Radiotherapy and Immunotherapy in Lung Cancer
Abstract
:1. Introduction
2. Rationale of Integrating IO and RT
3. SCLC
3.1. Background
3.2. Treatment Paradigm for LS-SCLC
3.3. Treatment Paradigm for ES-SCLC
Trial Name and Agent | Disease and Stage; Trial Phase; n | Treatment Arms | Primary Objective | Timing of IO in Relation to RT/CHT | Results (Focusing on Primary Objective) | Conclusions |
---|---|---|---|---|---|---|
IMpower133 [61] (atezolizumab) | ES-SCLC; III; n = 403 | CHT +/− atezolizumab | OS, PFS | Concurrent and adjuvant | Median OS 12.3 mos in the CHT + IO group vs. 10.3 mos in the CHT group. Median PFS 5.2 mos vs. 4.3 mos, respectively. | Increased OS and PFS with CHT + atezolizumab. |
CASPIAN [62,63] (durvalumab) | ES-SCLC; III; n = 805 | CHT vs. CHT + durvalumab vs. CHT + durvalumab + tremelimumab | OS | Concurrent | Median OS 12.9 mos in the CHT + durvalumab group vs. 10.4 months in the CHT + duvalumab + tremelimumab group vs. 10.5 mos in the CHT group. | Increased OS with CHT + durvalumab. |
CheckMate 816 [66] (nivolumab) | Resectable stage IB to IIIA NSCLC; III; n = 358 | CHT +/− nivolumab | EFS, pathologic complete response | Concurrent prior to surgery | Median EFS 31.6 mos in the CHT + IO group vs. 20.8 mos in the CHT group. Pathologic complete response 24.0% and 2.2%, respectively. | Increased EFS and pathological complete response with CHT + IO. |
PACIFIC [29,30] (durvalumab) | Locally advanced, unresectable NSCLC; III; n = 709 | Placebo vs. durvalumab | PFS, OS | Adjuvant | Median PFS 16.9 mos in the IO group vs. 5.6 mos in the placebo group. Median OS 47.5 mos in the IO group vs. 29.1 mos in the placebo group. | Increased PFS and OS with IO. |
Keynote-042 [67] (pembrolizumab) | Locally advanced or metastatic NSCLC; III; n = 1274 | CHT vs. pembrolizumab | OS in patients with a TPS of ≥50%, ≥20%, or ≥1% | N/A | Median OS by TPS group: - TPS ≥ 50% group-20.0 mos in the IO group vs. 12.2 mos in the CHT group. - TPS ≥ 20% group-17.7 mos in the IO group vs. 13.0 mos in the CHT group. -TPS ≥ 1 group-16.7 mos in the IO group vs. 12.1 mos in the CHT group. | Increased OS with IO in all three TPS groups. |
Checkmate 227 [68] (nivolumab, ipilimumab) | Stage IV or recurrent NSCLC; III; n = 1739 | CHT vs. CHT + nivolumab vs. CHT + nivolumab + ipilimumab | OS, PFS | N/A | Median OS for patients with PD-L1 expression of: - ≥1%: 17.1 mos in the nivolumab + ipilimumab group vs. 13.9 mo in the CHT group. - <1%: 17.2 mos in the nivolumab + ipilimumab group vs. 12.2 months in the CHT group. Median OS for all patients: 17.1 mos in the nivolumab + ipilimumab vs. 13.9 mos in the CHT group. | Increased OS with nivolumab + ipilimumab. |
CheckMate 9LA [69] (nivolumab + ipilimumab) | Stage IV or recurrent NSCLC; III; n = 1150 | CHT +/− nivolumab with ipilimumab | OS | Concurrent | Median OS 15.6 mos in the CHT + IO group vs. 10.9 in the CHT group. | Increased OS with CHT + IO. |
4. NSCLC
4.1. Background
4.2. Treatment Paradigm for Early Stage NSCLC
4.3. Treatment Paradigm for Locally Advanced Stage NSCLC
4.4. Incorporation of RT and IO for Metastatic Disease
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention Lung Cancer Statistics. 2022. Available online: https://www.cdc.gov/cancer/lung/statistics/index.htm#:~:text=Lung%20cancer%20is%20the%20third,any%20other%20type%20of%20cancer (accessed on 7 September 2022).
