Clinical Considerations for Patients Experiencing Acute Kidney Injury Following Percutaneous Nephrolithotomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. AKI Phenotypes and Study Outcomes
2.3. Statistical Analyses
3. Results
3.1. Clinical Characteristics of Patients
3.2. Postoperative AKI Outcomes and Analyses of PCNL Surgery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ad-Hoc Working Group of ERBP; Fliser, D.; Laville, M.; Covic, A.; Fouque, D.; Vanholder, R.; Juillard, L.; Van Biesen, W. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol. Dial. Transplant. 2012, 27, 4263–4272. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; James, M.T. Acute Kidney Injury. Ann. Intern. Med. 2017, 167, ITC66–ITC80, Erratum in Ann. Intern. Med. 2018, 168, 84. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98. [Google Scholar]
- Rahman, M.; Shad, F.; Smith, M.C. Acute kidney injury: A guide to diagnosis and management. Am. Fam. Physician 2012, 86, 631–639. [Google Scholar] [PubMed]
- Wang, H.E.; Muntner, P.; Chertow, G.M.; Warnock, D.G. Acute kidney injury and mortality in hospitalized patients. Am. J. Nephrol. 2012, 35, 349–355. [Google Scholar] [CrossRef]
- Case, J.; Khan, S.; Khalid, R.; Khan, A. Epidemiology of acute kidney injury in the intensive care unit. Crit. Care Res. Pract. 2013, 2013, 479730. [Google Scholar] [CrossRef]
- Wonnacott, A.; Meran, S.; Amphlett, B.; Talabani, B.; Phillips, A. Epidemiology and outcomes in community-acquired versus hospital-acquired AKI. Clin. J. Am. Soc. Nephrol. 2014, 9, 1007–1014. [Google Scholar] [CrossRef]
- Goren, O.; Matot, I. Perioperative acute kidney injury. Br. J. Anaesth. 2015, 115 (Suppl. S2), ii3–ii14. [Google Scholar] [CrossRef]
- Caddeo, G.; Williams, S.T.; McIntyre, C.W.; Selby, N.M. Acute kidney injury in urology patients: Incidence, causes and outcomes. Nephrourol. Mon. 2013, 5, 955–961. [Google Scholar] [CrossRef]
- Bansal, S.; Patel, R.N. Pathophysiology of Contrast-Induced Acute Kidney Injury. Interv. Cardiol. Clin. 2020, 9, 293–298. [Google Scholar] [CrossRef]
- Amin, A.P.; Salisbury, A.C.; McCullough, P.A.; Gosch, K.; Spertus, J.A.; Venkitachalam, L.; Stolker, J.M.; Parikh, C.R.; Masoudi, F.A.; Jones, P.G.; et al. Trends in the incidence of acute kidney injury in patients hospitalized with acute myocardial infarction. Arch. Intern. Med. 2012, 172, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.T.; Patel, U.D.; Chang, T.I.; Kennedy, K.F.; Masoudi, F.A.; Matheny, M.E.; Kosiborod, M.; Amin, A.P.; Messenger, J.C.; Rumsfeld, J.S.; et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the NCDR Cath-PCI registry. JACC Cardiovasc. Interv. 2014, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chandiramani, R.; Cao, D.; Nicolas, J.; Mehran, R. Contrast-induced acute kidney injury. Cardiovasc. Interv. Ther. 2020, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.; Singhania, G.; Bihorac, A. Acute Kidney Injury in the Surgical Patient. Crit. Care Clin. 2015, 31, 705–723. [Google Scholar] [CrossRef]
- Baird, D.; Rae, F.; Beecroft, C.; Gallagher, K.; Sim, S.; Vaessen, R.; Wright, E.; Bell, S. Introducing an AKI predictive tool for patients undergoing orthopaedic surgery. BMJ Open Qual. 2019, 8, e000306. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Dalela, D.; Tahbaz, R.; Langetepe, J.; Randazzo, M.; Dahlem, R.; Fisch, M.; Trinh, Q.-D.; Chun, F.K.-H. Novel biomarkers of acute kidney injury: Evaluation and evidence in urologic surgery. World J. Nephrol. 2015, 4, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lieske, J.C. Acute and chronic kidney injury in nephrolithiasis. Curr. Opin. Nephrol. Hypertens. 2014, 23, 385–390. [Google Scholar] [CrossRef]
- AHRQ. Clinical Classifications Software for Services and Procedures. Available online: https://hcup-us.ahrq.gov/db/vars/dxmccsn/nisnote.jsp (accessed on 1 March 2023).
