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Atherosclerosis is a chronic inflammatory disease [1,2] which manifests in the patho-
logical thickening of the walls of large arteries, and is related to lipid depositions. Lipids,
including cholesterol and triglycerides, are transported by lipoproteins (particles mostly
consisting of protein and lipids) in the blood. Different types of lipoproteins can be isolated
from human blood when their density is taken into the account (for example, low-density
lipoproteins (LDLs) and high-density lipoproteins (HDLs)).

Multiple pathological factors are associated with the development of atherosclerosis,
including its relatively recently discovered association with mutations of mitochondrial
DNA and mitochondrial dysfunction [1], which are also associated with various diseases
and conditions, such as non-alcoholic fatty liver disease, diabetes, and senescence [3–5].
The role of non-coding RNA [6], exosomes [7], autoimmune reaction [8], sex [9], and
even amyloid deposits [10] in atherosclerosis development is receiving more and more
attention, leading to the application of approaches of corresponding disciplines [6–14] for
the development of novel therapeutic strategies.

However, multiply-modified LDL (mmLDL) is classical component circulating in
the blood of patients and inducing pathological changes upon atherosclerosis. mmLDL
possesses the property of atherogenicity—the capability to induce the accumulation of
cholesterol in cultivated cells, such as macrophages. It is an important pattern of atheroscle-
rosis pathogenesis since native LDL is not capable to induce such an accumulation. Among
the modifications of LDL which have been studied are oxidation [15], and desialylation [16].
HDL is involved in the transport of cholesterol from the arterial wall, playing an im-
portant role in regulating lipid levels with the low level of HDL that is connected with
atherosclerosis development [17].

Dr. Vladimir Tertov (1955–2001) studied the role of altered lipoprotein metabolism (in-
cluding discovering the existence of desialylated LDL in the blood of atherosclerotic patients
and the atherogenic effects of anti-LDL antibodies) in the cellular mechanisms of athero-
genesis, which resulted in the prominent discovery of the existence of trans-sialylating
activity in human serum and the isolation of the corresponding protein, whose coding gene
was, unfortunately, not identified [18]. Recently, it was found that NEU1 (neuraminidase 1,
possesses desialylating activity) expression is elevated upon pro-inflammatory stimulation
of monocyte-like cells (it was also found to be elevated in macrophages in atherosclerotic
plaques) [19]. In addition, the targeted inhibition of Neu1 and Neu3 activity led to a
reduction in the size of atherosclerotic lesions in a mouse model [20]. Combined together,
the aforementioned evidence suggests a strong association of desialylating activity in the
blood and tissues of patients with the formation of desialylated LDL and the progression of
atherosclerosis. Thus, neuraminidases (and, most probably, Neu1 and Neu3) can be consid-
ered as a new pharmacological target for anti-atherosclerotic therapy. Figure 1 illustrates
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the current views on the role of neuraminidases (sialydases) and LDL desialylation in the
pathogenesis of this disease.
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Figure 1. The role of LDL desialylation in atherosclerosis development. (A) The structure of sialic 

acid-containing glycosylation of protein, and the mechanism of the removal of sialic acid residue Figure 1. The role of LDL desialylation in atherosclerosis development. (A) The structure of sialic
acid-containing glycosylation of protein, and the mechanism of the removal of sialic acid residue [16].
(B) The formation of desialylated LDL, leading to its self-association and intracellular accumula-
tion [16]. The activity of trans-sialidase, discovered in human serum by Vladimir Tertov, could result
in the generation of desialylated LDL (by using native LDL as a donor of sialic acid residue for
its further transport to the acceptor molecule). The impaired activity of cellular sialyltransferases
could also potentially result in reduced sialylation of LDL (in comparison with native LDL). (C) The
mechanism of elevated expression of NEU1 in monocytes/macrophages (including the ones located
in atherosclerotic lesions) after pro-inflammatory stimulation [19]. Lipopolysaccharide (LPS) and
IL1β induce elevated expression of NEU1 in the monocyte-like THP-1 cell line. Macrophages in the
intima layer, calcified regions, and the adventitia of atherosclerotic plaque also have elevated levels
of Neu1 [19]. If the elevated Neu1 protein in monocytes/macrophages obtains access to native LDL,
then it could become a self-perpetuating mechanism of the generation of desialylated LDL (since
modified LDL can also be a trigger of pro-inflammatory activation of immune cells).
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The Special Issue “Lipids and Lipoproteins in Atherosclerosis: A Commemorative
Issue in Honor of Dr. Vladimir V Tertov” contains 14 high-quality papers which shall be
discussed briefly below.