- Swann, J.B.; Smyth, M.J. Immune Surveillance of Tumors. J. Clin. Investig. 2007, 117, 1137–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, G.A.; Gabrilovich, D.; Sotomayor, E.M. Immunosuppressive Strategies That Are Mediated by Tumor Cells. Annu. Rev. Immunol. 2007, 25, 267–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Li, L.; Cui, J. Advances and Challenges in Immunotherapy of Small Cell Lung Cancer. Chin. J. Cancer Res. 2020, 32, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.P.; Gandara, D.R.; Antonia, S.J.; Zielinski, C.; Paz-Ares, L. Non-Small-Cell Lung Cancer: Role of the Immune System and Potential for Immunotherapy. J. Thorac. Oncol. 2015, 10, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Shields, M.D.; Marin-Acevedo, J.A.; Pellini, B. Immunotherapy for Advanced Non–Small Cell Lung Cancer: A Decade of Progress. In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2021; pp. e105–e127. [Google Scholar] [CrossRef]
- Du, L.; Herbst, R.S.; Morgensztern, D. Immunotherapy in Lung Cancer. Hematol. Oncol. Clin. N. Am. 2017, 31, 131–141. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef] [Green Version]
- Heinzerling, J.H.; Mileham, K.F.; Simone, C.B. The Utilization of Immunotherapy with Radiation Therapy in Lung Cancer: A Narrative Review. Transl. Cancer Res. 2021, 10, 2596–2608. [Google Scholar] [CrossRef]
- Ko, E.C.; Raben, D.; Formenti, S.C. The Integration of Radiotherapy with Immunotherapy for the Treatment of Non-Small Cell Lung Cancer. Clin. Cancer Res. 2018, 24, 5792–5806. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Xu, J.; Ye, Y.; Wang, Y.; Luo, S.; Gong, X. The Combination of Radiotherapy With Immunotherapy and Potential Predictive Biomarkers for Treatment of Non-Small Cell Lung Cancer Patients. Front. Immunol. 2021, 12, 723609. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.; Simone, C.B. Combining Immunotherapy with Radiation Therapy in Non-Small Cell Lung Cancer. Thorac. Surg. Clin. 2020, 30, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Lhuillier, C.; Rudqvist, N.-P.; Elemento, O.; Formenti, S.C.; Demaria, S. Radiation Therapy and Anti-Tumor Immunity: Exposing Immunogenic Mutations to the Immune System. Genome Med. 2019, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.Y.; O’Hara, M.H.; Mitchell, T.C.; Vonderheide, R.H.; Wherry, E.J.; Minn, A.J.; Maity, A. Combining Radiation with Immunotherapy: The University of Pennsylvania Experience. Semin. Radiat. Oncol. 2020, 30, 173–180. [Google Scholar] [CrossRef]
- Hernandez, C.; Huebener, P.; Schwabe, R.F. Damage-Associated Molecular Patterns in Cancer: A Double-Edged Sword. Oncogene 2016, 35, 5931–5941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krombach, J.; Hennel, R.; Brix, N.; Orth, M.; Schoetz, U.; Ernst, A.; Schuster, J.; Zuchtriegel, G.; Reichel, C.A.; Bierschenk, S.; et al. Priming Anti-Tumor Immunity by Radiotherapy: Dying Tumor Cell-Derived DAMPs Trigger Endothelial Cell Activation and Recruitment of Myeloid Cells. Oncoimmunology 2019, 8, e1523097. [Google Scholar] [CrossRef] [Green Version]
- Minn, A.J. Interferons and the Immunogenic Effects of Cancer Therapy. Trends Immunol. 2015, 36, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.A.; Minn, A.J. Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies. Immunity 2018, 48, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Turgeon, G.; Weickhardt, A.; Azad, A.A.; Solomon, B.; Siva, S. Radiotherapy and Immunotherapy: A Synergistic Effect in Cancer Care. Med. J. Aust. 2019, 210, 47–53. [Google Scholar] [CrossRef]
