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Abstract: A brain tumor refers to an abnormal growth of cells in the brain that can be either benign
or malignant. Oncologists typically use various methods such as blood or visual tests to detect brain
tumors, but these approaches can be time-consuming, require additional human effort, and may not
be effective in detecting small tumors. This work proposes an effective approach to brain tumor
detection that combines segmentation and feature fusion. Segmentation is performed using the
mayfly optimization algorithm with multilevel Kapur’s threshold technique to locate brain tumors
in MRI scans. Key features are achieved from tumors employing Histogram of Oriented Gradients
(HOG) and ResNet-V2, and a bidirectional long short-term memory (BiLSTM) network is used to
classify tumors into three categories: pituitary, glioma, and meningioma. The suggested methodology
is trained and tested on two datasets, Figshare and Harvard, achieving high accuracy, precision, recall,
F1 score, and area under the curve (AUC). The results of a comparative analysis with existing DL and
ML methods demonstrate that the proposed approach offers superior outcomes. This approach has
the potential to improve brain tumor detection, particularly for small tumors, but further validation
and testing are needed before clinical use.

Keywords: machine learning; deep learning; detection; classification; multiscale features; features fusion

1. Introduction

A brain tumor is an abnormal growth of cells in the brain, which can be either ma-
lignant or benign [1]. As the brain is a vital organ responsible for cognitive function, the
presence of tumors can have life-threatening consequences. Brain tumors account for
85–90% of all central nervous system tumors, according to a report [2]. Radiologists use
imaging techniques such as CT scans and MRI to locate cancer in the brain, with MRI
providing higher-resolution imaging than CT scans. However, manually analyzing the
images and grading tumors can be time-consuming, requires specialized expertise, and
may still result in imprecise diagnoses and high costs [3]. These challenges arise from the
asymmetrical shapes of tumors and the difficulty of distinguishing between different types
of tumors that may look similar. Consequently, there is growing interest in developing
computerized systems for recognizing brain tumors to improve diagnosis and treatment
outcomes [4].

A computerized system utilizing traditional machine learning techniques has been
created by researchers. The system involves a variety of processes, including preprocessing,
feature extraction, dimensionality reduction, and categorization [5–7]. Feature extraction
is the most important step in this process as it is necessary to automate brain tumor
detection. However, the efficacy of this technique heavily relies on the type and nature of the
features used, and traditional methods may not be able to identify small tumors in unseen
samples or may work slowly when processing large amounts of brain MRIs. K-nearest
neighbors (KNN), support vector machines (SVM), decision trees, and segmentation-based

Biomedicines 2023, 11, 1715. https://doi.org/10.3390/biomedicines11061715 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11061715
https://doi.org/10.3390/biomedicines11061715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-1983-8201
https://orcid.org/0000-0001-6722-8366
https://orcid.org/0000-0002-4748-2882
https://doi.org/10.3390/biomedicines11061715
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11061715?type=check_update&version=1


Biomedicines 2023, 11, 1715 2 of 15

methods are some of the ML-based approaches used to address this problem. In the
segmentation-based approach, algorithms are used to segment the tumor as a region of
interest (ROI), followed by feature extraction from the ROI. This approach involves several
steps, including preprocessing, finding a region of interest, feature extraction, training,
and finally classification. However, due to the complex structure of the brain, the current
techniques lack accuracy. Therefore, it is vital to develop an efficient and precise model for
the timely detection of brain tumors with minimal human intervention [8].

Various popular deep learning models have been developed, including GoogleNet,
InceptionNet, ResNet, VGGNet, DenseNet, and AlexNet. However, basic classification
techniques used for detecting brain tumors only indicate the presence of a tumor and do not
provide information about its location, leading to a high rate of false positives. Researchers
have used different object detection methods for brain tumor identification to overcome
this limitation. One study [9] utilized the deep learning-based CenterNet to localize
brain tumors, using ResNet34 having an attention module as a base network. However,
most object detection-based techniques for brain tumor identification require widespread
hyperparameters and entail high computational costs. To address these challenges, this
study proposes a new approach for early brain tumor recognition. In the first phase, the
tumor is located using segmentation. In the second phase, ResNet-v2 and Histogram of
Oriented Gradients (HoG), and a DNN are used to extract features from the segmented
image. In the end, the features are combined, and a BiLSTM is trained for three classes
including glioma, pituitary, and meningioma. The suggested model accurately identifies
tumor locations and enhances the detection accuracy by employing essential features
extracted from the segmented area.

The aim of this study is to create a strong framework utilizing MFO and Kapur’s
thresholding-based segmentation, along with feature fusion, for the purpose of identifying
and categorizing brain tumors using various MRI images. Additionally, the goal is to
propose an efficient system that can accurately detect and locate tumors in MRI scans that
have not been seen before. The study also aims to develop a technique that can identify
small tumors in MRI scans for better early detection. The proposed system was extensively
tested and the results show that it performs significantly well in terms of accuracy and
robustness for early recognition and categorization of brain tumors. The remaining sections
of the study are dedicated to discussing existing methods in Section 2, demonstrating the
proposed technique in Section 3, evaluating the experiment in Section 4, and concluding
the study in Section 5.

