The Concentration of Pro- and Antiangiogenic Factors in Saliva and Gingival Crevicular Fluid Compared to Plasma in Patients with Peripheral Artery Disease and Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heil, M.; Eitenmuller, L.; Schmitz-Rixen, T.; Schaper, W. Arteriogenesis versus angiogenesis: Similarities and differences. JCMM 2006, 10, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Mentzer, S.J.; Konerding, M.A. Intussusceptive angiogenesis: Expansion and remodeling of microvascular networks. Angiogenesis 2014, 17, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Gorenoi, V.; Brehm, M.U.; Koch, A.; Hagen, A. Growth factors for angiogenesis in peripheral arterial disease. Cochrane Database Syst. Rev. 2017, 6, CD011741. [Google Scholar] [PubMed]
- Ariyanti, A.D.; Sisjayawan, J.; Zhang, J.; Zhang, J.-Q.; Wang, G.-X.; Miyagishi, M.; Wu, S.-R.; Kasim, V. Elevating VEGF-A and PDGF-BB Secretion by Salidroside Enhances Neoangiogenesis in Diabetic Hind-Limb Ischemia. Oncotarget 2017, 8, 97187–97205. Available online: https://www.oncotarget.com/article/21907/text/ (accessed on 20 May 2023).
- Brudno, Y.; Ennett-Shepard, A.B.; Chen, R.R.; Aizenberg, M.; Mooney, D.J. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 2013, 34, 9201–9209. [Google Scholar] [CrossRef]
- Staton, C.A.; Valluru, M.; Hoh, L.; Reed, M.; Brown, N. Angiopoietin-1, angiopoietin-2 and Tie-2 receptor expression in human dermal wound repair and scarring. Br. J. Dermatol. 2010, 163, 920–927. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Valerio, F.; Malaponte, G. Inflammation and peripheral arterial disease: The value of circulating biomarkers (review). Int. J. Mol. Med. 2014, 33, 777–783. [Google Scholar] [CrossRef]
- Saenz-pipaon, G.; Martinez-aguilar, E.; Orbe, J.; Miqueo, A.G.; Fernandez-Alonso, L.; Paramo, J.A.; Roncal, C. The role of circulating biomarkers in peripheral arterial disease. Int. J. Mol. Sci. 2021, 22, 3601. [Google Scholar] [CrossRef]
- Poredoš, P.; Šabovič, M.; Mijovski, M.B.; Nikolajević, J.; Antignani, P.L.; Paraskevas, K.I.; Mikhailidis, D.P.; Blinc, A. Inflammatory and Prothrombotic Biomarkers, DNA Polymorphisms, MicroRNAs and Personalized Medicine for Patients with Peripheral Arterial Disease. Int. J. Mol. Sci. 2022, 23, 12054. [Google Scholar] [CrossRef]
- Hirsch, A.T.; Duval, S. The global pandemic of peripheral artery disease. Lancet 2013, 382, 1312–1314. [Google Scholar] [CrossRef]
- Proctor, G.B. The physiology of salivary secretion. Periodontology 2015, 70, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, Z.; Mali, M.; Naseem, M.; Najeeb, S.; Zafar, M.S. Human gingival crevicular fluids (GCF) proteomics: An overview. Dent. J. 2017, 5, 12. [Google Scholar] [CrossRef]
- Ebersole, J.L. Humoral immune responses in gingival crevice fluid: Local and systemic implications. Periodontol. 2000 2003, 31, 135–166. [Google Scholar] [CrossRef] [PubMed]
- Malamud, D. Saliva as a Diagnostic Fluid. Dent. Clin. N. Am. 2011, 55, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Hardman, R.L.; Jazaeri, O.; Yi, J.; Smith, M.; Gupta, R. Overview of classification systems in peripheral artery disease. Semin. Interv. Radiol. 2014, 31, 378–388. [Google Scholar] [CrossRef]