- Jagodinsky, J.C.; Harari, P.M.; Morris, Z.S. The Promise of Combining Radiation Therapy With Immunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 6–16. [Google Scholar] [CrossRef]
- Formenti, S.C.; Rudqvist, N.-P.; Golden, E.; Cooper, B.; Wennerberg, E.; Lhuillier, C.; Vanpouille-Box, C.; Friedman, K.; Ferrari de Andrade, L.; Wucherpfennig, K.W.; et al. Radiotherapy Induces Responses of Lung Cancer to CTLA-4 Blockade. Nat. Med. 2018, 24, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Borcoman, E.; Nandikolla, A.; Long, G.; Goel, S.; Le Tourneau, C. Patterns of Response and Progression to Immunotherapy. In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2018; pp. 169–178. [Google Scholar] [CrossRef]
- Borcoman, E.; Kanjanapan, Y.; Champiat, S.; Kato, S.; Servois, V.; Kurzrock, R.; Goel, S.; Bedard, P.; Le Tourneau, C. Novel Patterns of Response under Immunotherapy. Ann. Oncol. 2019, 30, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Sim, A.J.; Jain, M.D.; Figura, N.B.; Chavez, J.C.; Shah, B.D.; Khimani, F.; Lazaryan, A.; Krivenko, G.; Davila, M.L.; Liu, H.D.; et al. Radiation Therapy as a Bridging Strategy for CAR T Cell Therapy With Axicabtagene Ciloleucel in Diffuse Large B-Cell Lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 1012–1021. [Google Scholar] [CrossRef]
- Marron, T.U.; Ryan, A.E.; Reddy, S.M.; Kaczanowska, S.; Younis, R.H.; Thakkar, D.; Zhang, J.; Bartkowiak, T.; Howard, R.; Anderson, K.G.; et al. Considerations for Treatment Duration in Responders to Immune Checkpoint Inhibitors. J. Immunother. Cancer 2021, 9, e001901. [Google Scholar] [CrossRef]
- Altorki, N.K.; McGraw, T.E.; Borczuk, A.C.; Saxena, A.; Port, J.L.; Stiles, B.M.; Lee, B.E.; Sanfilippo, N.J.; Scheff, R.J.; Pua, B.B.; et al. Neoadjuvant Durvalumab with or without Stereotactic Body Radiotherapy in Patients with Early-Stage Non-Small-Cell Lung Cancer: A Single-Centre, Randomised Phase 2 Trial. Lancet Oncol. 2021, 22, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Herrera, F.G.; Bourhis, J.; Coukos, G. Radiotherapy Combination Opportunities Leveraging Immunity for the next Oncology Practice. CA Cancer J. Clin. 2017, 67, 65–85. [Google Scholar] [CrossRef]
- Theelen, W.S.M.E.; Chen, D.; Verma, V.; Hobbs, B.P.; Peulen, H.M.U.; Aerts, J.G.J.V.; Bahce, I.; Niemeijer, A.L.N.; Chang, J.Y.; de Groot, P.M.; et al. Pembrolizumab with or without Radiotherapy for Metastatic Non-Small-Cell Lung Cancer: A Pooled Analysis of Two Randomised Trials. Lancet Respir. Med. 2021, 9, 467–475. [Google Scholar] [CrossRef]
- de Carvalho, H.A.; Villar, R.C. Radiotherapy and Immune Response: The Systemic Effects of a Local Treatment. Clinics 2018, 73, e557s. [Google Scholar] [CrossRef]
- Grapin, M.; Richard, C.; Limagne, E.; Boidot, R.; Morgand, V.; Bertaut, A.; Derangere, V.; Laurent, P.-A.; Thibaudin, M.; Fumet, J.D.; et al. Optimized Fractionated Radiotherapy with Anti-PD-L1 and Anti-TIGIT: A Promising New Combination. J. Immunother. Cancer 2019, 7, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rompré-Brodeur, A.; Shinde-Jadhav, S.; Ayoub, M.; Piccirillo, C.A.; Seuntjens, J.; Brimo, F.; Mansure, J.J.; Kassouf, W. PD-1/PD-L1 Immune Checkpoint Inhibition with Radiation in Bladder Cancer: In Situ and Abscopal Effects. Mol. Cancer Ther. 2020, 19, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-T.; Chen, W.-C.; Chang, Y.-H.; Lin, W.-Y.; Chen, M.-F. The Role of PD-L1 in the Radiation Response and Clinical Outcome for Bladder Cancer. Sci. Rep. 2016, 6, 19740. [Google Scholar] [CrossRef] [Green Version]