2. Related Work

Several researchers have explored machine learning and deep learning-based methods
for medical diagnosis, as mentioned in references [10,11]. Some of these approaches utilize
segmentation techniques, such as ensemble deep networks, which require training from
the initial stage. To address this issue, some researchers have introduced a drop-out layer
during the testing phase to recognize uncertainties in lesion identification [12]. Additionally,
in reference [13], a CNN-based approach was proposed, and data augmentation was
performed to improve the classification accuracy. The study used three datasets and
achieved an accuracy of 98.43%. DL-based methods are increasingly essential in several
image-processing applications, including medical diagnosis [14]. In another study [15],
data augmentation was performed using patch rotation and extraction techniques on
3064 images, and CapsuleNet was utilized for recognizing and categorizing brain cancer into
three classes. In reference [16], VGG16 and AlexNet were utilized to attain features from brain
scans, and a feature fusion method was employed for binary classification. Finally, an SVM
was used to categorize the images, achieving an accuracy of up to 96%. In reference [17], an
encoder-based technique was used for categorization, with an accuracy of 98.5%.

Reference [18] used ResNet50 with additional layers for binary categorization of brain
tumor images and attained an accuracy upto 97%. In reference [19], the BrainMRNet model
was proposed, consisting of attention layers, residual stages, and hyper-column technique,
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achieving an accuracy of 96.05%. Reference [20] utilized transfer learning-based CNN
and a multiple logistic regression method outperforming the existing techniques on three
benchmarks. Sachdeva et al. [21] proposed a brain tumor detection method using SVM and
artificial neural networks, combined with a genetic algorithm, achieving an accuracy of
91% and 94.9%, respectively. Tahir et al. [22] explored different approaches to increasing
classification accuracy by employing edge detection, noise removal techniques, and contrast
improvements achieving an accuracy of 86%.

In recent studies, different techniques have been suggested for brain tumor detection.
Sarah et al. [23] utilized Harris Hawks optimized neural networks and varied types of
layers for modifying the architecture. They preprocessed the images for noise removal and
candidate region recognition to identify tumor regions. The proposed method achieved
98% accuracy using the Kaggle dataset. Aruna et al. [24] developed an approach using
pretrained CNNs such as InceptionV3, ResNet50, and VGG19. They concatenated deep
features extracted through CNNs using a two-stage strategy and reduced dimensions
further using PCA for categorization. The results showed improved classification accuracy,
but their approach increased computational complexity. In another study, Bakary et al. [25]
employed the transfer learning concept to develop an automatic brain tumor classification
technique using MR images of the brain. They used the AlexNet model for feature extraction
and binary classification, achieving an overall accuracy of 99.62%. However, they did not
classify the images into specific types of tumors.

The study by Sarmad et al. [26] proposes an automated system for brain tumor
detection that employs several steps to achieve a high accuracy in classifying different
types of brain tumors. The first phase involves using linear contrast stretching to identify
edges in the sample. In the second phase, a DNN with 17 layers is designed for segmenting
the tumor. This step aims to accurately identify the location and boundaries of the tumor
within the brain image. In the third step, a modified version of the MobileNetV2 architecture
is utilized for extracting features. Transfer learning is used to train the network, which involves
adapting the pretrained model’s parameters to the specific task of brain tumor detection. Then,
an entropy-based controlled mechanism is utilized with multiclass support vector machines
(M-SVM) for feature selection. This step aims to identify the most relevant features for tumor
classification. Finally, M-SVM is utilized for brain tumor categorization, which involves
identifying glioma, meningioma, and pituitary images. The proposed system achieves a high
accuracy of 97.47% and 98.92% for meningioma and pituitary images, respectively.

While several methods have been developed for brain tumor detection, early detection
remains a significant challenge. Early detection is critical for effective treatment and
improved patient outcomes. A detail of the existing model is shown in Table 1.

Table 1. Details of some existing methods.

Sr. No. Ref. Type Dataset Issues Advantages Algorithm Features Performance

1 [12] Segmentation BraTs2021
High computational

complexity is
required.

Better results of
segmentation

CNN-
Transformer CNN 93.50% Dice

score

2 [26] segmentation
Figshare

and
BRATS

Extra computational
means are required.

Computationally
efficient. M-SVM MobileNetV2 Accuracy:

98.92%

3 [23] Classification Kaggle Minimum optimized
feature selection.

Locates the
tumor accurately. CNN CNN Accuracy:

98%

4 [24] Classification 3 bench-
marks

High computational
resources used.

Significant
generalization.

Ensemble
method

Xception, VGG19,
EfficientNet,

ResNet-50, and
Inception-V3

Accuracy:
98.96%

5 [27]
Segmentation

and
classification

TCIA
Additional

computational
resources

Identifies tumor
locations

accurately.

Hybrid
approach

Hand-crafted +
CNN

Accuracy:
98.89%
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3. Methodology

In this section, we introduce the working principals of the proposed model. The
proposed system is a three-stage model as shown in Figure 1. The images of the brain are
in grayscale; therefore, a preprocessing phase has been skipped. First, segmentation is
employed using the mayfly optimization with a multilevel threshold approach. Second,
the features are extracted from segmented tumors. Third, the brain samples are classified
from the proposed multilayer perceptron (MLP).
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Figure 1. The flow diagram for the proposed model.