- Heldin, C.H.; Westermark, B. Mechanism of Action and in Vivo Role of Platelet-Derived Growth Factor. Physiol. Rev. 1999, 79, 1283–1316. [Google Scholar] [CrossRef]
- Hannink, M.; Donoghue, D.J. Structure and function of platelet-derived growth factor (PDGF) and related proteins. Biochim. Biophys. Acta 1989, 989, 1–10. [Google Scholar] [CrossRef]
- Nicosia, R.F.; Valerio Nicosia, S.; Smith, M. Short Communication Vascular Endothelial Growth Factor, Platelet-Derived Growth Factor, and Insulin-Like Growth Factor-1 Promote Rat Aortic Angiogenesis in Vitro. Am. J. Patbol. 1994, 145, 1023–1029. [Google Scholar]
- Bar, R.S.; Boes, M.; Booth, B.A.; Dake, B.L.; Henley, S.; Hart, M.N. The Effects of Platelet-Derived Growth Factor in Cultured Microvessel Endothelial Cells*. Endocrinology 1989, 124, 1841–1848. [Google Scholar] [CrossRef]
- Raines, E.W. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 2004, 15, 237–254. [Google Scholar] [CrossRef]
- Ricci, C.; Ferri, N. Naturally occurring PDGF receptor inhibitors with potential anti-atherosclerotic properties. Vasc. Pharmacol. 2015, 70, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Bongiovanni, L.; Bianco, L.; Di Scipio, F.; Yang, Z.; Sprio, A.E.; Berta, G.N.; Aimetti, M. Biomarker levels in gingival crevicular fluid of generalized aggressive periodontitis patients after non-surgical periodontal treatment. Clin. Oral Investig. 2018, 22, 1083–1092. [Google Scholar] [CrossRef]
- Koidou, V.P.; Chatzopoulos, G.S.; Tomas, I.; Nibali, L.; Donos, N. Expression of gingival crevicular fluid markers during early and late healing of intrabony defects after surgical treatment: A systematic review. Clin. Oral Investig. 2020, 24, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Haihua, Z.; Xiaolong, L.; Zheng, P.; Chen, H. Inflammatory cytokine levels in patients with periodontitis and/or coronary heart disease. Int. J. Clin. Exp. Pathol. 2015, 8, 2214–2220. [Google Scholar]
- Jalkanen, J.; Hautero, O.; Maksimow, M.; Jalkanen, S.; Hakovirta, H. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease. Cytokine 2018, 110, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, Y.; Liu, K.; Yuan, C.; Tang, Y.; Quan, Q.; Chen, P.; Wang, W.; Hu, H.; Yang, L. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvasc. Res. 2010, 80, 10–17. [Google Scholar] [CrossRef]
- Isola, G.; Distefano, A.; Polizzi, A.; Vaccaro, M.; Raciti, G.; Alibrandi, A.; Volti, G.L. Impact of periodontitis on gingival crevicular fluid miRNAs profiles associated with cardiovascular disease risk. J. Periodontal Res. 2023, 58, 165–174. [Google Scholar] [CrossRef]
- Szustkiewicz-Karoń, A.; Schönborn, M.; Pasieka, P.; Płotek, A.; Maga, P.; D, I.G.-M. Biomarkers of Cardiovascular Diseases in Saliva and Gingival Crevicular Fluid: A Review. Angiology 2022, 33197221134757. [Google Scholar] [CrossRef]