- Herter-Sprie, G.S.; Koyama, S.; Korideck, H.; Hai, J.; Deng, J.; Li, Y.Y.; Buczkowski, K.A.; Grant, A.K.; Ullas, S.; Rhee, K.; et al. Synergy of Radiotherapy and PD-1 Blockade in Kras-Mutant Lung Cancer. JCI Insight 2016, 1, e87415. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, T.H.; Fouladdel, S.; Zhang, Z.; Soni, P.; Qin, A.; Zhao, L.; Azizi, E.; Lawrence, T.S.; Ramnath, N.; et al. PD-L1 Expression in Circulating Tumor Cells Increases during Radio(Chemo)Therapy and Indicates Poor Prognosis in Non-Small Cell Lung Cancer. Sci. Rep. 2019, 9, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Sheikh, K.; Nakajima, E.; Lin, C.T.; Lee, J.; Hu, C.; Hales, R.K.; Forde, P.M.; Naidoo, J.; Voong, K.R. Radiation Versus Immune Checkpoint Inhibitor Associated Pneumonitis: Distinct Radiologic Morphologies. Oncologist 2021, 26, e1822–e1832. [Google Scholar] [CrossRef]
- Korpics, M.C.; Katipally, R.R.; Partouche, J.; Cutright, D.; Pointer, K.B.; Bestvina, C.M.; Luke, J.J.; Pitroda, S.P.; Dignam, J.J.; Chmura, S.J.; et al. Predictors of Pneumonitis in Combined Thoracic Stereotactic Body Radiation Therapy and Immunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 645–654. [Google Scholar] [CrossRef]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous Radiotherapy and the Clinical Activity and Toxicity of Pembrolizumab in the Treatment of Non-Small-Cell Lung Cancer: A Secondary Analysis of the KEYNOTE-001 Phase 1 Trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Hwang, W.L.; Niemierko, A.; Hwang, K.L.; Hubbeling, H.; Schapira, E.; Gainor, J.F.; Keane, F.K. Clinical Outcomes in Patients With Metastatic Lung Cancer Treated With PD-1/PD-L1 Inhibitors and Thoracic Radiotherapy. JAMA Oncol. 2018, 4, 253–255. [Google Scholar] [CrossRef]
- Bang, A.; Wilhite, T.J.; Pike, L.R.G.; Cagney, D.N.; Aizer, A.A.; Taylor, A.; Spektor, A.; Krishnan, M.; Ott, P.A.; Balboni, T.A.; et al. Multicenter Evaluation of the Tolerability of Combined Treatment With PD-1 and CTLA-4 Immune Checkpoint Inhibitors and Palliative Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 344–351. [Google Scholar] [CrossRef]
- von Reibnitz, D.; Chaft, J.E.; Wu, A.J.; Samstein, R.; Hellmann, M.D.; Plodkowski, A.J.; Zhang, Z.; Shi, W.; Dick-Godfrey, R.; Panchoo, K.H.; et al. Safety of Combining Thoracic Radiation Therapy with Concurrent versus Sequential Immune Checkpoint Inhibition. Adv. Radiat. Oncol. 2018, 3, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Bang, A.; Schoenfeld, J.D. Immunotherapy and Radiotherapy for Metastatic Cancers. Ann. Palliat. Med. 2019, 8, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Basumallik, N.; Agarwal, M. Small Cell Lung Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Melosky, B.; Cheema, P.K.; Brade, A.; McLeod, D.; Liu, G.; Price, P.W.; Jao, K.; Schellenberg, D.D.; Juergens, R.; Leighl, N.; et al. Prolonging Survival: The Role of Immune Checkpoint Inhibitors in the Treatment of Extensive-Stage Small Cell Lung Cancer. Oncologist 2020, 25, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Kalemkerian, G.P.; Gadgeel, S.M. Modern Staging of Small Cell Lung Cancer. J. Natl. Compr. Cancer Netw. 2013, 11, 99–104. [Google Scholar] [CrossRef] [Green Version]
- National Comprehensive Cancer Network Small Cell Lung Cancer; Version 3.2023; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2022.
