that collagen 
XIV, and, specifically, its FN type III domain, triggered adipogenic differentiation in these 
cells [166]. Finally, collagen XXIV was upregulated in the VAT and skeletal muscles of 
HFD-fed mice, as well as in the VAT, but not the SAT, of obese diabetic human subjects 
compared to lean controls, suggesting a pathogenic function of this collagen in T2D and 
obesity [131]. 

4. Conclusion and Future Perspectives 
AT is a highly active tissue that plays a vital role in metabolism and the general health 

of the entire body. AT-resident ECM and its major collagen components help guide AT 
growth by providing a supportive and modifiable scaffold and acting as a restrictive bar-
rier. AT ECM is capable of undergoing a myriad of changes in response to environmental 
and nutritional cues. Beyond their structural role, AT collagens play significantly func-
tional roles in adipocyte maturation and whole-body metabolism (Figures 2 and 3). The 
relatively recently discovered ECM component, collagen α3(VI)-derived endotrophin 
fragment, for example, has emerged as an important regulator of adipogenesis and AT 
function. High endotrophic levels are significantly associated with many chronic diseases 
including T2D, vascular, and kidney diseases, and it was proposed to serve as a new prog-
nostic biomarker for such metabolic disorders [153,156]. In addition to the widely studied 
fibrillar collagens, the BM-associated collagen XVIII appears to majorly contribute to reg-
ulating AT development and functions and the related metabolic complications such as 
dyslipidemia (Figure 3). 

 
Figure 3. Summary of collagens in AT dysfunction. (A) Upregulated collagens (arrows) in the WAT 
of obese humans. (B) Upregulated collagens (arrows) in the WAT of mice fed with a high-fat diet 
(HFD), or in obese ob/ob or diabetic db/db mouse models, or in the Hif1a+ mice with constitutively 
active HIF-1α. (C) Left: Key collagens forming large collagen bundles (blue) in hypoxic (pink) and 

Figure 3. Summary of collagens in AT dysfunction. (A) Upregulated collagens (arrows) in the WAT
of obese humans. (B) Upregulated collagens (arrows) in the WAT of mice fed with a high-fat diet
(HFD), or in obese ob/ob or diabetic db/db mouse models, or in the Hif1a+ mice with constitutively
active HIF-1α. (C) Left: Key collagens forming large collagen bundles (blue) in hypoxic (pink) and
fibrotic AT. Collagens which are reported to be associated with insulin resistance (right upper corner),
or with AT inflammation (bottom, a macrophage depicted).

Collagen and ECM modulation can be a powerful approach to affect whole AT home-
ostasis and, thus, research on AT collagens can open interesting avenues into the develop-
ment of novel anti-T2D and obesity therapies. However, their complex dual role in both the
physiology and pathology of AT is a challenge. Further research into the diversity of AT
collagens is expected to reveal novel structural and functional roles for collagens. Under-
standing the developmental and physiological roles of AT collagens versus the pathological
effects of fibrotic ECM in AT, and its effects on the insulin sensitivity of adipocytes and other
AT cells are central questions to be answered in studies focusing on AT ECM. Furthermore,
how much do posttranslational modifications of collagens affect their relevant functions,
and do LOX- and transglutaminase-mediated crosslinking alter their impact from positive
to negative? How do other ECM components such as fibronectin affect collagenous AT
ECM development and functioning? Also, what are the cellular mechanisms that promote
the expression and assembly of collagens that are necessary for AT health versus those cues
that initiate fibrosis? What is the role of ECM in general, and collagens in particular, in
modulating the heterogeneity and plasticity of adipocytes? These and many other questions
must be carefully addressed in future AT ECM studies.
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