Adipokines in Pregnancy: A Systematic Review of Clinical Data
Abstract
:1. Introduction
1.1. Adipokines
1.2. Gestational Diabetes Mellitus
1.3. Preeclampsia
1.4. Intrauterine Growth and Fetal Programming
2. Materials and Methods
3. Literature Review
3.1. Resistin
3.1.1. Resistin in Physiological Pregnancy
3.1.2. Resistin in GDM and PE
3.1.3. Resistin and Parameters of Intrauterine Growth
3.1.4. Cord Blood Resistin
3.2. Chemerin
3.2.1. Chemerin in Physiological Pregnancy
3.2.2. Chemerin in GDM and PE
3.2.3. Chemerin and Parameters of Intrauterine Growth
3.2.4. Cord Blood Chemerin
3.3. RBP4
3.3.1. RBP4 in GDM and PE
3.3.2. RBP4 and Parameters of Intrauterine Growth
3.3.3. Cord Blood RBP4
3.4. GDF15
3.4.1. GDF15 in Physiological Pregnancy
3.4.2. GDF15 in GDM and PE
3.4.3. Cord Blood GDF15
3.5. Irisin
3.5.1. Irisin in Physiological Pregnancy
3.5.2. Irisin in GDM and PE
3.5.3. Irisin and Parameters of Intrauterine Growth
3.5.4. Cord Blood Irisin
3.6. AFABP
3.6.1. AFABP in Physiological Pregnancy
3.6.2. AFABP in GDM and PE
3.6.3. AFABP and Parameters of Intrauterine Growth
3.6.4. Cord Blood AFABP
3.7. Omentin-1
3.7.1. Omentin-1 in Physiological Pregnancy
3.7.2. Omentin-1 in GDM and PE
3.7.3. Omentin-1 and Parameters of Intrauterine Growth
3.7.4. Cord Blood Omentin-1
3.8. Lipocalin-2
3.8.1. Lipocalin-2 in GDM and PE
3.8.2. Lipocalin-2 and Parameters of Intrauterine Growth
3.8.3. Cord Blood Lipocalin-2
3.9. Visfatin
3.9.1. Visfatin in Physiological Pregnancy
3.9.2. Visfatin in GDM and PE
3.9.3. Visfatin and Parameters of Intrauterine Growth
3.9.4. Cord Blood Visfatin
3.10. NRG4
NRG4 in GDM and PE
3.11. Progranulin
3.11.1. Progranulin in Physiological Pregnancy
3.11.2. Progranulin in GDM and PE
3.11.3. Progranulin and Parameters of Intrauterine Growth
4. Discussion
4.1. Adipokines in Physiological Pregnancy
Physiological Changes in Maternal Adipokine Levels during Pregnancy | ||
---|---|---|
Resistin | ↑ | with advancing pregnancy [13] [12] |
↓ | from first to second trimester [11] | |
Chemerin | ↑ | [35] [36] [37] |
↔ | [13] | |
RBP4 | - | |
GDF15 | ↑ | [76] [77] |
Irisin | ↑ | [83] 1 |
A FABP | ↑ | [15] 2 |
Omentin-1 | ↓ | [98] [99] |
Lipocalin-2 | - | |
Visfatin | ↑ | [15] |
NRG4 | ↔ | [135] 3 |
Progranulin | ↑ | [35] |
4.2. Maternal Serum Adipokines in GDM
Changes in Adipokine Levels in Maternal Serum during Pregnancy Pathologies | ||||
---|---|---|---|---|
PE | GDM | |||
Resistin | ↑ | [12] [19] [24] [30] [31] | ↑ | [9] [22] [23] [24] [25] |
↔ | [32] [33] | ↔ | [16] [17] [18] [19] [20] [21] | |
↓ | [27] | |||
Chemerin | ↑ | [47] [48] [49] [50] [51] [52] | ↑ | [34] [36] 1 [41] [42] [43] [44] [45] |
↔ | [13] [35] [38] [39] [40] | |||
↓ | [36] 2 [37] [46] | |||
RBP4 | ↑ | [64] [65] [66] [67] | ↑ | [54] [55] [56] [57] [58] |
↔ | [59] [68] [69] [70] [71] | ↔ | [34] [59] [60] [61] [62] | |
↓ | [63] | |||
GDF15 | ↑ | [77] 3 [79] [80] | ↑ | [78] |
↔ | [77] 4 | |||
↓ | [76] | |||
Irisin | ↔ | [84] [85] 5 | ||
↓ | [83 1 | ↓ | [86] | |
A FABP | ↑ | [52] [92] | ↑ | [42] [46] [54] [62] [89] [90] [91] |
↔ | [13] [26] | |||
Omentin-1 | ↓ | [107] | ↓ | [40] [99] [100] [101] [102] [103] [104] [105] 6 |
Lipocalin-2 | ↑ | [112] [113] | ↑ | [43] [111] |
Visfatin | ↑ | [32] 7 [126] [127] [128] [130] | ↑ | [24] [62] [103] [120] [121] [122] |
↔ | [124] [125] | ↔ | [16] [17] [20] [101] [117] [118] | |
↓ | [34] 7 [119] | |||
NRG4 | ↑ | [136] | ||
↔ | [137] | |||
↓ | [135] | |||
Progranulin | ↑ | [139] | ||
↔ | [35] |
4.3. Maternal Serum Adipokines in PE
4.4. Maternal Serum Adipokines and Parameters of Intrauterine Growth
Association of Maternal Serum Adipokine Levels with Parameters of Intrauterine Growth | |||||||
---|---|---|---|---|---|---|---|
Resistin | Birthweight | ↓ | [30] | ||||
LGA, SGA | ↔ | [19] | |||||
Chemerin | Birthweight | ↑ | [41] | ↓ | [49] | ||
APGAR 1,5 | ↓ | [49] | |||||
RBP4 | Birthweight | ↓ | [72] 1 | ||||
FGR | ↓ | [68] | |||||
SGA | ↔ | [59] [66] | |||||
LGA | ↔ | [59] | |||||
Preterm birth | ↑ | [65] | |||||
GDF15 | - | ||||||
Irisin | Higher birthweight | ↔ | [87] 2 | ||||
AFABP | Higher birthweight | ↑ | [93] | ||||
Omentin-1 | IUGR | ↔ | [108] | ||||
Preterm birth | ↓ | [100] | |||||
Lipocalin-2 | AGA | ↑ | [114] 3 | ||||
Visfatin | Birthweight | ↓ | [103] 4 | ||||
Length at birth | ↓ | [103] 4 | |||||
SGA neonate | ↑ | [124] | |||||
Preterm birth | ↑ | [131] | |||||
NRG4 | - | ||||||
Progranulin | Birthweight | ↓ | [139] |
4.5. Cord Blood Adipokines and Pregnancy Outcomes
Association of cord Blood Adipokines with Various Pregnancy Outcomes | ||||
---|---|---|---|---|
Resistin | GDM offspring | ↓ [27] | ||
higher birthweight | ↑ [23] | |||
Chemerin | GDM offspring | ↑ [38] 1 | ||
Obese mother | ↑ [38] 2 | |||
Birthweight | ↔ [38] | |||
RBP4 | GDM offspring | ↑ [73] 3 | ||
PE offspring | ↓ [63] | |||
LGA | ↑ [74] | |||
Birthweight z score | ↑ [74] | |||
GDF15 | SGA | ↔ [81] | ||
Irisin | GDM offspring | ↔ [85] | ||
Maternal BMI | ↔ [85] | |||
Neck circumference | ↓ [87] | |||
AFABP | GDM offspring | ↑ [96] 4 | ||
hypoglycemic newborns | ↑ [95] | |||
SGA infants | ↓ [94] | |||
Preterm birth | ↑ [94] | |||
Omentin-1 | GDM offspring | ↓ [99] | ||
IUGR | ↔ [108] | |||
SGA | ↑ [109] | |||
LGA | ↓ [109] | |||
Lipocalin-2 | IUGR | ↑ [114] 5 | ||