- Turrisi, A.T.; Kim, K.; Blum, R.; Sause, W.T.; Livingston, R.B.; Komaki, R.; Wagner, H.; Aisner, S.; Johnson, D.H. Twice-Daily Compared with Once-Daily Thoracic Radiotherapy in Limited Small-Cell Lung Cancer Treated Concurrently with Cisplatin and Etoposide. N. Engl. J. Med. 1999, 340, 265–271. [Google Scholar] [CrossRef]
- Faivre-Finn, C.; Snee, M.; Ashcroft, L.; Appel, W.; Barlesi, F.; Bhatnagar, A.; Bezjak, A.; Cardenal, F.; Fournel, P.; Harden, S.; et al. Concurrent Once-Daily versus Twice-Daily Chemoradiotherapy in Patients with Limited-Stage Small-Cell Lung Cancer (CONVERT): An Open-Label, Phase 3, Randomised, Superiority Trial. Lancet Oncol. 2017, 18, 1116–1125. [Google Scholar] [CrossRef] [Green Version]
- Bogart, J.; Wang, X.; Masters, G.; Gao, J.; Komaki, R.; Gaspar, L.E.; Heymach, J.; Bonner, J.; Kuzma, C.; Waqar, S.; et al. High-Dose Once-Daily Thoracic Radiotherapy in Limited-Stage Small-Cell Lung Cancer: CALGB 30610 (Alliance)/RTOG 0538. J. Clin. Oncol. 2023, 41, 2394–2402. [Google Scholar] [CrossRef]
- Park, S.; Noh, J.M.; Choi, Y.-L.; Chi, S.A.; Kim, K.; Jung, H.A.; Lee, S.-H.; Ahn, J.S.; Ahn, M.-J.; Sun, J.-M. Durvalumab with Chemoradiotherapy for Limited-Stage Small-Cell Lung Cancer. Eur. J. Cancer 2022, 169, 42–53. [Google Scholar] [CrossRef]
- Testing the Addition of a New Immunotherapy Drug, Atezolizumab (MPDL3280A), to the Usual Chemoradiation (CRT) Therapy Treatment for Limited Stage Small Cell Lung Cancer (LS-SCLC). Available online: https://clinicaltrials.gov/ct2/show/NCT03811002 (accessed on 27 September 2022).
- Study of Durvalumab + Tremelimumab, Durvalumab, and Placebo in Limited Stage Small-Cell Lung Cancer in Patients Who Have Not Progressed Following Concurrent Chemoradiation Therapy (ADRIATIC). Available online: https://clinicaltrials.gov/ct2/show/NCT03703297 (accessed on 26 April 2023).