- U.S. Department of Veterans Affairs VHA. National Drug File—Reference Terminology (NDF-RT™) Documentation. Available online: https://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT%20Documentation.pdf (accessed on 1 March 2023).
- United States Census Bureau. American FactFinder. 2010. Available online: http://www2.census.gov/ (accessed on 1 March 2023).
- DeNavas-Walt, C.; Proctor, B.D.; Smith, J.C. Income, Poverty, and Health Insurance Coverage in the United States; U.S. Government Printing Office: Washington, DC, USA, 2010.
- Pebesma, E.J.; Bivand, R.S. Classes and methods for spatial data in R. R News. 2005, 5, 9–13. [Google Scholar]
- Elixhauser, A.; Steiner, C.; Harris, D.R.; Coffey, R.M. Comorbidity Measures for Use with Administrative Data. Med. Care 1998, 36, 8–27. [Google Scholar] [CrossRef]
- Wald, R.; Waikar, S.S.; Liangos, O.; Pereira, B.J.; Chertow, G.M.; Jaber, B.L. Acute renal failure after endovascular vs. open repair of abdominal aortic aneurysm. J. Vasc. Surg. 2006, 43, 460–466, discussion 466. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2011, 2013, 1–150. [Google Scholar]
- Ozrazgat-Baslanti, T.M.A.; Islam, R.; Hashemighouchani, H.; Ruppert, M.; Madushani, R.; Segal, M.; Lipori, G.; Bihorac, A.; Hobson, C. Development and validation of computable phenotype to identify and characterize kidney health in adult hospitalized patients. arXiv 2019, arXiv:190303149. [Google Scholar]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Ozrazgat-Baslanti, T.; Loftus, T.J.; Ren, Y.; Adiyeke, E.; Miao, S.; Hashemighouchani, H.; Islam, R.; Mohandas, R.; Gopal, S.; Shenkman, E.A.; et al. Association of persistent acute kidney injury and renal recovery with mortality in hospitalised patients. BMJ Health Care Inform. 2021, 28, e100458. [Google Scholar] [CrossRef]
- Datta, S.; Loftus, T.J.; Ruppert, M.M.; Giordano, C.; Upchurch, G.R.; Rashidi, P.; Ozrazgat-Baslanti, T.; Bihorac, A. Added Value of Intraoperative Data for Predicting Postoperative Complications: The MySurgeryRisk PostOp Extension. J. Surg. Res. 2020, 254, 350–363. [Google Scholar] [CrossRef]
- Adhikari, L.; Ozrazgat-Baslanti, T.; Ruppert, M.; Madushani, R.W.M.A.; Paliwal, S.; Hashemighouchani, H.; Zheng, F.; Tao, M.; Lopes, J.; Li, X.; et al. Improved predictive models for acute kidney injury with IDEA: Intraoperative Data Embedded Analytics. PLoS ONE 2019, 14, e0214904. [Google Scholar] [CrossRef]
- Bihorac, A.; Ozrazgat-Baslanti, T.; Ebadi, A.; Motaei, A.; Madkour, M.; Pardalos, P.; Lipori, G.; Hogan, W.; Efron, P.; Moore, F.; et al. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann. Surg. 2018, 269, 652–662. [Google Scholar] [CrossRef]