Visfatin | PE offspring | ↑ [133] | ↔ [125] | |
GDM offspring | ↑ [133] | |||
Term SGA, AGA | ↔ [125] | |||
LGA | ↑ [133] | ↔ [132] | ||
IUGR | ↑ [133] | |||
NRG4 | - | - | ||
Progranulin | - | - |
4.6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.E. Lilly Lecture 2005 Adipose Tissue From Lipid Storage Compartment to Endocrine Organ. Diabetes 2006, 55, 1537–1545. [Google Scholar] [CrossRef]
- Maachi, M.; Piéroni, L.; Bruckert, E.; Jardel, C.; Fellahi, S.; Hainque, B.; Capeau, J.; Bastard, J.-P. Systemic Low-Grade Inflammation Is Related to Both Circulating and Adipose Tissue TNFa, Leptin and IL-6levels in Obese Women. Int. J. Obes. 2004, 28, 993–997. [Google Scholar] [CrossRef]
- Landon, M.B.; Gabbe, S.G. Gestational Diabetes Mellitus. Obstet. Gynecol. 2011, 118, 1379–1393. [Google Scholar] [CrossRef]
- Barker, D.J. The Fetal and Infant Orgins of Adult Disease. Br. Med. J. 1990, 301, 1111. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-Eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Hillier, T.A.; Pedula, K.L.; Schmidt, M.M.; Mullen, J.A.; Charles, M.-A.; Pettitt, D.J. Childhood Obesity and Metabolic Imprinting the Ongoing Effects of Maternal Hyperglycemia. Diabetes Care 2007, 30, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, R.; Mohammed, S.H.; Safabakhsh, M.; Mohseni, F.; Monfared, Z.S.; Seyyedi, J.; Mejareh, Z.N.; Alizadeh, S. Birth Weight and Risk of Cardiovascular Disease Incidence in Adulthood: A Dose-Response Meta-Analysis. Curr. Atheroscler. Rep. 2020, 22, 12. [Google Scholar] [CrossRef]
- Siddiqui, K.; George, T.P. Resistin Role in Development of Gestational Diabetes Mellitus. Biomark. Med. 2017, 11, 579–586. [Google Scholar] [CrossRef]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The Hormone Resistin Links Obesity to Diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef]
- Al-Musharaf, S.; Sabico, S.; Hussain, S.D.; Al-Tawashi, F.; Alwaily, H.B.; Al-Daghri, N.M.; McTernan, P. Inflammatory and Adipokine Status from Early to Midpregnancy in Arab Women and Its Associations with Gestational Diabetes Mellitus. Dis. Markers 2021, 2021, 8862494. [Google Scholar] [CrossRef] [PubMed]
- Banjac, G.; Ardalic, D.; Mihajlovic, M.; Antonic, T.; Cabunac, P.; Zeljkovic, A.; Vekic, J.; Karadzov-Orlic, N.; Stanimirovic, S.; Spasojevic-Kalimanovska, V.; et al. The Role of Resistin in Early Preeclampsia Prediction. Scand. J. Clin. Lab. Investig. 2021, 81, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Guelfi, K.J.; Ong, M.J.; Li, S.; Wallman, K.E.; Doherty, D.A.; Fournier, P.A.; Newnham, J.P.; Keelan, J.A. Maternal Circulating Adipokine Profile and Insulin Resistance in Women at High Risk of Developing Gestational Diabetes Mellitus. Metabolism 2017, 75, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Dong, M.; Fang, Q.; He, J.; Wang, Z.; Yang, X. Alterations of Serum Resistin in Normal Pregnancy and Pre-Eclampsia. Clin. Sci. 2005, 108, 81–84. [Google Scholar] [CrossRef] [PubMed]
- de Gennaro, G.; Palla, G.; Battini, L.; Simoncini, T.; Del Prato, S.; Bertolotto, A.; Bianchi, C. The Role of Adipokines in the Pathogenesis of Gestational Diabetes Mellitus. Gynecol. Endocrinol. 2019, 35, 737–751. [Google Scholar] [CrossRef]
- Lobo, T.F.; Torloni, M.R.; Mattar, R.; Nakamura, M.U.; Alexandre, S.M.; Daher, S. Adipokine Levels in Overweight Women with Early-Onset Gestational Diabetes Mellitus. J. Endocrinol. Investig. 2019, 42, 149–156. [Google Scholar] [CrossRef]
- Boyadzhieva, M.; Atanasova, I.; Zacharieva, S.; Kedikova, S. Adipocytokines during Pregnancy and Postpartum in Women with Gestational Diabetes and Healthy Controls. J. Endocrinol. Investig. 2013, 36, 944–949. [Google Scholar] [CrossRef]
- Karatas, A.; Tunçay Işikkent, N.; Ozlü, T.; Demirin, H. Relationship of Maternal Serum Resistin and Visfatin Levels with Gestational Diabetes Mellitus. Gynecol. Endocrinol. 2014, 30, 355–358. [Google Scholar] [CrossRef]
- Nanda, S.; Poon, L.C.Y.; Muhaisen, M.; Acosta, I.C.; Nicolaides, K.H. Maternal Serum Resistin at 11 to 13 Weeks’ Gestation in Normal and Pathological Pregnancies. Metabolism 2012, 61, 699–705. [Google Scholar] [CrossRef]
- O’Malley, E.G.; Reynolds, C.M.E.; Killalea, A.; O’Kelly, R.; Sheehan, S.R.; Turner, M.J. The Use of Biomarkers at the End of the Second Trimester to Predict Gestational Diabetes Mellitus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 250, 101–106. [Google Scholar] [CrossRef]
- Lobo, T.F.; Torloni, M.R.; Gueuvoghlanian-Silva, B.Y.; Mattar, R.; Daher, S. Resistin Concentration and Gestational Diabetes: A Systematic Review of the Literature. J. Reprod. Immunol. 2013, 97, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.; George, T.P.; Nawaz, S.S.; Shehata, N.; El-Sayed, A.A.; Khanam, L. Serum Adipokines (Adiponectin and Resistin) Correlation in Developing Gestational Diabetes Mellitus: Pilot Study. Gynecol. Endocrinol. 2018, 34, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Dong, X.; Hou, L. Correlation of Adipokines and Markers of Oxidative Stress in Women with Gestational Diabetes Mellitus and Their Newborns. J. Obstet. Gynaecol. Res. 2018, 44, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Bawah, A.T.; Seini, M.M.; Abaka-Yawason, A.; Alidu, H.; Nanga, S. Leptin, Resistin and Visfatin as Useful Predictors of Gestational Diabetes Mellitus. Lipids Health Dis. 2019, 18, 221. [Google Scholar] [CrossRef]