Strong correlations between subfractions of HDL and markers of inflammation and
progranulin were found, suggesting the anti-atherogenic effect of progranulin in heterozy-
gous familial hypercholesterolemia, possibly due to the alteration of HDL’s composition
and the reduction in inflammation [21].

It has been found that intermittent hypoxic–hyperoxic exposures at rest lead to im-
provements to the arterial stiffness, lipid profile, and functional state of the liver in patients
with metabolic syndromes, meaning that it could be used as a therapy in the treatment
and prevention of atherosclerosis, obesity, and other pathologies associated with metabolic
syndrome [22].

An association of systemic inflammation (detected by the high levels of high-sensitivity
C-reactive protein) with atherogenic dyslipidemia related to increased levels of LDL choles-
terol or an increased ratio of total cholesterol/HDL cholesterol was found for subclinical
atherosclerosis in the case of individuals suffering from familial hypercholesterolemia [23].

It has also been found that mitochondrial transplantation to 7-ketocholesterol-loaded
murine macrophages (cell line RAW264.7) leads to reestablished phagocytosis and a re-
duction in lipid content, as well as restored expression of CPT1a and anti-inflammatory
cytokines. Thus, mitochondrial transplantation could be a novel therapeutic approach for
the correction of foam cells in the case of atherosclerosis [24].

Statistical and bioinformatic analysis of lipid-associated loci found by genome-wide
association studies was conducted in order to discover the possible mechanisms of these
loci and their involvement in the pathological changes occurring due to coronary artery
disease (CAD) [25]. Polymorphisms of the APOC1, LPA, F2, and PLTP genes were found to
be associated with the risk of CAD, regardless of body mass index, age, or sex [25].

The influence of alirocumab (PCSK9 antibodies) treatment on the metabolism of
triglycerides was studied, with no significant effects being found on the levels of fasting
triglycerides, post-prandial triglycerides, or proteins related to the regulation of lipoprotein
lipase [26]. The short-term influence of alirocumab on vascular function has been studied,
with no significant changes observed in the thickness of the carotid intima–media, brachial
artery flow-dependent dilatation, or carotid artery fractional anisotropy [27].

The association between HDL cholesterol levels and adverse cardiovascular disease
outcomes in case of the presence of diabetes in patients with acute ischemic stroke was
studied [28]. A linear association was found between the levels of HDL cholesterol and the
risks of major adverse cardiovascular events (MACEs) and recurrent stroke. Low levels of
HDL cholesterol were connected with increased risks of MACEs and recurrent stroke [28].

It was found that hyperleptinemia led to the increase of oxidized HDL levels [29].
HDLs isolated from normal-weight healthy men (nwHD) induced a reduction in pro-
inflammatory cytokines’ production and marker gene expression profile characteristics for
the M1 phenotype in microglial cells BV2 [29]. The co-administration of LPS and leptin
with nwHDL or HDL isolated from obese men led to the activation of BV2 microglial
cells, resulting in the increased production of pro-inflammatory cytokines and proving that
obesity led to the reversal of the anti-inflammatory and antioxidant activities of HDLs in a
microglial cell model [29].

Hypoxia and morbid obesity were shown to lead to an increase in the expression of
genes of scavenging receptors (MSR1, LOX-1, CXCL16, and CL-P1), as well as markers of
inflammation (TNFα and IL6) in visceral adipocytes in humans [30]. Hypoxic conditions
led to the increase of the pro-inflammatory stimulation of visceral adipocytes by oxidized
LDL [30].

A review was written devoted to the role of the viruses in the development of
atherosclerosis, including their characteristics, potential mechanisms of the influence of
viral infections on atherosclerosis progression, and the current approaches for antiviral
treatments and the prevention of viral infections [31].
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The current ideas and concepts related to the role of vimentin filaments in the func-
tioning of endothelial cells and in the development of inflammation and atherosclerosis
were discussed and reviewed [32].

Another review was written discussing the current situation in the field of lipid
droplet dynamics in immune cells, the regulation of the metabolism, and the availability of
arachidonic acid, with a focus on atherosclerosis [33].

The role of Vladimir Tertov in the study of desialylated lipoproteins, in the finding of
the connection of modified (and desialylated) LDL with atherosclerosis development, and
in the discovery of sialidase activity in human serum was reviewed [34].
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