Hypocalcemia on Admission Is a Predictor of Disease Progression in COVID-19 Patients with Cirrhosis: A Multicenter Study in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Data Collection
2.4. Cirrhosis Severity Grades
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Laboratory Findings
3.2. Etiology and Severity of Liver Cirrhosis
3.3. Hypocalcemia as a Significant Predictor of In-Hospital Mortality in COVID-19 Patients with Cirrhosis
3.4. Predictive Value of Total Serum Calcium Levels in Deceased COVID-19 Patients with Cirrhosis
3.5. Hypocalcemia on Admission Is Closely Associated with Disease Severity in COVID-19 Patients with Cirrhosis
3.6. Correlation between Hypocalcemia and Disease Severity in COVID-19 Patients with Cirrhosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Coronavirus disease 2019 | (COVID-19) |
Acute-on-chronic liver failure | (ACLF) |
Cirrhosis-associated immune dysfunction | (CAID) |
High-resolution computer tomography | (HRCT) |
Child–Turcette–Pugh | (CTP) |
Model for End-Stage Liver Disease sodium | (MELD-Na) |
References
- Marjot, T.; Eberhardt, C.S.; Boettler, T.; Belli, L.S.; Berenguer, M.; Buti, M.; Jalan, R.; Mondelli, M.U.; Moreau, R.; Shouval, D.; et al. Impact of COVID-19 on the liver and on the care of patients with chronic liver disease, hepatobiliary cancer, and liver transplantation: An updated EASL position paper. J. Hepatol. 2022, 77, 1161–1197. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Garcia-Tsao, G.; Biggins, S.W.; Kamath, P.S.; Wong, F.; McGeorge, S.; Shaw, J.; Pearson, M.; Chew, M.; Fagan, A.; et al. Comparison of mortality risk in patients with cirrhosis and COVID-19 compared with patients with cirrhosis alone and COVID-19 alone: Multicentre matched cohort. Gut 2021, 70, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Garcia-Tsao, G.; Wong, F.; Biggins, S.W.; Kamath, P.S.; McGeorge, S.; Chew, M.; Pearson, M.; Shaw, J.; Kalluri, A.; et al. Cirrhosis Is Associated With High Mortality and Readmissions Over 90 Days Regardless of COVID-19: A Multicenter Cohort. Liver Transpl. 2021, 27, 1343–1347. [Google Scholar] [CrossRef]
- Noor, M.T.; Manoria, P. Immune Dysfunction in Cirrhosis. J. Clin. Transl. Hepatol. 2017, 5, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Sarin, S.K.; Choudhury, A.; Lau, G.K.; Zheng, M.H.; Ji, D.; Abd-Elsalam, S.; Hwang, J.; Qi, X.; Cua, I.H.; Suh, J.I.; et al. Pre-existing liver disease is associated with poor outcome in patients with SARS-CoV-2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol. Int. 2020, 14, 690–700. [Google Scholar] [CrossRef]
- Kim, D.; Adeniji, N.; Latt, N.; Kumar, S.; Bloom, P.P.; Aby, E.S.; Perumalswami, P.; Roytman, M.; Li, M.; Vogel, A.S.; et al. Predictors of Outcomes of COVID-19 in Patients With Chronic Liver Disease: US Multi-center Study. Clin. Gastroenterol. Hepatol. 2021, 19, 1469–1479.e1419. [Google Scholar] [CrossRef]