- Kapustin, R.V.; Chepanov, S.V.; Babakov, V.N.; Rogovskaya, N.Y.; Kopteeva, E.V.; Alekseenkova, E.N.; Arzhanova, O.N. Maternal Serum Leptin, Adiponectin, Resistin and Monocyte Chemoattractant Protein-1 Levels in Different Types of Diabetes Mellitus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 254, 284–291. [Google Scholar] [CrossRef]
- Vorobjova, T.; Tagoma, A.; Talja, I.; Janson, H.; Kirss, A.; Uibo, R. FABP4 and I-FABP Levels in Pregnant Women Are Associated with Body Mass Index but Not Gestational Diabetes. J. Diabetes Res. 2022, 2022, 1089434. [Google Scholar] [CrossRef]
- McManus, R.; Summers, K.; De Vrijer, B.; Cohen, N.; Thompson, A.; Giroux, I. Maternal, Umbilical Arterial and Umbilical Venous 25-Hydroxyvitamin D and Adipocytokine Concentrations in Pregnancies with and without Gestational Diabetes. Clin. Endocrinol. 2014, 80, 635–641. [Google Scholar] [CrossRef]
- Aviram, A.; Shtaif, B.; Gat-Yablonski, G.; Yogev, Y. The Association between Adipocytokines and Glycemic Control in Women with Gestational Diabetes Mellitus. J. Matern.-Fetal Neonatal Med. 2020, 33, 177–183. [Google Scholar] [CrossRef]
- Seol, H.J.; Oh, M.J.; Yeo, M.K.; Kim, A.; Lee, E.S.; Kim, H.J. Comparison of Serum Levels and the Placental Expression of Resistin between Patients with Preeclampsia and Normal Pregnant Women. Hypertens. Pregnancy 2010, 29, 310–317. [Google Scholar] [CrossRef]
- Song, Y.; Gao, J.; Qu, Y.; Wang, S.; Wang, X.; Liu, J. Serum Levels of Leptin, Adiponectin and Resistin in Relation to Clinical Characteristics in Normal Pregnancy and Preeclampsia. Clin. Chim. Acta 2016, 458, 133–137. [Google Scholar] [CrossRef]
- Talab, A.Y.; Hamza, H.A.; Mostafa, T.M. Antepartum and Postpartum Changes in Adipokines, Endothelial Dysfunction, Inflammatory Markers and Other Biochemical Parameters in Preeclamptic Women: A Prospective Observational Cohort Study. J. Appl. Biomed. 2021, 19, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Hunt, H.; Melhorn, S.; Gammill, H.S.; Schur, E.A. Adipokine Profiles in Preeclampsia. J. Matern.-Fetal Neonatal Med. 2020, 33, 2812–2817. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Barry, D.; Melhorn, S.; Easterling, T.; Gammill, H.; Schur, E. Evaluating Relationships between Visceral Fat Measures and Adipokines Concentrations among Women with a History of Preeclampsia. Am. J. Perinatol. 2020, 37, 1140–1145. [Google Scholar] [CrossRef]
- Tsiotra, P.C.; Halvatsiotis, P.; Patsouras, K.; Maratou, E.; Salamalekis, G.; Raptis, S.A.; Dimitriadis, G.; Boutati, E. Circulating Adipokines and MRNA Expression in Adipose Tissue and the Placenta in Women with Gestational Diabetes Mellitus. Peptides 2018, 101, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Gebhardt, C.; Scholz, M.; Schleinitz, D.; Blüher, M.; Stumvoll, M.; Kovacs, P.; Fasshauer, M.; Tönjes, A. Adipocytokines Are Not Associated with Gestational Diabetes Mellitus but with Pregnancy Status. Cytokine 2020, 131, 155088. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Quan, X.; Lan, Y.; Ye, J.; Wei, Q.; Yin, X.; Fan, F.; Xing, H. Serum Chemerin Level during the First Trimester of Pregnancy and the Risk of Gestational Diabetes Mellitus. Gynecol. Endocrinol. 2017, 33, 770–773. [Google Scholar] [CrossRef]
- Hare, K.J.; Bonde, L.; Svare, J.A.; Randeva, H.S.; Asmar, M.; Larsen, S.; Vilsbøll, T.; Knop, F.K. Decreased Plasma Chemerin Levels in Women with Gestational Diabetes Mellitus. Diabetes Med. 2014, 31, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Van Poppel, M.N.M.; Zeck, W.; Ulrich, D.; Schest, E.C.; Hirschmugl, B.; Lang, U.; Wadsack, C.; Desoye, G. Cord Blood Chemerin: Differential Effects of Gestational Diabetes Mellitus and Maternal Obesity. Clin. Endocrinol. 2014, 80, 65–72. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, H.; Ju, H.; Sun, M. Circulating Chemerin Levels and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Lipids Health Dis. 2018, 17, 169. [Google Scholar] [CrossRef]
- Sun, J.; Ren, J.; Zuo, C.; Deng, D.; Pan, F.; Chen, R.; Zhu, J.; Chen, C.; Ye, S. Circulating Apelin, Chemerin and Omentin Levels in Patients with Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Lipids Health Dis. 2020, 19, 26. [Google Scholar] [CrossRef]
- Fatima, S.S.; Alam, F.; Chaudhry, B.; Khan, T.A. Elevated Levels of Chemerin, Leptin, and Interleukin-18 in Gestational Diabetes Mellitus. J. Matern.-Fetal Neonatal Med. 2017, 30, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Francis, E.C.; Li, M.; Hinkle, S.N.; Cao, Y.; Chen, J.; Wu, J.; Zhu, Y.; Cao, H.; Kemper, K.; Rennert, L.; et al. Adipokines in Early and Mid-Pregnancy and Subsequent Risk of Gestational Diabetes: A Longitudinal Study in a Multiracial Cohort. BMJ Open Diabetes Res. Care 2020, 8, e001333. [Google Scholar] [CrossRef]
- Mierzyński, R.; Poniedziałek-Czajkowska, E.; Dłuski, D.; Kamiński, M.; Mierzyńska, A.; Leszczyńska-Gorzelak, B. The Potential Role of Chemerin, Lipocalin 2, and Apelin in the Diagnosis and Pathophysiology of Gestational Diabetes Mellitus. J. Diabetes Res. 2021, 2021, 5547228. [Google Scholar] [CrossRef]