- Gregorczyk-Maga, I. Biomarkers of inflammatory external root resorption as a result of traumatic dental injury to permanent teeth in children. Arch. Oral Biol. 2019, 99, 82–91. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, Y.; Jiao, K.; Zhang, J.; Zheng, X.; Wu, F.; Hu, X.; Li, J.; Yu, Z.; Zhang, G.; et al. Relationship between Gingival Crevicular Fluid Microbiota and Cytokine Profile in Periodontal Host Homeostasis. Front. Microbiol. 2017, 8, 2144. [Google Scholar] [CrossRef]
- Daly, C.G.; Mitchell, D.H.; Highfield, J.E.; Grossberg, D.E.; Stewart, D. Bacteremia due to periodontal probing: A clinical and microbiological investigation. J. Periodontol. 2001, 72, 210–214. [Google Scholar] [CrossRef]
- Fiema, M.; Wlodarczyk, A.; Wojkowska-Mach, J.; Garlicki, J.; Gregorczyk-Maga, I. Atypical Presentation of Aspergillus niger Infection in the Oral Cavity as a Prediction of Invasive Pulmonary Aspergillosis in a Patient with COVID-19: Case Report and Literature Review. Microorganisms 2022, 10, 1630. [Google Scholar] [CrossRef] [PubMed]
- Baskara, I.; Kerbrat, S.; Kerbrat, S.; Dagouassat, M.; Nguyen, H.Q.; Guillot-Delost, M.; Surenaud, M.; Baillou, C.; Lemoine, F.M.; Morin, D.; et al. Cigarette smoking induces human CCR6+Th17 lymphocytes senescence and VEGF-A secretion. Sci. Rep. 2020, 10, 6488. [Google Scholar] [CrossRef] [PubMed]
- Ates, M.; Hosgorler, F.; Yuksel, O.; Unsal, S.K.; Guvendi, G.; Karakilic, A.; Koc, B.; Kandis, S.; Kanit, L.; Uysal, N. Nicotine increased VEGF and MMP2 levels in the rat eye and kidney. Environ. Sci. Pollut. Res. 2019, 26, 33517–33523. [Google Scholar] [CrossRef] [PubMed]
- Kaval, B.; Renaud, D.E.; Scott, D.A.; Buduneli, N. The Role of Smoking and Gingival Crevicular Fluid Markers on Coronally Advanced Flap Outcomes. J. Periodontol. 2014, 85, 395–405. [Google Scholar] [CrossRef]
- Eren, G.; Oya Türkoğlu, H.; Atmaca, H.; Atilla, F.G. Evaluation of GCF MMP-1, MMP-8, TGF-β1, PDGF-AB, and VEGF levels in periodontally healthy smokers. Turk. J. Med. Sci. 2015, 45, 850–856. [Google Scholar] [CrossRef]
- Ugur, M.G.; Kutlu, R.; Kilinc, I. The effects of smoking on vascular endothelial growth factor and inflammation markers: A case-control study. Clin. Respir. J. 2018, 12, 1912–1918. [Google Scholar] [CrossRef]
- Ruszkowska-Ciastek, B.; Sokup, A.; Socha, M.W.; Ruprecht, Z.; Hałas, L.; Góralczyk, B.; Góralczyk, K.; Gadomska, G.; Rość, D. A preliminary evaluation of VEGF-A, VEGFR1 and VEGFR2 in patients with well-controlled type 2 diabetes mellitus. J. Zhejiang Univ. Sci. B 2014, 15, 575–581. [Google Scholar] [CrossRef]
- Yousif Hussin Alimam, H.; Abdelateif Hussein, W.; Ibrahim, S.; Abdelgani, S.; Alharthi, N.; Bashier Eltayeb, L.; Abdelgadir Elmahdi, S.; Abobakr Abdrabo, A. Blood Glucose, HbA1c Level, and its Correlation with VEGF-A (+405G/C) Polymorphism as Biomarker Predicts the Risk of Retinopathy and Nephropathy in Type 2 Diabetic Patients. Rep. Biochem. Mol. Biol. 2022, 11, 421–429. [Google Scholar] [CrossRef]
- Afacan, B.; Öztürk, V.Ö.; Paşalı, Ç.; Bozkurt, E.; Köse, T.; Emingil, G. Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease. J. Periodontol. 2019, 90, 788–797. [Google Scholar] [CrossRef]