- Ge, J.; Pletcher, M.J.; Lai, J.C. Outcomes of SARS-CoV-2 Infection in Patients With Chronic Liver Disease and Cirrhosis: A National COVID Cohort Collaborative Study. Gastroenterology 2021, 161, 1487–1501.e1485. [Google Scholar] [CrossRef]
- Fernández Fernández, N.; Linares Torres, P.; Joáo Matias, D.; Jorquera Plaza, F.; Olcoz Goñi, J.L. Vitamin D deficiency in chronic liver disease, clinical-epidemiological analysis and report after vitamin d supplementation. Gastroenterol. Hepatol. 2016, 39, 305–310. [Google Scholar] [CrossRef]
- Nakchbandi, I.A. Osteoporosis and fractures in liver disease: Relevance, pathogenesis and therapeutic implications. World J. Gastroenterol. 2014, 20, 9427–9438. [Google Scholar] [CrossRef]
- Park, Y.J.; Yoo, S.A.; Kim, M.; Kim, W.U. The Role of Calcium-Calcineurin-NFAT Signaling Pathway in Health and Autoimmune Diseases. Front. Immunol. 2020, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Torres, B.; Alcubilla, P.; González-Cordón, A.; Inciarte, A.; Chumbita, M.; Cardozo, C.; Meira, F.; Giménez, M.; de Hollanda, A.; Soriano, A. Impact of low serum calcium at hospital admission on SARS-CoV-2 infection outcome. Int. J. Infect. Dis. 2021, 104, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; Doga, M.; Frara, S.; Giustina, A. Hypocalcemia in COVID-19: Prevalence, clinical significance and therapeutic implications. Rev. Endocr. Metab. Disord. 2022, 23, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Osman, W.; Al Fahdi, F.; Al Salmi, I.; Al Khalili, H.; Gokhale, A.; Khamis, F. Serum Calcium and Vitamin D levels: Correlation with severity of COVID-19 in hospitalized patients in Royal Hospital, Oman. Int. J. Infect. Dis. 2021, 107, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Raesi, A.; Saedi Dezaki, E.; Moosapour, H.; Saeidifard, F.; Habibi, Z.; Rahmani, F.; Kheiri, S.; Taheri, E. Hypocalcemia in COVID-19: A Prognostic Marker for Severe Disease. Iran. J. Pathol. 2021, 16, 144–153. [Google Scholar] [CrossRef]
- World Health Organization. Laboratory Testing for Coronavirus Disease (COVID-19) in Suspected Human Cases. 2020. Available online: https://apps.who.int/iris/handle/10665/331501 (accessed on 1 November 2022).
- Xu, Y.; Chen, Y.; Tang, X. Guidelines for the diagnosis and treatment of coronavirus disease 2019 (COVID-19) in China. Glob. Health Med. 2020, 2, 66–72. [Google Scholar] [CrossRef]
- Kenny, C.M.; Murphy, C.E.; Boyce, D.S.; Ashley, D.M.; Jahanmir, J. Things We Do for No Reason™: Calculating a “Corrected Calcium” Level. J. Hosp. Med. 2021, 16, 499–501. [Google Scholar] [CrossRef]
- Jain, A.; Bhayana, S.; Vlasschaert, M.; House, A. A formula to predict corrected calcium in haemodialysis patients. Nephrol. Dial. Transplant. 2008, 23, 2884–2888. [Google Scholar] [CrossRef]