- Li, X.M.; Ji, H.; Li, C.J.; Wang, P.H.; Yu, P.; Yu, D.M. Chemerin Expression in Chinese Pregnant Women with and without Gestational Diabetes Mellitus. Ann. Endocrinol. 2015, 76, 19–24. [Google Scholar] [CrossRef]
- Schuitemaker, J.H.N.; Beernink, R.H.J.; Franx, A.; Cremers, T.I.F.H.; Koster, M.P.H. First Trimester Secreted Frizzled-Related Protein 4 and Other Adipokine Serum Concentrations in Women Developing Gestational Diabetes Mellitus. PLoS ONE 2020, 15, e0242423. [Google Scholar] [CrossRef] [PubMed]
- Mosavat, M.; Mirsanjari, M.; Lwaleed, B.A.; Kamarudin, M.; Omar, S.Z. Adipocyte-Specific Fatty Acid-Binding Protein (AFABP) and Chemerin in Association with Gestational Diabetes: A Case-Control Study. J. Diabetes Res. 2021, 2021, 5533802. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Philipp, A.; Roth, I.; Kralisch, S.; Jank, A.; Schaarschmidt, W.; Lössner, U.; Kratzsch, J.; Blüher, M.; Stumvoll, M.; et al. Serum Levels of the Adipokine Chemerin Are Increased in Preeclampsia during and 6months after Pregnancy. Regul. Pept. 2011, 168, 69–72. [Google Scholar] [CrossRef]
- Duan, D.M.; Niu, J.M.; Lei, Q.; Lin, X.H.; Chen, X. Serum Levels of the Adipokine Chemerin in Preeclampsia. J. Perinat. Med. 2012, 40, 121–127. [Google Scholar] [CrossRef]
- Cetin, O.; Kurdoglu, Z.; Kurdoglu, M.; Sahin, H.G. Chemerin Level in Pregnancies Complicated by Preeclampsia and Its Relation with Disease Severity and Neonatal Outcomes. J. Obstet. Gynaecol. 2017, 37, 195–199. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Liu, H.; Li, Z.; Li, L.; Wu, X.; Lei, Q.; Yin, A.; Tong, J.; Liu, K.; et al. Third-Trimester Maternal Serum Chemerin and Hypertension After Preeclampsia: A Prospective Cohort Study. J. Am. Heart Assoc. 2023, 12, e027930. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.L.; Zhu, M.; Jin, Y.; Wang, N.; Xu, H.X.; Quan, L.M.; Wang, S.S.; Li, S.S. The Predictive Value of the First-Trimester Maternal Serum Chemerin Level for Pre-Eclampsia. Peptides 2014, 62, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, G.; Bellos, I.; Nikolakea, M.; Pergialiotis, V.; Papapanagiotou, A.; Loutradis, D. The Role of Serum Adipokine Levels in Preeclampsia: A Systematic Review. Metabolism 2020, 106, 154172. [Google Scholar] [CrossRef] [PubMed]
- Moraes-Vieira, P.M.; Yore, M.M.; Dwyer, P.M.; Syed, I.; Aryal, P.; Kahn, B.B. RBP4 Activates Antigen-Presenting Cells Leading to Adipose Tissue Inflammation and Systemic Insulin Resistance. Cell Metab. 2014, 19, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Lu, J.; Zheng, S.; Long, T.; Li, Y.; Wu, W.; Wang, F. Changes in Serum Adipocyte Fatty Acid-Binding Protein in Women with Gestational Diabetes Mellitus and Normal Pregnant Women during Mid- and Late Pregnancy. J. Diabetes Investig. 2016, 7, 797–804. [Google Scholar] [CrossRef]
- Abetew, D.F.; Qiu, C.; Fida, N.G.; Dishi, M.; Hevner, K.; Williams, M.A.; Enquobahrie, D.A. Association of Retinol Binding Protein 4 with Risk of Gestational Diabetes. Diabetes Res. Clin. Pract. 2013, 99, 48–53. [Google Scholar] [CrossRef]
- Du, C.; Kong, F. A Prospective Study of Maternal Plasma Concentrations of Retinol-Binding Protein 4 and Risk of Gestational Diabetes Mellitus. Ann. Nutr. Metab. 2019, 74, 1–8. [Google Scholar] [CrossRef]
- Hu, S.; Liu, Q.; Huang, X.; Tan, H. Serum Level and Polymorphisms of Retinol-Binding Protein-4 and Risk for Gestational Diabetes Mellitus: A Meta-Analysis. BMC Pregnancy Childbirth 2016, 16, 52. [Google Scholar] [CrossRef]
- Huang, Q.T.; Huang, Q.; Luo, W.; Li, F.; Hang, L.L.; Yu, Y.H.; Zhong, M. Circulating Retinol-Binding Protein 4 Levels in Gestational Diabetes Mellitus: A Meta-Analysis of Observational Studies. Gynecol. Endocrinol. 2015, 31, 337–344. [Google Scholar] [CrossRef]
- Nanda, S.; Nikoletakis, G.; Markova, D.; Poon, L.C.Y.; Nicolaides, K.H. Maternal Serum Retinol-Binding Protein-4 at 11-13 Weeks’ Gestation in Normal and Pathological Pregnancies. Metabolism 2013, 62, 814–819. [Google Scholar] [CrossRef]
- Jia, X.; Bai, L.; Ma, N.; Lu, Q. The Relationship between Serum Adipokine Fibroblast Growth Factor-21 and Gestational Diabetes Mellitus. J. Diabetes Investig. 2022, 13, 2047–2053. [Google Scholar] [CrossRef]
- Gursoy, A.Y.; Aynaoglu, G.; Caglar, G.S.; Soylemez, F. Early Second Trimester Retinol-Binding Protein-4 Values in Cases with or without Gestational Diabetes Mellitus Risk Factors: A Cross-Sectional Study. J. Obstet. Gynaecol. Res. 2015, 41, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Abell, S.K.; De Courten, B.; Boyle, J.A.; Teede, H.J. Inflammatory and Other Biomarkers: Role in Pathophysiology and Prediction of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2015, 16, 13442–13473. [Google Scholar] [CrossRef]
- Seol, H.J.; Kim, J.W.; Kim, H.J. Retinol-Binding Protein-4 Is Decreased in Patients with Preeclampsia in Comparison with Normal Pregnant Women. J. Perinat. Med. 2011, 39, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Yliniemi, A.; Nurkkala, M.M.; Kopman, S.; Korpimaki, T.; Kouru, H.; Ryynanen, M.; Marttala, J. First Trimester Placental Retinol-Binding Protein 4 (RBP4) and Pregnancy-Associated Placental Protein A (PAPP-A) in the Prediction of Early-Onset Severe Pre-Eclampsia. Metabolism 2015, 64, 521–526. [Google Scholar] [CrossRef]