- Pillai, S.; Kriplani, A.; Chawla, A.; Somani, B.; Pandey, A.; Prabhu, R.; Choudhury, A.; Pandit, S.; Taori, R.; Hegde, P. Acute Kidney Injury Post-Percutaneous Nephrolithotomy (PNL): Prospective Outcomes from a University Teaching Hospital. J. Clin. Med. 2021, 10, 1373. [Google Scholar] [CrossRef]
- Fulla, J.; Prasanchaimontri, P.; Wright, H.C.; Elia, M.; De, S.; Monga, M.; Calle, J. Acute kidney injury and percutaneous nephrolithotomy: Incidence and predictive factors. World J. Urol. 2022, 40, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Posada, D.; Tailly, T.; Alenezi, H.; Violette, P.; Nott, L.; Denstedt, J.D.; Razvi, H. Risk factors for postoperative complications of percutaneous nephrolithotomy at a tertiary referral center. J. Urol. 2015, 194, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Leng, J.; Shao, H.; Wang, W. Diabetes, a risk factor for both infectious and major complications after percutaneous nephrolithotomy. Int. J. Clin. Exp. Med. 2015, 8, 16620–16626. [Google Scholar] [PubMed]
- Zhou, X.; Sun, X.; Chen, X.; Gong, X.; Yang, Y.; Chen, C.; Yao, Q. Effect of Obesity on Outcomes of Percutaneous Nephrolithotomy in Renal Stone Management: A Systematic Review and Meta-Analysis. Urol. Int. 2017, 98, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.A.C.; Dutra, M.M.G.; Vicentini, F.C.; Szwarc, M.; Mota, P.K.V.; Eisner, B.H.; Murta, C.B.; Claro, J.F.D.A. Impact of Obesity on Outcomes of Supine Percutaneous Nephrolithotomy. J. Endourol. 2020, 34, 1219–1222. [Google Scholar] [CrossRef]
- Trudeau, V.; Karakiewicz, P.I.; Boehm, K.; Dell’Oglio, P.; Tian, Z.; Briganti, A.; Shariat, S.F.; Valiquette, L.; Bhojani, N. The Effect of Obesity on Perioperative Outcomes Following Percutaneous Nephrolithotomy. J. Endourol. 2016, 30, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.T.; Martínez, A.I.M.; Vicéns-Morton, A.; Reyes, H.V.; Feixas, S.C.; Novo, J.F.S.; Miranda, E.F. Obesity in percutaneous nephrolithotomy. Is body mass index really important? Urology 2014, 84, 538–543. [Google Scholar] [CrossRef]
- Cakmak, O.; Tarhan, H.; Cimen, S.; Ekin, R.G.; Akarken, I.; Öztekin, O.; Can, E.; Suelozgen, T.; Ilbey, Y.O. The effect of abdominal fat parameters on percutaneous nephrolithotomy success. Can. Urol. Assoc. J. 2016, 10, E99–E103. [Google Scholar] [CrossRef]
- Hosseini, S.R.; Fatahi, B.; Fakhr Yasseri, A.M. Comparison outcomes of percutaneous nephrolithotomy in prone and flank position in obese patients: A randomized clinical trial. Urologia 2022, 89, 580–584. [Google Scholar] [CrossRef]
- Kamphuis, G.M.; Baard, J.; Westendarp, M.; De La Rosette, J.J.M.C.H. Lessons learned from the CROES percutaneous nephrolithotomy global study. World J. Urol. 2015, 33, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Park, H.K.; Kwon, H.-J.; Lee, J.; Hwang, J.-H.; Kim, H.Y.; Kim, Y.-K. Risk factors for acute kidney injury after percutaneous nephrolithotomy: Implications of intraoperative hypotension. Medicine 2018, 97, e11580. [Google Scholar] [CrossRef] [PubMed]