- Placebo-Controlled, Study of Concurrent Chemoradiation Therapy With Pembrolizumab Followed by Pembrolizumab and Olaparib in Newly Diagnosed Treatment-Naïve Limited-Stage Small Cell Lung Cancer (LS-SCLC) (MK 7339-013/KEYLYNK-013). Available online: https://clinicaltrials.gov/ct2/show/NCT04624204 (accessed on 27 September 2022).
- Testing the Addition of Radiation Therapy to the Usual Immune Therapy Treatment (Atezolizumab) for Extensive Stage Small Cell Lung Cancer, The RAPTOR Trial. Available online: https://clinicaltrials.gov/ct2/show/NCT04402788 (accessed on 27 September 2022).
- Bottomley, A.; Debruyne, C.; Felip, E.; Millward, M.; Thiberville, L.; D’Addario, G.; Rome, L.; Zatloukal, P.; Coens, C.; Giaccone, G. Symptom and Quality of Life Results of an International Randomised Phase III Study of Adjuvant Vaccination with Bec2/BCG in Responding Patients with Limited Disease Small-Cell Lung Cancer. Eur. J. Cancer 2008, 44, 2178–2184. [Google Scholar] [CrossRef]
- Giaccone, G.; Debruyne, C.; Felip, E.; Chapman, P.B.; Grant, S.C.; Millward, M.; Thiberville, L.; D’addario, G.; Coens, C.; Rome, L.S.; et al. Phase III Study of Adjuvant Vaccination with Bec2/Bacille Calmette-Guerin in Responding Patients with Limited-Disease Small-Cell Lung Cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). J. Clin. Oncol. 2005, 23, 6854–6864. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab plus Platinum-Etoposide versus Platinum-Etoposide in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet 2019, 394, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.W.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab, with or without Tremelimumab, plus Platinum-Etoposide versus Platinum-Etoposide Alone in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): Updated Results from a Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 51–65. [Google Scholar] [CrossRef]
- Rudin, C.M.; Awad, M.M.; Navarro, A.; Gottfried, M.; Peters, S.; Csőszi, T.; Cheema, P.K.; Rodriguez-Abreu, D.; Wollner, M.; Yang, J.C.-H.; et al. Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double-Blind, Phase III KEYNOTE-604 Study. J. Clin. Oncol. 2020, 38, 2369–2379. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Park, K.; Govindan, R.; Ready, N.; Reck, M.; Peters, S.; Dakhil, S.R.; Navarro, A.; Rodríguez-Cid, J.; Schenker, M.; et al. Nivolumab and Ipilimumab as Maintenance Therapy in Extensive-Disease Small-Cell Lung Cancer: CheckMate 451. J. Clin. Oncol. 2021, 39, 1349–1359. [Google Scholar] [CrossRef]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-Line Nivolumab plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (CheckMate 9LA): An International, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network Non-Small Cell Lung Cancer; Version 3.2023; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2023.
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients With Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef]
- Rodak, O.; Peris-Díaz, M.D.; Olbromski, M.; Podhorska-Okołów, M.; Dzięgiel, P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers 2021, 13, 4705. [Google Scholar] [CrossRef] [PubMed]
- Durvalumab, vs. Placebo With Stereotactic Body Radiation Therapy in Early Stage Unresected Non-Small Cell Lung Cancer (NSCLC) Patients/Osimertinib Following SBRT in Patients With Early Stage Unresected NSCLC Harboring an EGFR Mutation (PACIFIC-4). Available online: https://clinicaltrials.gov/ct2/show/NCT03833154 (accessed on 29 September 2022).
- Efficacy and Safety Study of Stereotactic Body Radiotherapy (SBRT) With or Without Pembrolizumab (MK-3475) in Adults With Unresected Stage I or II Non-Small Cell Lung Cancer (NSCLC) (MK-3475-867/KEYNOTE-867). Available online: https://clinicaltrials.gov/ct2/show/NCT03924869 (accessed on 29 September 2022).
- Testing the Addition of an Antibody to Standard Chemoradiation Followed by the Antibody for One Year to Standard Chemoradiation Followed by One Year of the Antibody in Patients With Unresectable Stage III Non-Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04092283 (accessed on 29 September 2022).