- Mendola, P.; Ghassabian, A.; Mills, J.L.; Zhang, C.; Tsai, M.Y.; Liu, A.; Yeung, E.H. Retinol-Binding Protein 4 and Lipids Prospectively Measured during Early to Mid-Pregnancy in Relation to Preeclampsia and Preterm Birth Risk. Am. J. Hypertens. 2017, 30, 569–576. [Google Scholar] [CrossRef]
- Vaisbuch, E.; Romero, R.; Mazaki-Tovi, S.; Erez, O.; Kim, S.K.; Chaiworapongsa, T.; Gotsch, F.; Than, N.G.; Dong, Z.; Pacora, P.; et al. Retinol Binding Protein 4—A Novel Association with Early-Onset Preeclampsia. J. Perinat. Med. 2010, 38, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, H.Z.; Ali, T.; Adam, I. Association between Retinol-Binding Protein 4 Levels and Preeclampsia: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 5201. [Google Scholar] [CrossRef]
- Fruscalzo, A.; Biasioli, A.; Londero, A.P.; Ceraudo, M.; Stel, G.; Bertozzi, S.; Marchesoni, D.; Driul, L.; Curcio, F. Retinol Binding Protein as Early Marker of Fetal Growth Restriction in First Trimester Maternal Serum. Gynecol. Endocrinol. 2013, 29, 323–326. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Gui, S.; Liu, X.; Dai, L.; Zhou, B.; Zhou, R.; Gong, Y. Association between Plasma Retinol Binding Protein 4 Levels and Severe Preeclampsia. J. Obstet. Gynaecol. 2018, 38, 438–441. [Google Scholar] [CrossRef]
- Palalioglu, R.M.; Erbiyik, H.I. Evaluation of Maternal Serum SERPINC1, E-Selectin, P-Selectin, RBP4 and PP13 Levels in Pregnancies Complicated with Preeclampsia. J. Matern.-Fetal Neonatal Med. 2023, 36, 2183472. [Google Scholar] [CrossRef]
- Masuyama, H.; Inoue, S.; Hiramatsu, Y. Retinol-Binding Protein 4 and Insulin Resistance in Preeclampsia. Endocr. J. 2011, 58, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Fruscalzo, A.; Frommer, J.; Londero, A.P.; Henze, A.; Schweigert, F.J.; Nofer, J.R.; Steinhard, J.; Klockenbusch, W.; Schmitz, R.; Raila, J. First Trimester TTR-RBP4-ROH Complex and Angiogenic Factors in the Prediction of Small for Gestational Age Infant’s Outcome. Arch. Gynecol. Obstet. 2017, 295, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.N.; Chiu, H.C.; Wang, W.J.; Fang, F.; Zhang, G.H.; Zhu, H.; Zhang, L.; Zhang, D.L.; Du, Q.; He, H.; et al. Sex Dimorphism in the Associations of Gestational Diabetes with Cord Blood Adiponectin and Retinol-Binding Protein 4. BMJ Open Diabetes Res. Care 2020, 8, e001310. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.N.; Zhang, G.H.; Du, K.; Wang, W.J.; Dong, Y.; He, H.; Chiu, H.C.; Guo, Y.N.; Ouyang, F.; Zhang, J.; et al. Retinol-Binding Protein 4, Fetal Overgrowth and Fetal Growth Factors. Pediatr. Res. 2020, 87, 946–951. [Google Scholar] [CrossRef]
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela, S.M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a Novel Macrophage Inhibitory Cytokine, Is a Divergent Member of the TGF-Superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Zhao, M.; Hyett, J.; da Silva Costa, F.; Nie, G. Serum Levels of GDF15 Are Reduced in Preeclampsia and the Reduction Is More Profound in Late-Onset than Early-Onset Cases. Cytokine 2016, 83, 226–230. [Google Scholar] [CrossRef]
- Wertaschnigg, D.; Rolnik, D.L.; Nie, G.; Teoh, S.S.Y.; Syngelaki, A.; da Silva Costa, F.; Nicolaides, K.H. Second- and Third-Trimester Serum Levels of Growth-Differentiation Factor-15 in Prediction of Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2020, 56, 879–884. [Google Scholar] [CrossRef]
- Yakut, K.; Öcal, D.F.; Öztürk, F.H.; Öztürk, M.; Oğuz, Y.; Sınacı, S.; Çağlar, T. Is GDF-15 Level Associated with Gestational Diabetes Mellitus and Adverse Perinatal Outcomes? Taiwan J. Obstet. Gynecol. 2021, 60, 221–224. [Google Scholar] [CrossRef]
- Cruickshank, T.; Macdonald, T.M.; Walker, S.P.; Keenan, E.; Dane, K.; Middleton, A.; Kyritsis, V.; Myers, J.; Cluver, C.; Hastie, R.; et al. Circulating Growth Differentiation Factor 15 Is Increased Preceding Preeclampsia Diagnosis: Implications as a Disease Biomarker. J. Am. Heart Assoc. 2021, 10, e020302. [Google Scholar] [CrossRef]
- Temel Yuksel, I.; Mathyk, B.A.; Aslan Cetin, B.; Turhan, U.; Okumus, Z.G.; Yetkin Yildirim, G.; Acar, D.K. Maternal Levels of Growth Differentiation Factor-15 in Patients with Preeclampsia. Hypertens. Pregnancy 2018, 37, 192–196. [Google Scholar] [CrossRef]
- Díaz, M.; Campderrós, L.; Guimaraes, M.P.; López-Bermejo, A.; de Zegher, F.; Villarroya, F.; Ibáñez, L. Circulating Growth-and-Differentiation Factor-15 in Early Life: Relation to Prenatal and Postnatal Growth and Adiposity Measurements. Pediatr. Res. 2020, 87, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1α-Dependent Myokine That Drives Browning of White Fat and Thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Garcés, M.F.; Peralta, J.J.; Ruiz-Linares, C.E.; Lozano, A.R.; Poveda, N.E.; Torres-Sierra, A.L.; Eslava-Schmalbach, J.H.; Alzate, J.P.; Sánchez, Á.Y.; Sanchez, E.; et al. Irisin Levels during Pregnancy and Changes Associated with the Development of Preeclampsia. J. Clin. Endocrinol. Metab. 2014, 99, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Stepan, H.; Schrey, S.; Kralisch, S.; Hindricks, J.; Hopf, L.; Platz, M.; Lossner, U.; Jessnitzer, B.; Drewlo, S.; et al. Serum Levels of Irisin in Gestational Diabetes Mellitus during Pregnancy and after Delivery. Cytokine 2014, 65, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Trejo, M.; Garcia-Rivas, G.; Torres-Quintanilla, A.; Laresgoiti-Servitje, E. Relationship between Irisin Concentration and Serum Cytokines in Mother and Newborn. PLoS ONE 2016, 11, e0165229. [Google Scholar] [CrossRef] [PubMed]