- Pepe, J.; Colangelo, L.; Biamonte, F.; Sonato, C.; Danese, V.C.; Cecchetti, V.; Occhiuto, M.; Piazzolla, V.; De Martino, V.; Ferrone, F.; et al. Diagnosis and management of hypocalcemia. Endocrine 2020, 69, 485–495. [Google Scholar] [CrossRef]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Theodorakopoulos, T.; Kalafateli, M.; Kalambokis, G.N.; Samonakis, D.N.; Aggeletopoulou, I.; Tsolias, C.; Mantaka, A.; Tselekouni, P.; Vourli, G.; Assimakopoulos, S.F.; et al. Natural history of grade 1 ascites in patients with liver cirrhosis. Ann. Gastroenterol. 2021, 34, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Weissenborn, K. Hepatic Encephalopathy: Definition, Clinical Grading and Diagnostic Principles. Drugs 2019, 79, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Jalan, R.; Pavesi, M.; Saliba, F.; Amorós, A.; Fernandez, J.; Holland-Fischer, P.; Sawhney, R.; Mookerjee, R.; Caraceni, P.; Moreau, R.; et al. The CLIF Consortium Acute Decompensation score (CLIF-C ADs) for prognosis of hospitalised cirrhotic patients without acute-on-chronic liver failure. J. Hepatol. 2015, 62, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.; Jalan, R.; Gines, P.; Pavesi, M.; Angeli, P.; Cordoba, J.; Durand, F.; Gustot, T.; Saliba, F.; Domenicali, M.; et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013, 144, 1426–1437.e9. [Google Scholar] [CrossRef]
- O’Leary, J.G.; Reddy, K.R.; Garcia-Tsao, G.; Biggins, S.W.; Wong, F.; Fallon, M.B.; Subramanian, R.M.; Kamath, P.S.; Thuluvath, P.; Vargas, H.E.; et al. NACSELD acute-on-chronic liver failure (NACSELD-ACLF) score predicts 30-day survival in hospitalized patients with cirrhosis. Hepatology 2018, 67, 2367–2374. [Google Scholar] [CrossRef]
- Kim, W.R.; Mannalithara, A.; Heimbach, J.K.; Kamath, P.S.; Asrani, S.K.; Biggins, S.W.; Wood, N.L.; Gentry, S.E.; Kwong, A.J. MELD 3.0: The Model for End-Stage Liver Disease Updated for the Modern Era. Gastroenterology 2021, 161, 1887–1895.e1884. [Google Scholar] [CrossRef]
- Shirakabe, A.; Kiuchi, K.; Kobayashi, N.; Okazaki, H.; Matsushita, M.; Shibata, Y.; Shigihara, S.; Sawatani, T.; Tani, K.; Otsuka, Y.; et al. Importance of the Corrected Calcium Level in Patients With Acute Heart Failure Requiring Intensive Care. Circ. Rep. 2020, 3, 44–54. [Google Scholar] [CrossRef]
- Paizis, G.; Tikellis, C.; Cooper, M.E.; Schembri, J.M.; Lew, R.A.; Smith, A.I.; Shaw, T.; Warner, F.J.; Zuilli, A.; Burrell, L.M.; et al. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut 2005, 54, 1790–1796. [Google Scholar] [CrossRef]
- Marjot, T.; Webb, G.J.; Barritt, A.S.t.; Moon, A.M.; Stamataki, Z.; Wong, V.W.; Barnes, E. COVID-19 and liver disease: Mechanistic and clinical perspectives. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 348–364. [Google Scholar] [CrossRef]
- Youssef, M.; H Hussein, M.; Attia, A.S.; M Elshazli, R.; Omar, M.; Zora, G.; S Farhoud, A.; Elnahla, A.; Shihabi, A.; Toraih, E.A.; et al. COVID-19 and liver dysfunction: A systematic review and meta-analysis of retrospective studies. J. Med. Virol. 2020, 92, 1825–1833. [Google Scholar] [CrossRef]