- A Global Study to Assess the Effects of Durvalumab + Domvanalimab Following Concurrent Chemoradiation in Participants With Stage III Unresectable NSCLC (PACIFIC-8). Available online: https://clinicaltrials.gov/ct2/show/NCT05211895 (accessed on 3 October 2022).
- Schild, S.E.; Wang, X.; Bestvina, C.M.; Williams, T.; Masters, G.; Singh, A.K.; Stinchcombe, T.E.; Salama, J.K.; Wolf, S.; Zemla, T.; et al. Alliance A082002 -a Randomized Phase II/III Trial of Modern Immunotherapy-Based Systemic Therapy with or without SBRT for PD-L1-Negative, Advanced Non-Small Cell Lung Cancer. Clin. Lung Cancer 2022, 23, e317–e320. [Google Scholar] [CrossRef]
- Testing the Addition of Radiation Therapy to the Usual Treatment (Immunotherapy With or Without Chemotherapy) for Stage IV Non-Small Cell Lung Cancer Patients Who Are PD-L1 Negative. Available online: https://clinicaltrials.gov/ct2/show/NCT04929041 (accessed on 3 October 2022).
- Immunotherapy With or Without SBRT in Patients With Stage IV Non-Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03867175 (accessed on 3 October 2022).
- Le Pechoux, C.; Pourel, N.; Barlesi, F.; Lerouge, D.; Antoni, D.; Lamezec, B.; Nestle, U.; Boisselier, P.; Dansin, E.; Paumier, A.; et al. Postoperative Radiotherapy versus No Postoperative Radiotherapy in Patients with Completely Resected Non-Small-Cell Lung Cancer and Proven Mediastinal N2 Involvement (Lung ART): An Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2022, 23, 104–114. [Google Scholar] [CrossRef]
- A Global Study to Assess the Effects of MEDI4736 Following Concurrent Chemoradiation in Patients with Stage III Unresectable Non-Small Cell Lung Cancer (PACIFIC). 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT02125461 (accessed on 26 April 2023).
- Schoenfeld, J.D.; Giobbie-Hurder, A.; Ranasinghe, S.; Kao, K.Z.; Lako, A.; Tsuji, J.; Liu, Y.; Brennick, R.C.; Gentzler, R.D.; Lee, C.; et al. Durvalumab plus Tremelimumab Alone or in Combination with Low-Dose or Hypofractionated Radiotherapy in Metastatic Non-Small-Cell Lung Cancer Refractory to Previous PD(L)-1 Therapy: An Open-Label, Multicentre, Randomised, Phase 2 Trial. Lancet Oncol. 2022, 23, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Jotte, R.; Cappuzzo, F.; Vynnychenko, I.; Stroyakovskiy, D.; Rodríguez-Abreu, D.; Hussein, M.; Soo, R.; Conter, H.J.; Kozuki, T.; Huang, K.-C.; et al. Atezolizumab in Combination With Carboplatin and Nab-Paclitaxel in Advanced Squamous NSCLC (IMpower131): Results From a Randomized Phase III Trial. J. Thorac. Oncol. 2020, 15, 1351–1360. [Google Scholar] [CrossRef]
- Bauml, J.M.; Mick, R.; Ciunci, C.; Aggarwal, C.; Davis, C.; Evans, T.; Deshpande, C.; Miller, L.; Patel, P.; Alley, E.; et al. Pembrolizumab After Completion of Locally Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer: A Phase 2 Trial. JAMA Oncol. 2019, 5, 1283–1290. [Google Scholar] [CrossRef]
- Maintenance Chemotherapy With or Without Local Consolidative Therapy in Treating Patients With Stage IV Non-Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03137771 (accessed on 26 April 2023).