- Kuzmicki, M.; Telejko, B.; Lipinska, D.; Pliszka, J.; Szamatowicz, M.; Wilk, J.; Zbucka-Kretowska, M.; Laudanski, P.; Kretowski, A.; Gorska, M.; et al. Serum Irisin Concentration in Women with Gestational Diabetes. Gynecol. Endocrinol. 2014, 30, 636–639. [Google Scholar] [CrossRef]
- Ökdemir, D.; Hatipoğlu, N.; Kurtoğlu, S.; Siraz, Ü.G.; Akar, H.H.; Muhtaroğlu, S.; Kütük, M.S. The Role of Irisin, Insulin and Leptin in Maternal and Fetal Interaction. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Kralisch, S.; Fasshauer, M. Adipocyte Fatty Acid Binding Protein: A Novel Adipokine Involved in the Pathogenesis of Metabolic and Vascular Disease? Diabetologia 2013, 56, 10–21. [Google Scholar] [CrossRef]
- Bellos, I.; Fitrou, G.; Pergialiotis, V.; Perrea, D.N.; Daskalakis, G. Serum Levels of Adipokines in Gestational Diabetes: A Systematic Review. J. Endocrinol. Investig. 2019, 42, 621–631. [Google Scholar] [CrossRef]
- Trojnar, M.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B.; Mosiewicz, J. Associations between Fatty Acid-Binding Protein 4–a Proinflammatory Adipokine and Insulin Resistance, Gestational and Type 2 Diabetes Mellitus. Cells 2019, 8, 227. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, D.; Xu, J.; Chen, C.; Deng, D.; Pan, F.; Dong, L.; Li, S.; Ye, S. Circulating FABP4, Nesfatin-1, and Osteocalcin Concentrations in Women with Gestational Diabetes Mellitus: A Meta-Analysis. Lipids Health Dis. 2020, 19, 199. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; Xu, C.L.; Lin, K.S.; Gu, H.B.; Chen, L.; Wang, Y.; Weng, B.C.; Huang, H.Q.; Li, Y.P.; Zou, Y.L.; et al. Study on the Correlation between Adipocyte Fatty-Acid Binding Protein, Glucolipid Metabolism, and Pre-Eclampsia. J. Obstet. Gynaecol. Res. 2018, 44, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Ciborowski, M.; Zbucka-Kretowska, M.; Bomba-Opon, D.; Wielgos, M.; Brawura-Biskupski-Samaha, R.; Pierzynski, P.; Szmitkowski, M.; Wolczynski, S.; Lipinska, D.; Citko, A.; et al. Potential First Trimester Metabolomic Biomarkers of Abnormal Birth Weight in Healthy Pregnancies. Prenat. Diagn. 2014, 34, 870–877. [Google Scholar] [CrossRef]
- Joung, K.E.; Cataltepe, S.U.; Michael, Z.; Christou, H.; Mantzoros, C.S. Cord Blood Adipocyte Fatty Acid–Binding Protein Levels Correlate With Gestational Age and Birth Weight in Neonates. J. Clin. Endocrinol. Metab. 2017, 102, 1606–1613. [Google Scholar] [CrossRef]
- Ron, I.; Lerner, R.K.; Rathaus, M.; Livne, R.; Ron, S.; Barhod, E.; Hemi, R.; Tirosh, A.; Strauss, T.; Ofir, K.; et al. The Adipokine FABP4 Is a Key Regulator of Neonatal Glucose Homeostasis. JCI Insight 2021, 6, e149217. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, T.; Xu, Y.J.; Yang, M.N.; Wang, W.J.; Huang, R.; Zhang, G.H.; Guo, Y.N.; Zhang, J.; Ouyang, F.; et al. Sex Dimorphic Associations of Gestational Diabetes Mellitus With Cord Plasma Fatty Acid Binding Protein 4 and Estradiol. Front. Endocrinol. 2021, 12, 740902. [Google Scholar] [CrossRef]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr. Physiol. 2017, 7, 765–781. [Google Scholar] [CrossRef]
- Aktas, G.; Alcelik, A.; Ozlu, T.; Tosun, M.; Tekce, B.K.; Savli, H.; Tekce, H.; Dikbas, O. Association between Omentin Levels and Insulin Resistance in Pregnancy. Exp. Clin. Endocrinol. Diabetes 2014, 122, 163–166. [Google Scholar] [CrossRef]
- Franz, M.; Polterauer, M.; Springer, S.; Kuessel, L.; Haslinger, P.; Worda, C.; Worda, K. Maternal and Neonatal Omentin-1 Levels in Gestational Diabetes. Arch. Gynecol. Obstet. 2018, 297, 885–889. [Google Scholar] [CrossRef]
- Mierzyński, R.; Dłuski, D.; Nowakowski, Ł.; Poniedziałek-Czajkowska, E.; Leszczyńska-Gorzelak, B. Adiponectin and Omentin Levels as Predictive Biomarkers of Preterm Birth in Patients with Gestational Diabetes Mellitus. BioMed Res. Int. 2018, 2018, 7154216. [Google Scholar] [CrossRef]
- Abell, S.K.; Shorakae, S.; Harrison, C.L.; Hiam, D.; Moreno-Asso, A.; Stepto, N.K.; De Courten, B.; Teede, H.J. The Association between Dysregulated Adipocytokines in Early Pregnancy and Development of Gestational Diabetes. Diabetes Metab. Res. Rev. 2017, 33, e2926. [Google Scholar] [CrossRef] [PubMed]
- Abell, S.K.; Shorakae, S.; Boyle, J.A.; De Courten, B.; Stepto, N.K.; Teede, H.J.; Harrison, C.L. Role of Serum Biomarkers to Optimise a Validated Clinical Risk Prediction Tool for Gestational Diabetes. Aust. N. Z. J. Obstet. Gynaecol. 2019, 59, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Souvannavong-Vilivong, X.; Sitticharoon, C.; Klinjampa, R.; Keadkraichaiwat, I.; Sripong, C.; Chatree, S.; Sririwichitchai, R.; Lertbunnaphong, T. Placental Expressions and Serum Levels of Adiponectin, Visfatin, and Omentin in GDM. Acta Diabetol. 2019, 56, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Acheampong, K.; Liu, A. Omentin-1 in Diabetes Mellitus: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0226292. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, S.; Gelaye, B.; Williams, M.A. Association between Omentin-1 and Indices of Glucose Metabolism in Early Pregnancy: A Pilot Study. Arch. Gynecol. Obstet. 2022, 305, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Almorós, A.; Hang, T.; Peiró, C.; Soriano-Guillén, L.; Egido, J.; Tuñón, J. Lorenzo Predictive and Diagnostic Biomarkers for Gestational Diabetes and Its Associated Metabolic and Cardiovascular Diseases. Cardiovasc. Diabetol. 2019, 18, 140. [Google Scholar] [CrossRef]