- Kovalic, A.J.; Huang, G.; Thuluvath, P.J.; Satapathy, S.K. Elevated Liver Biochemistries in Hospitalized Chinese Patients with Severe COVID-19: Systematic Review and Meta-analysis. Hepatology 2021, 73, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Ma, Z.; Guo, X.; Tang, Y.; Meng, H.; Yu, H.; Peng, C.; Chu, G.; Wang, X.; Teng, Y.; et al. Comparison of liver biochemical abnormality between COVID-19 patients with liver cirrhosis versus COVID-19 alone and liver cirrhosis alone: A STROBE observational study. Medicine 2021, 100, e25497. [Google Scholar] [CrossRef] [PubMed]
- Oyelade, T.; Alqahtani, J.; Canciani, G. Prognosis of COVID-19 in Patients with Liver and Kidney Diseases: An Early Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2020, 5, 80. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Moon, A.M.; Cook, J.A.; Abd-Elsalam, S.; Aloman, C.; Armstrong, M.J.; Pose, E.; Brenner, E.J.; Cargill, T.; Catana, M.A.; et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J. Hepatol. 2021, 74, 567–577. [Google Scholar] [CrossRef]
- Drácz, B.; Müller, V.; Takács, I.; Hagymási, K.; Dinya, E.; Miheller, P.; Szijártó, A.; Werling, K. Effectiveness of COVID-19 Vaccination with mRNA Vaccines for Patients with Cirrhosis in Hungary: Multicentre Matched Cohort Study. Vaccines 2022, 11, 50. [Google Scholar] [CrossRef]
- Drácz, B.; Czompa, D.; Müllner, K.; Hagymási, K.; Miheller, P.; Székely, H.; Papp, V.; Horváth, M.; Hritz, I.; Szijártó, A.; et al. The Elevated De Ritis Ratio on Admission Is Independently Associated with Mortality in COVID-19 Patients. Viruses 2022, 14, 2360. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Liu, L.; Zhao, M.; Xiao, J.; Zhao, Q. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver Int. 2020, 40, 2095–2103. [Google Scholar] [CrossRef]
- Yu, D.; Du, Q.; Yan, S.; Guo, X.G.; He, Y.; Zhu, G.; Zhao, K.; Ouyang, S. Liver injury in COVID-19: Clinical features and treatment management. Virol. J. 2021, 18, 121. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Shi, J.; Zhou, M.; Wu, B.; Yang, Z.; et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020, 146, 110–118. [Google Scholar] [CrossRef]
- Song, H.; Chia, A.Z.Q.; Tan, B.K.J.; Teo, C.B.; Lim, V.; Chua, H.R.; Samuel, M.; Kee, A. Electrolyte imbalances as poor prognostic markers in COVID-19: A systemic review and meta-analysis. J. Endocrinol. Invest. 2023, 46, 235–259. [Google Scholar] [CrossRef]
- Liu, J.; Han, P.; Wu, J.; Gong, J.; Tian, D. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J. Infect. Public Health 2020, 13, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Martha, J.W.; Wibowo, A.; Pranata, R. Hypocalcemia is associated with severe COVID-19: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2021, 15, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Ghani, H.; Chua, F.; Draper, A.; Calmonson, S.; Prabhakar, M.; Shah, R.; Navarra, A.; Vaghela, T.; Barlow, A.; et al. Retrospective case-control study to evaluate hypocalcaemia as a distinguishing feature of COVID-19 compared with other infective pneumonias and its association with disease severity. BMJ Open 2021, 11, e053810. [Google Scholar] [CrossRef]