Trial | Phase | Estimated Enrollment | Stage | Treatment Arms | Primary Objective | Treatment Sequence of IO and RT | Estimated Completion | |
---|---|---|---|---|---|---|---|---|
Adding IO to RT | NRG-LU005 [55] | II/III | n = 506 | Limited | CRT +/− atezolizumab | OS | IO given during CRT and continued for 1 yr as maintenance | 28 December 2026 |
ADRIATIC [56] | III | n = 730 | Limited | CRT vs. CRT + durvalumab +/− tremelimumab | PFS, OS | IO given after CRT | 5 September 2024 | |
NCT04624204 [57] | III | n = 672 | Limited | CRT vs. CRT + pembrolizumab +/− olaparib | PFS, OS | Pembrolizumab given during CRT and continued for 1 yr as maintenance; olaparib as maintenance | 28 October 2027 | |
Adding RT to IO | RAPTOR (NRG-LU007) [58] | II/III | n = 138 | Extensive | Atezolizumab +/− RT | PFS, OS | RT given in daily fractions weeks 1–5; IO continued q21 days in the absence of progression or toxicity | 30 April 2027 |
Trial | Phase | Estimated Enrollment | Stage | Treatment Arms | Primary Objective | Treatment Sequence of IO and RT | Estimated Completion | |
---|---|---|---|---|---|---|---|---|
Adding IO to RT | SWOG S1914 [55] | III | n = 480 | Early | SBRT +/− atezolizumab | OS | IO given for total of 8 cycles, with SBRT starting in cycle 3 | 1 May 2028 |
PACIFIC-4 [74] | III | n = 733 | Early | SBRT vs. SBRT + durvalumab vs. SBRT + osimertinib | PFS | Durvalumab given with SBRT and continued; osimertinib started after SBRT | 31 January 2028 | |
KEYNOTE-867 [75] | III | n = 530 | Early | SBRT +/− pembrolizumab | EFS | IO given during and after SBRT | 1 July 2026 | |
NCT04092283 [76] | III | n = 660 | Adv | CRT + consolidation durvalumab +/− concurrent durvalumab | OS | IO given prior to, continued during, and after RT vs. after RT only | 31 October 2028 | |
PACIFIC-8 [77] | III | n = 860 | Adv | CRT + durvalumab +/− domvanalimab | PFS | IO given monthly for one year after CRT | 28 September 2029 | |
Adding RT to IO | Alliance A082002 [78,79] | II/III | n = 427 | Adv | IO (+/− CHT) +/− SBRT | PFS, OS | 3 fractions SBRT given every other day | 31 December 2027 |
NCT03867175 [80] | III | n = 112 | IV | Pembrolizumab +/− SBRT | PFS | 3–10 treatments of SBRT while undergoing 1 year of IO | 31 December 2027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, K.; Dickstein, D.R.; Runnels, J.; Lehrer, E.J.; Rosenzweig, K.; Hirsch, F.R.; Samstein, R.M. Radiotherapy and Immunotherapy in Lung Cancer. Biomedicines 2023, 11, 1642. https://doi.org/10.3390/biomedicines11061642
Hsieh K, Dickstein DR, Runnels J, Lehrer EJ, Rosenzweig K, Hirsch FR, Samstein RM. Radiotherapy and Immunotherapy in Lung Cancer. Biomedicines. 2023; 11(6):1642. https://doi.org/10.3390/biomedicines11061642
Chicago/Turabian StyleHsieh, Kristin, Daniel R. Dickstein, Juliana Runnels, Eric J. Lehrer, Kenneth Rosenzweig, Fred R. Hirsch, and Robert M. Samstein. 2023. "Radiotherapy and Immunotherapy in Lung Cancer" Biomedicines 11, no. 6: 1642. https://doi.org/10.3390/biomedicines11061642
APA StyleHsieh, K., Dickstein, D. R., Runnels, J., Lehrer, E. J., Rosenzweig, K., Hirsch, F. R., & Samstein, R. M. (2023). Radiotherapy and Immunotherapy in Lung Cancer. Biomedicines, 11(6), 1642. https://doi.org/10.3390/biomedicines11061642