- Wieczór, R.; Rość, D.; Wieczór, A.M.; Kulwas, A. VASCULAR-1 and VASCULAR-2 as a New Potential Angiogenesis and Endothelial Dysfunction Markers in Peripheral Arterial Disease. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619877440. [Google Scholar] [CrossRef]
- Kastora, S.L.; Eley, J.; Gannon, M.; Melvin, R.; Munro, E.; Makris, S.A. What Went Wrong with VEGF-A in Peripheral Arterial Disease? A Systematic Review and Biological Insights on Future Therapeutics. J. Vasc. Res. 2022, 59, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Rakmanee, T.; Calciolari, E.; Olsen, I.; Darbar, U.; Griffiths, G.S.; Petrie, A.; Donos, N. Expression of growth mediators in the gingival crevicular fluid of patients with aggressive periodontitis undergoing periodontal surgery. Clin. Oral Investig. 2019, 23, 3307–3318. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Lee, C.S.; Chiu, Y.W.; Kuo, H.T.; Lee, S.C.; Hwang, S.J.; Kuo, M.C.; Chen, H.C. Angiopoietin-2, Angiopoietin-1 and subclinical cardiovascular disease in Chronic Kidney Disease. Sci. Rep. 2016, 6, 39400. [Google Scholar] [CrossRef]
- Pang, S.; Tao, Z.; Min, X.; Zhou, C.; Pan, D.; Cao, Z.; Wang, X. Correlation between the Serum Platelet-Derived Growth Factor, Angiopoietin-1, and Severity of Coronary Heart Disease. Cardiol. Res. Pract. 2020, 2020, 3602608. [Google Scholar] [CrossRef]
- Ou, X.; Gao, J.H.; He, L.H.; Yu, X.-H.; Wang, G.; Zou, J.; Zhao, Z.-W.; Zhang, D.; Zhou, Z.-J.; Tang, C.-K. Angiopoietin-1 aggravates atherosclerosis by inhibiting cholesterol efflux and promoting inflammatory response. Biochim. Biophys. Acta Mol. Cell Biol Lipids 2020, 1865, 158535. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, Z.; Warsi, I.; Moin, S.F.; Slowey, P.D.; Latif, M.; Zohaib, S.; Zafar, M.S. Biochemical analysis of oral fluids for disease detection. Adv. Clin. Chem. 2021, 100, 205–253. [Google Scholar] [CrossRef] [PubMed]
- Malathi, N.; Mythili, S.; Vasanthi, H.R. Salivary Diagnostics: A Brief Review. ISRN Dent. 2014, 2014, 158786. [Google Scholar] [CrossRef]
- Rahim, M.A.A.; Abdul Rahim, Z.H.; Ahmad, W.A.W.; Hashim, O.H. Can saliva proteins be used to predict the onset of acute myocardial infarction among high-risk patients? Int. J. Med. Sci. 2015, 12, 329–335. [Google Scholar] [CrossRef] [PubMed]
Sex n (%) Males Females | 27 (84.4%) 5 (15.6%) |
Age median (IQR) | 69.0 (62.5; 73.5) |
Rutherford n (%) 4 5 6 | 2 (6.3%) 19 (59.4%) 11 (34.3%) |
Hypertension n (%) No Yes | 1 (3.1%) 31 (96.9%) |
Myocardial infraction n (%) No Yes | 22 (68.8%) 10 (31.3%) |
Coronary artery disease n (%) No Yes | 15 (46.9%) 17 (53.1%) |
Smoking n (%) No Former Actual | 7 (22.6%) 21 (67.7%) 3 (9.7%) |
Heart failure n (%) No Yes | 19 (59.4%) 13 (40.6%) |
Dyslipidemia n (%) No Yes | 7 (21.9%) 25 (78.1%) |
Chronic kidney disease n (%) No Yes | 25 (78.1%) 7 (21.9%) |
Atrial fibrillation n (%) No Yes | 25 (78.1%) 7 (21.9%) |
ABI median (IQR) | 0.5 (0.39; 0.72) |
TBI median (IQR) | 0.16 (0.07; 0.22) |
Hgb median (IQR) (g/dL) | 11.9 (11.05; 14.15) |
WBC median (IQR) (103/uL) | 9.99 (8.43; 12.58) |
CRP median (IQR) (mg/L) | 6.98 (3.32; 59.25) |
HbA1c median (IQR) (%) | 7.45 (6.83; 8.13) |
Day 0 | Day 1 | Day 30 | ||
---|---|---|---|---|