- Llibre-Nieto, G.; Lira, A.; Vergara, M.; Solé, C.; Casas, M.; Puig-Diví, V.; Solé, G.; Humanes, A.; Grau, L.; Barradas, J.M.; et al. Micronutrient Deficiencies in Patients with Decompensated Liver Cirrhosis. Nutrients 2021, 13, 1249. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.; Aprile, F. The European Association for the Study of Liver (EASL) nutrition guidelines. Recenti Prog. Med. 2021, 112, 103–109. [Google Scholar] [CrossRef]
- Berlansky, S.; Sallinger, M.; Grabmayr, H.; Humer, C.; Bernhard, A.; Fahrner, M.; Frischauf, I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022, 11, 253. [Google Scholar] [CrossRef]
- Iamartino, L.; Brandi, M.L. The calcium-sensing receptor in inflammation: Recent updates. Front. Physiol. 2022, 13, 1059369. [Google Scholar] [CrossRef]
- Alemzadeh, E.; Ziaee, M.; Abedi, A.; Salehiniya, H. The effect of low serum calcium level on the severity and mortality of COVID patients: A systematic review and meta-analysis. Immun. Inflamm. Dis. 2021, 9, 1219–1228. [Google Scholar] [CrossRef]
Variables | COVID-19 Patients without Cirrhosis (n = 399) | COVID-19 Patients with Cirrhosis (n = 52) | p |
---|---|---|---|
Age, years | 65 (53–75) | 62 (53–67) | <0.05 |
In-hospital mortality (%) | 47 (11.8) | 5 (9.6) | 0.819 |
Hospital stay, days | 11 (7–14) | 14 (7–19) | 0.082 |
Oxygen therapy (%) | 147 (41) | 21 (40.4) | 0.649 |
Mechanical ventilation (%) | 159 (39.8) | 24 (46.2) | 0.453 |
Cancer (%) | 29 (7.3) | 9 (17.3) | <0.05 |
Na, mmol/L | 136 (132–138) | 135 (130–138) | 0.184 |
K, mmol/L | 4.5 (4.12–4.9) | 4.2 (3.7–4.6) | <0.05 |
Total serum calcium, mmol/L | 2.08 (1.94–2.32) | 1.44 (1.38–1.56) | <0.05 |
Corrected serum Ca *, mmol/L | 2.32 (2.18–2.46) | 2.16 (2.05–2.25) | <0.05 |
Mg, mmol/L | 0.86 (0.79–0.94) | 0.8 (0.74–0.86) | <0.05 |
AST, U/L | 41 (29–62) | 48 (31–102) | <0.05 |
ALT, U/L | 31 (19–51) | 35 (24–68) | 0.109 |
Albumin, g/L | 37 (32–43) | 30.7 (26.8–35.2) | <0.05 |
INR | 1.01 (0.87–1.17) | 1.33 (1.11–1.53) | <0.05 |
Total Bilirubin, μmol/L | 14.6 (8.5–21.4) | 28.7 (13.1–73.8) | <0.05 |
Direct Bilirubin, μmol/L | 6.87 (3.67–12.3) | 9.6 (5.4–25.3) | <0.05 |
Total protein, g/L | 65.4 (56.87–72.5) | 63.9 (51.4–71) | 0.051 |
GGT, U/L | 51 (30–82) | 86.5 (47–289) | <0.05 |
ALP, U/L | 99 (78–170) | 103 (78.5–205.8) | 0.634 |
LDH, U/L | 231 (167–312) | 251 (213–304) | 0.376 |
CRP, mg/L | 114 (34.2–412) | 62.2 (12.3–152.8) | <0.05 |
Hemoglobin, g/L | 124 (102–130) | 111.5 (102.3–131) | 0.693 |
RBC, T/L | 4.13 (3.78–4.65) | 3.7 (3.35–4.06) | <0.05 |