- Kyriazis, I.; Panagopoulos, V.; Kallidonis, P.; Ozsoy, M.; Vasilas, M.; Liatsikos, E. Complications in percutaneous nephrolithotomy. World J. Urol. 2015, 33, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Kurzhagen, J.T.; Dellepiane, S.; Cantaluppi, V.; Rabb, H. AKI: An increasingly recognized risk factor for CKD development and progression. J. Nephrol. 2020, 33, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.S.; Trojan, L.; Rassweiler, J.J. Complications in Percutaneous Nephrolithotomy. Eur. Urol. 2007, 51, 899–906. [Google Scholar] [CrossRef]
- Bihorac, A.; Yavas, S.; Subbiah, S.; Hobson, C.E.; Schold, J.D.; Gabrielli, A.; Layon, A.J.; Segal, M.S. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann. Surg. 2009, 249, 851–858. [Google Scholar] [CrossRef]
AKI | Rapidly Reversed AKI | P-AKI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Features | Cohort | No AKI | AKI | Stage 1 | Stage 2+ | Rapid Reversed AKI | Mild Rapid Reversed | Severe Rapid Reversed | P-AKI | Mild P-AKI | Severe P-AKI |
Number of patients | 326 | 254 | 93 | 79 | 18 | 71 | 66 | 5 | 27 | 15 | 13 |
Number of encounters | 417 | 313 | 104 | 85 | 19 | 75 | 70 | 5 | 29 | 15 | 14 |
Age, mean (SD) | 54 (15) | 53 (15) | 58 (16) a | 58 (17) b | 55 (14) | 59 (16) c | 58 (16) d | 64 (7) | 54 (16) | 57 (17) | 51 (15) |
Female, n (%) | 204 (49) | 153 (49) | 51 (49) | 45 (53) | 6 (32) | 36 (48) | 35 (50) | 1 (20) | 15 (52) | 10 (67) | 5 (36) |
BMI, median (IQR) | 29 (25, 34) | 29 (25, 33) | 29 (24, 35) | 29 (24, 35) | 29 (25, 40) | 28 (24, 34) | 28 (24, 34) | 28 (28, 29) | 33 (27, 40) | 33 (27, 39) | 31 (25, 41) |
Ethnicity, n (%) | |||||||||||
Hispanic | 25 (6) | 19 (6) | 6 (6) | 5 (6) | 1 (5) | 5 (7) | 5 (7) | 0 (0) | 1 (3) | 0 (0) | 1 (7) |
Non-Hispanic | 392 (94) | 294 (94) | 98 (94) | 80 (94) | 18 (95) | 70 (93) | 65 (93) | 5 (100) | 28 (97) | 15 (100) | 13 (93) |
Marital Status, n (%) | |||||||||||
Married | 202 (48) | 152 (49) | 50 (48) | 40 (47) | 10 (53) | 39 (52) | 35 (50) | 4 (80) | 11 (38) | 5 (33) | 6 (43) |
Single | 159 (38) | 122 (39) | 37 (36) | 29 (34) | 8 (42) | 22 (29) | 21 (30) | 1 (20) | 15 (52) | 8 (53) | 7 (50) |
Divorced | 51 (12) | 34 (11) | 17 (16) | 16 (19) | 1 (5) | 14 (19) | 14 (20) | 0 (0) | 3 (10) | 2 (13) | 1 (7) |
Missing | 5 (1) | 5 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Insurance, n (%) | |||||||||||
Medicare | 169 (41) | 109 (35) | 60 (58) a | 49 (58) b | 11 (58) | 44 (59) c | 42 (60) d | 2 (40) | 16 (55) | 7 (47) | 9 (64) |