VEGF-A Median (IQR) (ng/mL) | plasma | 0.054 [0.008; 0.129] | 0.0613 [0.004; 0.099] | 0.068 [0.004; 0.156] |
WS | 1.804 [1.219; 2.069] | 1.501 [1.219; 1.748] | 2.010 [1.679; 2.199] | |
GCF | 0.102 [0.038; 0.171] | 0.072 [0.029; 0.148] | 0.110 [0.038; 0.190] | |
PDGF-BB Median (IQR) (ng/mL) | plasma | 0.237 [0.119; 0.475] | 0.256 [0.116; 0.460] | 0.295 [0.151; 0.451] |
WS | 0.005 [0.004; 0.007] | 0.005 [0.003; 0.007] | 0.004 [0.003; 0.007] | |
GCF | 0.007 [0.006; 0.012] | 0.009 [0.006; 0.015] | 0.011 [0.006; 0.017] | |
ANG-1 Median [IQR] (ng/mL) | plasma | 1.383 [0.378; 2.588] | 1.215 [0.448; 2.126] | 1.443 [0.966; 1.997] |
WS | 2.879 [1.836; 3.294] | 2.694 [1.891; 3.203] | 3.106 [2.291; 3.897] | |
GCF | 0.020 [0.012; 0.034] | 0.021 [0.008; 0.050] | 0.024 [0.015; 0.045] |
Analyzed Comorbidity | Correlated Factors | R | p-Value |
---|---|---|---|
No Heart Failure | VEGF1 | 0.12 | 0.63 |
VEGF2 | 0.35 | 0.15 | |
VEGF3 | 0.59 | 0.013 | |
PDGF1 | 0.46 | 0.047 | |
PDGF2 | 0.58 | 0.009 | |
PDGF3 | 0.45 | 0.068 | |
Former smoking | VEGF1 | 0.39 | 0.08 |
VEGF2 | 0.47 | 0.031 | |
VEGF3 | 0.50 | 0.029 | |
PDGF1 | 0.32 | 0.15 | |
PDGF2 | 0.44 | 0.049 | |
PDGF3 | 0.54 | 0.017 | |
Dyslipidemia | PDGF1 | 0.421 | 0.036 |
PDGF2 | 0.62 | 0.001 | |
PDGF3 | 0.37 | 0.085 | |
No coronary artery disease | PDGF1 | 0.50 | 0.056 |
PDGF2 | 0.62 | 0.013 | |
PDGF3 | 0.57 | 0.035 | |
Coronary artery disease | PDGF1 | 0.31 | 0.224 |
PDGF2 | 0.49 | 0.047 | |
PDGF3 | 0.56 | 0.025 | |
No myocardial infraction | PDGF1 | 0.58 | 0.005 |
PDGF2 | 0.49 | 0.021 | |
PDGF3 | 0.55 | 0.012 | |
Myocardial infarction | PDGF1 | 0.12 | 0.73 |
PDGF2 | 0.65 | 0.042 | |
PDGF3 | 0.53 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregorczyk-Maga, I.; Szustkiewicz-Karoń, A.; Gajda, M.; Kapusta, M.; Maga, W.; Schönborn, M. The Concentration of Pro- and Antiangiogenic Factors in Saliva and Gingival Crevicular Fluid Compared to Plasma in Patients with Peripheral Artery Disease and Type 2 Diabetes. Biomedicines 2023, 11, 1596. https://doi.org/10.3390/biomedicines11061596
Gregorczyk-Maga I, Szustkiewicz-Karoń A, Gajda M, Kapusta M, Maga W, Schönborn M. The Concentration of Pro- and Antiangiogenic Factors in Saliva and Gingival Crevicular Fluid Compared to Plasma in Patients with Peripheral Artery Disease and Type 2 Diabetes. Biomedicines. 2023; 11(6):1596. https://doi.org/10.3390/biomedicines11061596
Chicago/Turabian StyleGregorczyk-Maga, Iwona, Aleksandra Szustkiewicz-Karoń, Mateusz Gajda, Maria Kapusta, Wojciech Maga, and Martyna Schönborn. 2023. "The Concentration of Pro- and Antiangiogenic Factors in Saliva and Gingival Crevicular Fluid Compared to Plasma in Patients with Peripheral Artery Disease and Type 2 Diabetes" Biomedicines 11, no. 6: 1596. https://doi.org/10.3390/biomedicines11061596
APA StyleGregorczyk-Maga, I., Szustkiewicz-Karoń, A., Gajda, M., Kapusta, M., Maga, W., & Schönborn, M. (2023). The Concentration of Pro- and Antiangiogenic Factors in Saliva and Gingival Crevicular Fluid Compared to Plasma in Patients with Peripheral Artery Disease and Type 2 Diabetes. Biomedicines, 11(6), 1596. https://doi.org/10.3390/biomedicines11061596