WBC, G/L | 8.03 (6.78–11.35) | 10.0 (6–14.5) | 0.111 |
Platelets, G/L | 189 (123–312) | 146 (95–221.8) | <0.05 |
Creatinine, μmol/L | 92 (75–121) | 115 (78.5–159.3) | <0.05 |
eGFR, mL/min | 84 (67.8–90) | 64.6 (42.8–90) | <0.05 |
Glucose, mmol/L | 6.4 (5.76–7.46) | 6.3 (5.6–6.8) | 0.13 |
CTP score | - | 9 (7–11) | <0.05 |
MELD-Na | - | 20 (14–25) | <0.05 |
Variable | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
β | p | OR | 95% CI | β | p | OR | 95% CI | |
Age | 0.080 | <0.05 | 1.083 | 1.053–1.115 | −0.090 | <0.05 | 0.914 | 0.885–0.944 |
Hospital stay | 0.152 | <0.05 | 1.164 | 1.097–1.236 | −0.138 | <0.05 | 0.871 | 0.818–0.928 |
Na | −0.100 | <0.05 | 0.905 | 0.847–0.966 | 0.096 | <0.05 | 1.100 | 1.037–1.167 |
K | −0.020 | 0.938 | 0.980 | 0.588–1.634 | 0.224 | 0.352 | 1.251 | 0.781–2.007 |
Ca * | −0.574 | 0.418 | 0.563 | 0.141–2.257 | 1.583 | <0.05 | 4.871 | 1.566–15.146 |
Mg | −1.594 | 0.276 | 0.203 | 0.012–3.572 | 2.424 | 0.084 | 11.292 | 0.724–176.050 |
AST | 0.004 | 0.211 | 1.004 | 0.998–1.011 | −0.005 | 0.216 | 0.995 | 0.987–1.003 |
ALT | −0.006 | 0.131 | 0.994 | 0.987–1.002 | 0.003 | 0.580 | 1.003 | 0.992–1.015 |
Albumin | −0.132 | <0.05 | 0.876 | 0.827–0.929 | 0.143 | <0.05 | 1.154 | 1.089–1.224 |
INR | 1.259 | <0.05 | 3.523 | 1.414–8.780 | −1.356 | <0.05 | 0.258 | 0.102–0.647 |
Total bilirubin | 0.003 | <0.05 | 1.003 | 1.000–1.006 | −0.003 | 0.051 | 0.997 | 0.994–1.000 |
Direct bilirubin | −0.018 | <0.05 | 0.982 | 0.968–0.997 | 0.014 | <0.05 | 1.014 | 1.000–1.027 |
Total protein | −0.004 | 0.755 | 0.996 | 0.970–1.022 | 0.009 | 0.513 | 1.009 | 0.982–1.036 |
GGT | −0.001 | 0.395 | 0.999 | 0.997–1.001 | 0.000 | 0.698 | 1.000 | 0.998–1.002 |
ALP | 0.001 | 0.329 | 1.001 | 0.999–1.002 | 0.000 | 0.592 | 1.000 | 0.998–1.001 |
LDH | −0.002 | 0.269 | 0.998 | 0.994–1.002 | 0.002 | 0.162 | 1.002 | 0.999–1.005 |
CRP | 0.001 | 0.244 | 1.001 | 1.000–1.002 | −0.001 | 0.069 | 0.999 | 0.998–1.000 |
Hemoglobin | −0.017 | 0.132 | 0.983 | 0.962–1.005 | 0.019 | 0.108 | 1.019 | 0.996–1.043 |
RBC | −0.591 | 0.068 | 0.554 | 0.293–1.045 | 0.622 | 0.065 | 1.863 | 0.963–3.604 |
WBC | 0.273 | <0.05 | 1.314 | 1.226–1.409 | −0.300 | <0.05 | 0.741 | 0.686–0.799 |
Platelets | −0.005 | <0.05 | 0.995 | 0.990–1.000 | 0.005 | 0.057 | 1.005 | 1.000–1.010 |
Creatinine | 0.002 | 0.331 | 1.002 | 0.998–1.006 | −0.002 | 0.298 | 0.998 | 0.994–1.002 |
CTP | 1.211 | <0.05 | 3.358 | 1.545–7.300 | −1.209 | <0.05 | 0.299 | 0.115–0.775 |
MELD-Na | −0.128 | 0.635 | 0.880 | 0.519–1.493 | 0.264 | 0.490 | 1.301 | 0.616–2.750 |
Prognostic Marker | AUC (95% CI) | Cut-Off | Sensitivity | Specificity | p |
---|---|---|---|---|---|
Na | 0.643 (0.465–0.821) | 133.5 | 0.745 | 0.417 | 0.108 |
Ca * | 0.818 (0.683–0.953) | 2.02 | 0.883 | 0.750 | <0.05 |
Albumin | 0.821 (0.729–0.914) | 27.9 | 0.777 | 0.750 | <0.05 |
INR | 0.332 (0.181–0.482) | 1.345 | 0.340 | 0.583 | 0.058 |