Private | 147 (35) | 121 (39) | 26 (25) a | 19 (22) b | 7 (37) | 19 (25) | 16 (23) | 3 (60) | 7 (24) | 3 (20) | 4 (29) |
Medicaid | 65 (16) | 53 (17) | 12 (12) | 12 (14) | 0 (0) | 9 (12) | 9 (13) | 0 (0) | 3 (10) | 3 (20) | 0 (0) |
Uninsured | 36 (9) | 30 (10) | 6 (6) | 5 (6) | 1 (5) | 3 (4) | 3 (4) | 0 (0) | 3 (10) | 2 (13) | 1 (7) |
Race, n (%) | |||||||||||
African American | 40 (10) | 26 (8) | 14 (13) | 12 (14) | 2 (11) | 10 (13) | 9 (13) | 1 (20) | 4 (14) | 3 (20) | 1 (7) |
Other | 63 (15) | 53 (17) | 10 (10) | 8 (9) | 2 (11) | 8 (11) | 7 (10) | 1 (20) | 2 (7) | 1 (7) | 1 (7) |
White | 314 (75) | 234 (75) | 80 (77) | 65 (76) | 15 (79) | 57 (76) | 54 (77) | 3 (60) | 23 (79) | 11 (73) | 12 (86) |
Worst AKI, n (%) | |||||||||||
No AKI | 313 (75) | 313 (100) | 0 (0) | - | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Stage 1 | 85 (20) | 0 (0) | 85 (82) | - | - | 70 (93) | 70 (100) | 0 (0) | 15 (52) | 15 (100) | 0 (0) |
Stage 2 | 14 (3) | 0 (0) | 14 (13) | - | - | 5 (7) | 0 (0) | 5 (100) | 9 (31) | 0 (0) | 9 (64) |
Stage 3 | 5 (1) | 0 (0) | 5 (5) | - | - | 0 (0) | 0 (0) | 0 (0) | 5 (17) | 0 (0) | 5 (36) |
Stage 3 + RRT | 0 (0) | 0 (0) | 0 (0) | - | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
CPT Code | |||||||||||
50080, n (%) | 33 (8) | 23 (7) | 10 (10) | 8 (9) | 2 (11) | 9 (12) | 8 (11) | 1 (20) | 1 (3) | 0 (0) | 1 (7) |
50081, n (%) | 384 (92) | 290 (93) | 94 (90) | 77 (91) | 17 (89) | 66 (88) | 62 (89) | 4 (80) | 28 (97) | 15 (100) | 13 (93) |
AKI | Rapidly Reversed AKI | P-AKI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No AKI | AKI | Stage 1 | Stage 2+ | Rapid Reversed AKI | Mild Rapid Reversed | Severe Rapid Reversed | P-AKI | Mild P-AKI | Severe P-AKI | |
Cardiovascular complications, n (%) | 7 (2) | 14 (13) a | 6 (7) b | 8 (42) c | 7 (9) d | 6 (9) | 1 (20) | 7 (24) g | 0 (0) | 7 (50) i |
Prolonged ICU stay, n (%) | 8 (3) | 15 (14) a | 8 (9) b | 7 (37) c | 8 (11) d | 7 (10) | 1 (20) | 7 (24) g | 1 (7) | 6 (43) i |
Neurologic complications include delirium, n (%) | 13 (4) | 15 (14) a | 14 (16) b | 1 (5) | 12 (16) d | 12 (17) | 0 (0) | 3 (10) | 2 (13) | 1 (7) |
Wound complications, n (%) | 17 (5) | 15 (14) a | 10 (12) | 5 (26) c | 10 (13) | 8 (11) | 2 (40) | 5 (17) | 2 (13) | 3 (21) |
Sepsis, n (%) | 12 (4) | 21 (20) a | 15 (18) b | 6 (32) c | 14 (19) d | 13 (19) e | 1 (20) | 7 (24) | 2 (13) | 5 (36) i |
Venous thromboembolus, n (%) | 4 (1) | 1 (1) | 1 (1) | 0 (0) | 1 (1) | 1 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Prolonged mechanical ventilation, n (%) | 0 (0) | 1 (1) | 0 (0) | 1 (5) | 0 (0) | 0 (0) | 0 (0) | 1 (3) | 0 (0) | 1 (7) |
Days from surgery to discharge, median (IQR) | 2.10 (1.72, 3.75) | 4.91 (2.25, 9.39) a | 4.02 (2.21, 8.09) b | 9.97 (4.75, 17.80) c | 3.96 (1.95, 8.07) d | 3.96 (1.99, 8.08) e | 5.26 (1.05, 6.91) | 7.17 (4.05, 11.95) | 5.17 (3.99, 8.19) h | 11.89 (6.52, 20.73) i |