- Liu, H.; Wu, J.; Wang, H.; Sheng, L.; Tang, N.; Li, Y.; Hao, T. Association of Serum Omentin-1 Concentrations with the Presence and Severity of Preeclampsia. Ann. Clin. Biochem. 2015, 52, 245–250. [Google Scholar] [CrossRef]
- Briana, D.D.; Boutsikou, M.; Baka, S.; Gourgiotis, D.; Marmarinos, A.; Liosi, S.; Hassiakos, D.; Malamitsi-Puchner, A. Omentin-1 and Vaspin Are Present in the Fetus and Neonate, and Perinatal Concentrations Are Similar in Normal and Growth-Restricted Pregnancies. Metabolism 2011, 60, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, C.E.; Estrada-Zúñiga, C.M.; De la O-Cavazos, M.E.; García-Rodríguez, F.; Rodríguez-Balderrama, I.; Zapata-Castilleja, C.A.; Treviño-Garza, C. Differences in Omentin-1 Levels in Term Newborns According to Birth Weight. Early Hum. Dev. 2019, 139, 104842. [Google Scholar] [CrossRef]
- Al Jaberi, S.; Cohen, A.; D’Souza, C.; Abdulrazzaq, Y.M.; Ojha, S.; Bastaki, S.; Adeghate, E.A. Lipocalin-2: Structure, Function, Distribution and Role in Metabolic Disorders. Biomed. Pharmacother. 2021, 142, 112002. [Google Scholar] [CrossRef] [PubMed]
- Sweeting, A.N.; Wong, J.; Appelblom, H.; Ross, G.P.; Kouru, H.; Williams, P.F.; Sairanen, M.; Hyett, J.A. A Novel Early Pregnancy Risk Prediction Model for Gestational Diabetes Mellitus. Fetal Diagn. Ther. 2019, 45, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Philipp, A.; Reiche, M.; Klostermann, K.; Schrey, S.; Reisenbüchler, C.; Lossner, U.; Kratzsch, J.; Bluher, M.; Stumvoll, M.; et al. Serum Levels of the Adipokine Lipocalin-2 Are Increased in Preeclampsia. J. Endocrinol. Investig. 2010, 33, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ling, B.; Mei, J.; Wang, Y.; Zhang, J.; Zhao, X. Expression and Significance of Serum Soluble Fms-like Tyrosine Kinase 1 (SFlt-1), CXC Chemokine Ligand 16 (CXCL16), and Lipocalin 2 (LCN-2) in Pregnant Women with Preeclampsia. Ann. Palliat. Med. 2021, 10, 7866–7871. [Google Scholar] [CrossRef]
- Papathanasiou, A.; Malamitsi-Puchner, A.; Gavrili, S.; Zachaki, S.; Georgantzi, S.; Marmarinos, A.; Christou, C.; Voulgaris, K.; Gourgiotis, D.; Briana, D.D. Perinatal Lipocalin-2 Profile at the Extremes of Fetal Growth. J. Matern.-Fetal Neonatal Med. 2021, 34, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.A.; Bringolf, J.B.; Seidel, E.R. Visfatin Expression Is Elevated in Normal Human Pregnancy. Peptides 2008, 29, 1382–1389. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Boutsikou, M.; Gourgiotis, D.; Kontara, L.; Baka, S.; Iacovidou, N.; Hassiakos, D.; Malamitsi-Puchner, A. Role of Visfatin, Insulin-like Growth Factor-I and Insulin in Fetal Growth. J. Perinat. Med. 2007, 35, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.K.; Deng, H.Y.; Qiao, Z.Y.; Gong, F.X. Visfatin Level and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Arch. Physiol. Biochem. 2021, 127, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, D.; Meng, Z.; Wang, H.; Zhao, K.; Feng, X.; Li, Y.; Dun, A.; Jin, X.; Hou, H. Association between Circulating Visfatin and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Acta Diabetol. 2018, 55, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, M.Y.; Baik, S.H.; Woo, J.T.; Kwon, Y.J.; Daily, J.W.; Park, Y.M.; Yang, J.H.; Kim, S.H. Gestational Diabetes Is Associated with High Energy and Saturated Fat Intakes and with Low Plasma Visfatin and Adiponectin Levels Independent of Prepregnancy BMI. Eur. J. Clin. Nutr. 2013, 67, 196–201. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, Y.; Xu, J.; Fang, Q.; Chen, D. Correlations of Serum Visfatin and Metabolisms of Glucose and Lipid in Women with Gestational Diabetes Mellitus. J. Diabetes Investig. 2016, 7, 247–252. [Google Scholar] [CrossRef]
- Kaygusuz, I.; Gumus, I.I.; Ylmaz, S.; Simavli, S.; Uysal, S.; Derbent, A.U.; Gözdemir, E.; Kafali, H. Serum Levels of Visfatin and Possible Interaction with Iron Parameters in Gestational Diabetes Mellitus. Gynecol. Obstet. Investig. 2013, 75, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Almorós, A.; Hang, T.; Peiró, C.; Soriano-Guillén, L.; Egido, J.; Tuñón, J.; Lorenzo, A. Clinical Research Study on the Respective Relationships between Visfatin and Human Fetuin A and Pregnancy Outcomes in Gestational Diabetes Mellitus. Taiwan J. Obstet. Gynecol. 2019, 58, 808–813. [Google Scholar] [CrossRef]