WBC | 0.309 (0.136–0.481) | 6.905 | 0.511 | 0.333 | <0.05 |
CTP | 0.115 (0.025–0.205) | 9.5 | 0.340 | 0.167 | <0.05 |
Variable | COVID-19 Patients with Cirrhosis (n = 52) | p | |
---|---|---|---|
Hypocalcemia (n = 25) | Normocalcemia (n = 27) | ||
Fatal outcome | 4 (16) | 1 (3.7) | 0.183 |
Type of cirrhosis | 0.430 | ||
compensated decompensated ACLF | 1 (4) 20 (80) 4 (16) | 3 (11.1) 22 (81.5) 2 (7.4) | |
Age | 65 (53–68) | 60 (52–65) | 0.359 |
Oxygen therapy | 6 (24) | 15 (55.6) | <0.05 |
Mechanical ventilation | 16 (64) | 8 (29.6) | <0.05 |
Ascites grades | <0.05 | ||
mild | 0 (0) | 2 (7.4) | |
moderate | 4 (16) | 11 (40.7) | |
severe | 21 (84) | 14 (51.9) | |
Hospital stay | 14 (5–20) | 13 (8–17) | 0.776 |
Albumin | 28 (22.5–31.2) | 32 (29–38) | <0.05 |
INR | 1.36 (1.12–1.66) | 1.2 (1.1–1.4) | 0.148 |
Total bilirubin | 32.1 (21–130) | 24.1 (11.8–38.7) | 0.200 |
Direct bilirubin | 19.6 (8–26.1) | 6.4 (4.1–14.1) | <0.05 |
Total protein | 52 (45.8–65.4) | 69 (61–73) | <0.05 |
GGT | 149 (80–326) | 64 (39–128) | <0.05 |
WBC | 11.4 (6–16.9) | 8.5 (5.9–14.5) | 0.272 |
CRP | 79.3 (15.2–122.8) | 26.5 (3.9–176) | 0.280 |
CTP | 10 (9–12) | 8 (7–10) | <0.05 |
MELD-Na | 22 (15–25) | 17 (14–23) | 0.110 |
Variables between | Spearman’s Correlation Coefficient | p |
---|---|---|
Ca * and Age | −0.139 | 0.325 |
Ca * and INR | −0.247 | 0.077 |
Ca * and Total bilirubin | −0.173 | 0.219 |
Ca * and Direct bilirubin | −0.275 | <0.05 |
Ca * and GGT | −0.350 | <0.05 |
Ca * and CRP | −0.341 | <0.05 |
Ca * and WBC | −0.242 | 0.084 |
Ca * and CTP | −0.400 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drácz, B.; Müller, V.; Takács, I.; Hagymási, K.; Dinya, E.; Miheller, P.; Szijártó, A.; Werling, K. Hypocalcemia on Admission Is a Predictor of Disease Progression in COVID-19 Patients with Cirrhosis: A Multicenter Study in Hungary. Biomedicines 2023, 11, 1541. https://doi.org/10.3390/biomedicines11061541
Drácz B, Müller V, Takács I, Hagymási K, Dinya E, Miheller P, Szijártó A, Werling K. Hypocalcemia on Admission Is a Predictor of Disease Progression in COVID-19 Patients with Cirrhosis: A Multicenter Study in Hungary. Biomedicines. 2023; 11(6):1541. https://doi.org/10.3390/biomedicines11061541
Chicago/Turabian StyleDrácz, Bálint, Veronika Müller, István Takács, Krisztina Hagymási, Elek Dinya, Pál Miheller, Attila Szijártó, and Klára Werling. 2023. "Hypocalcemia on Admission Is a Predictor of Disease Progression in COVID-19 Patients with Cirrhosis: A Multicenter Study in Hungary" Biomedicines 11, no. 6: 1541. https://doi.org/10.3390/biomedicines11061541
APA StyleDrácz, B., Müller, V., Takács, I., Hagymási, K., Dinya, E., Miheller, P., Szijártó, A., & Werling, K. (2023). Hypocalcemia on Admission Is a Predictor of Disease Progression in COVID-19 Patients with Cirrhosis: A Multicenter Study in Hungary. Biomedicines, 11(6), 1541. https://doi.org/10.3390/biomedicines11061541