Hospital length of stay, days, median (IQR) | 2.98 (2.07, 4.35) | 5.82 (3.31, 12.22) a | 5.18 (3.30, 10.18) b | 12.27 (4.98, 23.30) c | 5.13 (2.33, 10.1) d | 5.10 (2.42, 10.19) e | 5.46 (1.25, 7.14) | 9.79 (4.81,18.12) g | 7.38 (4.59, 9.98) h | 14.63 (7.84, 26.51) i |
ICU admission after surgery, n (%) | 20 (6) | 22 (21) a | 15 (18) b | 7 (37) | 14 (19) d | 13 (19) e | 1 (20) | 8 (28) g | 2 (13) | 6 (43) i |
Days in ICU from surgery to discharge, median (IQR) | 1.31 (0.89, 2.38) | 3.26 (1.84, 5.98) | 2.01 (1.63, 4.32) b | 7.49 (4.87, 8.51) c | 2.46 (1.71, 4.99) | 2.01 (1.67, 2.99) | 7.95 (7.95, 7.95) | 5.89 (3.64, 7.89) | 3.46 (2.33, 4.58) | 6.78 (4.28, 8.68) i |
ICU admission during hospitalization, n (%) | 23 (7) | 24 (23) a | 16 (19) b | 8 (42) | 14 (19) d | 13 (19) | 1 (20) | 10 (34) f | 3 (20) | 7 (50) i |
ICU length of stay, median (IQR) | 1.79 (0.98, 2.62) | 3.26 (1.79, 6.16) | 1.94 (1.58, 3.66) b | 7.72 (3.89, 11.22) c | 2.46 (1.71, 4.99) | 2.01 (1.67, 2.99) | 7.95 (7.95, 7.95) | 4.84 (3.56, 9.85) | 1.53 (1.36, 3.62) | 7.49 (3.82, 11.80) i |
Hospital mortality, n (%) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
6-month mortality, n (%) | 0 (0) | 2 (2) | 0 (0) | 2 (11) c | 0 (0) | 0 (0) | 1 (20) | 0 (0) | 0 (0) | 1 (7) |
12-month mortality, n (%) | 2 (1) | 3 (3) | 1 (1) | 2 (11) c | 1 (1) | 1 (1) | 1 (20) | 1 (3) | 0 (0) | 1 (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, D.A.; Adiyeke, E.; Ozrazgat-Baslanti, T.; Rabley, A.K.; Bozorgmehri, S.; Bihorac, A.; Bird, V.G. Clinical Considerations for Patients Experiencing Acute Kidney Injury Following Percutaneous Nephrolithotomy. Biomedicines 2023, 11, 1712. https://doi.org/10.3390/biomedicines11061712
Reich DA, Adiyeke E, Ozrazgat-Baslanti T, Rabley AK, Bozorgmehri S, Bihorac A, Bird VG. Clinical Considerations for Patients Experiencing Acute Kidney Injury Following Percutaneous Nephrolithotomy. Biomedicines. 2023; 11(6):1712. https://doi.org/10.3390/biomedicines11061712
Chicago/Turabian StyleReich, Daniel A., Esra Adiyeke, Tezcan Ozrazgat-Baslanti, Andrew K. Rabley, Shahab Bozorgmehri, Azra Bihorac, and Vincent G. Bird. 2023. "Clinical Considerations for Patients Experiencing Acute Kidney Injury Following Percutaneous Nephrolithotomy" Biomedicines 11, no. 6: 1712. https://doi.org/10.3390/biomedicines11061712
APA StyleReich, D. A., Adiyeke, E., Ozrazgat-Baslanti, T., Rabley, A. K., Bozorgmehri, S., Bihorac, A., & Bird, V. G. (2023). Clinical Considerations for Patients Experiencing Acute Kidney Injury Following Percutaneous Nephrolithotomy. Biomedicines, 11(6), 1712. https://doi.org/10.3390/biomedicines11061712