- Molęda, P.; Fronczyk, A.; Safranow, K.; Majkowska, L. Adipokines and β-Cell Dysfunction in Normoglycemic Women with Previous Gestational Diabetes Mellitus. Pol. Arch. Intern. Med. 2015, 125, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Mazaki-Tovi, S.; Romero, R.; Kim, S.K.; Vaisbuch, E.; Kusanovic, J.P.; Erez, O.; Chaiworapongsa, T.; Gotsch, F.; Mittal, P.; Nhan-Chang, C.L.; et al. Could Alterations in Maternal Plasma Visfatin Concentration Participate in the Phenotype Definition of Preeclampsia and SGA? J. Matern.-Fetal Neonatal Med. 2010, 23, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Mazaki-Tovi, S.; Vaisbuch, E.; Romero, R.; Kusanovic, J.P.; Chaiworapongsa, T.; Kim, S.K.; Nhan-Chang, C.L.; Gomez, R.; Alpay Savasan, Z.; Madan, I.; et al. Maternal and Neonatal Circulating Visfatin Concentrations in Patients with Pre-Eclampsia and a Small-for-Gestational Age Neonate. J. Matern.-Fetal Neonatal Med. 2010, 23, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Zulfikaroglu, E.; Isman, F.; PayaslI, A.; KIlIc, S.; Kucur, M.; DanIsman, N. Plasma Visfatin Levels in Preeclamptic and Normal Pregnancies. Arch. Gynecol. Obstet. 2010, 281, 995–998. [Google Scholar] [CrossRef]
- Ferreira, A.F.A.; Rezende, J.C.; De Cassia, R.; Akolekar, R.; Nicolaides, K.H. Maternal Serum Visfatin at 11-13 Weeks’ Gestation in Preeclampsia. J. Hum. Hypertens. 2013, 27, 261–264. [Google Scholar] [CrossRef]
- Zorba, E.; Vavilis, D.; Venetis, C.A.; Zournatzi, V.; Kellartzis, D.; Tarlatzis, B.C. Visfatin Serum Levels Are Increased in Women with Preeclampsia: A Case-Control Study. J. Matern.-Fetal Neonatal Med. 2012, 25, 1668–1673. [Google Scholar] [CrossRef]
- Shaheen, A.; Luqman, M.W.; Iqbal, S.; Khan, N.; Fatima, S.; Nazli, R. Relationship of Serum Visfatin Levels with Serum Electrolytes, Liver Profiles, Hepatic Enzymes and Anthropometric Parameters in Pregnant Women with Preeclampsia and Eclampsia During 3rd Trimester. J. Ayub Med. Coll. Abbottabad 2022, 34, 62–66. [Google Scholar] [CrossRef]
- Amiri-Dashatan, N.; Koushki, M.; Hosseini, H.; Khodabandehloo, H.; Fathi, M.; Doustimotlagh, A.H.; Rezaei-Tavirani, M. Association between Circulating Visfatin and Pre-Eclampsia: A Systematic Review and Meta-Analysis. J. Matern.-Fetal Neonatal Med. 2020, 35, 2606–2618. [Google Scholar] [CrossRef]
- Pavlová, T.; Novák, J.; Bienertová-Vašků, J. The Role of Visfatin (PBEF/Nampt) in Pregnancy Complications. J. Reprod. Immunol. 2015, 112, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Zúñiga, C.M.; de la O-Cavazos, M.E.; Mancillas-Adame, L.; Lavalle-González, F.J.; Lavalle-Cantú, A.L.; Villarreal-Pérez, J.Z.; Treviño-Garza, C. Are Cord Blood Visfatin Concentrations Different Depending on Birth Weight Category? Endocrinol. Diabetes Nutr. 2019, 66, 35–40. [Google Scholar] [CrossRef]
- Shemi, M.S.E.; Mohamed, M.H.; AbdelRahman, A.O.; Al, H.A.; Ramadan, N.M. Effect of Intrauterine Growth Pattern on Serum Visfatin Concentrations in Full-Term Infants at Birth and at 6 Months of Life. J. Neonatal Perinatal Med. 2016, 9, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, D.B.; Ikeda, K.; Barinda, A.J.; Wardhana, D.A.; Yagi, K.; Miyata, K.; Oike, Y.; Hirata, K.-I.; Emoto, N. Neuregulin-4 Is an Angiogenic Factor That Is Critically Involved in the Maintenance of Adipose Tissue Vasculature. Biochem. Biophys. Res. Commun. 2018, 503, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Kralisch, S.; Hoffmann, A.; Kratzsch, J.; Blüher, M.; Stumvoll, M.; Fasshauer, M.; Ebert, T. The Brown-Fat-Secreted Adipokine Neuregulin 4 Is Decreased in Gestational Diabetes Mellitus. Diabetes Metab. 2018, 44, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Kurek Eken, M.; Yayla Abide, C.; Sahin Ersoy, G.; Altun Ensari, T.; Pekin, O.; Cevik, O. Clinical Significance of Neuregulin 4 (NRG4) in Gestational Diabetes Mellitus. Gynecol. Endocrinol. 2018, 34, 605–608. [Google Scholar] [CrossRef]
- Yakut, K.; Öztürk, F.H.; Öcal, D.F.; Yakıştıran, B.; Yetişkin, F.D.Y.; Çağlar, T. Comparison of Maternal Serum NRG-4 Levels in Healthy and Preeclamptic Pregnancies. J. Turk. Ger. Gynecol. Assoc. 2022, 23, 8–13. [Google Scholar] [CrossRef]
- Korolczuk, A.; Bełtowski, J. Progranulin, a New Adipokine at the Crossroads of Metabolic Syndrome, Diabetes, Dyslipidemia and Hypertension. Curr. Pharm. Des. 2017, 23, 1533–1539. [Google Scholar] [CrossRef]
- Açikgöz, A.S.; Tüten, A.; Öncül, M.; Eskalen, Ş.; Dinçgez, B.Ç.; Şimşek, A.; Yüksel, M.A.; Guralp, O. Evaluation of Maternal Serum Progranulin Levels in Normotensive Pregnancies, and Pregnancies with Early- and Late-Onset Preeclampsia. J. Matern.-Fetal Neonatal Med. 2016, 29, 2658–2664. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabbani, N.; Blüher, M.; Stepan, H.; Stumvoll, M.; Ebert, T.; Tönjes, A.; Schrey-Petersen, S. Adipokines in Pregnancy: A Systematic Review of Clinical Data. Biomedicines 2023, 11, 1419. https://doi.org/10.3390/biomedicines11051419
Kabbani N, Blüher M, Stepan H, Stumvoll M, Ebert T, Tönjes A, Schrey-Petersen S. Adipokines in Pregnancy: A Systematic Review of Clinical Data. Biomedicines. 2023; 11(5):1419. https://doi.org/10.3390/biomedicines11051419
Chicago/Turabian StyleKabbani, Noura, Matthias Blüher, Holger Stepan, Michael Stumvoll, Thomas Ebert, Anke Tönjes, and Susanne Schrey-Petersen. 2023. "Adipokines in Pregnancy: A Systematic Review of Clinical Data" Biomedicines 11, no. 5: 1419. https://doi.org/10.3390/biomedicines11051419
APA StyleKabbani, N., Blüher, M., Stepan, H., Stumvoll, M., Ebert, T., Tönjes, A., & Schrey-Petersen, S. (2023). Adipokines in Pregnancy: A Systematic Review of Clinical Data. Biomedicines, 11(5), 1419. https://doi.org/10.3390/biomedicines11051419