3.1. MFO with Multi-Level Thresholding

MFO is one of the population-based methods developed in 2020 [28]. The concepts
of MFO consist of the following functions; (1) initialization of equal number of male and
female agents, (2) allowing the male mayfly to recognize the finest position as loc for the
chosen task, (3) allowing the female mayfly to find and be merged with male mayfly located
at loc, (4) offspring generation, and (5) termination of search and displaying the final output.

We employed a multilevel thresholding approach with MFO technique. Kapur
et al. [29] proposed a threshold-based approach to compute the optimal thresholds for
segmentation. The computation depends upon the distribution of probability and entropy
of the image histogram. The approach determines the optimal threshold to maximize the
entropy. For the bilevel threshold computation, an objective function can be attained as
presented in Equation (1).

FUNkap(t) = k1 + k2, (1)

Here, k1 and k2 are computed as below:

k1 = ∑t
s=1

ps
ω0

ln(
ps
ω0

) (2)

k2 = ∑L
s=t+1

ps
ω1

ln(
ps
ω1

) (3)

Here, ps refers to the distribution of probability (DP) of the intensity level of grayscale; ω0
and ω1 presents the DP for the class labels k1 and k2 as described in Equations (2) and (3). This
entropy-based approach is flexible enough for multilevel thresholding. Thus, it is necessary
to split the images into n class labels using n − 1 threshold numbers. The objective value
can be changes as shown in Equation (4).

FUNkap(T) = ∑n
s=1 ks, (4)

Here, T = [t1, t2, t(n − 1)] presents a vector consisting of several threshold numbers.
The entropies are described separately with the respective threshold t value; therefore,
Equation (5) has been modified for n entropy.

kc
n = ∑L

i=tn+1

pi
ωn−1

ln (
pi

ωn−1
) (5)

where, ( ω0, ω1, . . . ., ωn−1) presents the probability occurrence for the n classes, and for the
optimal threshold numbers, the MFO approach is utilized. The MFO technique is projected
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similarly to mating method and flighting feature of the mayflies [28]. The mayflies in
swarms are recognized as female and male individuals. The male mayfly performs more
robustly consequently improving the optimization process. The MFO approach modifies
the position depending upon the location loci(t) and velocity velocityi(t) at current round:

loci(time + 1) = loci(time) + velocityi(time + 1), (6)

All female and male mayflies modify the location employing Equation (6) with respect
to time. However, they utilize unique velocity modifying features.

Mating

The above half female and male mayflies pass through mating and generate children.
The offspring are generated from the parents as denoted in mathematical form below:

o f f spr1 = P×Male + (1− P)× Female (7)

o f f spr2 = P× Female + (1− P)×Male (8)

Here, P refers the random numbers for Gauss distribution. Some segmented images
are shown in Figure 2.
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3.2. Features Extraction (FE)

The proposed approach involves utilizing two algorithms, ResNet-V2 and Histogram
of Orientation Gradients (HOG), for feature extraction from brain images. ResNet-V2 is a
deep neural network architecture that has been shown to be effective in image classification
tasks, while HOG is a popular algorithm used for feature extraction in computer vision.
After extracting features from the images, a classifier is trained using a Bi-directional Long
Short-Term Memory (BiLSTM) network. BiLSTM is a form of recurrent neural network that
can acquire lasting dependencies in sequential data. In this case, it is utilized to classify
brain images into non-tumorous and tumorous classes based on the features extracted by
ResNet-V2 and HOG. The use of deep learning techniques such as ResNet-V2 and BiLSTM
has shown promising results in the field of medical image analysis, including brain tumor
detection. The combination of different feature extraction algorithms can also improve the
accurateness of classification, as different processes may capture different aspects of the
image information.

3.2.1. Histogram of Oriented Gradients (HOG)

This step involves extracting low-level features from tumor utilizing a Histogram of
Oriented Gradients (HOG) algorithm. HOG is a popular feature extraction algorithm used
in computer vision that captures the local gradient statistics of an image. In this approach,
the segmented images are provided to a feature extractor block consisting of HOG and
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ResNet-V2, which is a deep neural network architecture. The HOG algorithm is utilized
to extract a total of 1236 low-level features from the segmented images, using 9 bins to
capture the gradient orientations. To improve the results, the intensity of the images can be
improved by normalizing the images, although this is considered more valuable when the
size of image is large.

To find the features, the images are first resized to compatible blocks of size 6 × 6
or smaller, and a stride of 4 is used for each 2 × 2-sized block. The HOG algorithm then
computes the gradient magnitude and direction for each pixel in the image, with the
direction ranging from 0–180 degrees. Pixels with similar orientations are grouped into
the same bin, and the magnitude of the gradient for each pixel is computed using the
mathematical equations. The magnitude m for the gradient of pixel (i,j) and the direction is
attained as presented in below equations.

m(i, j) = 2
√

i2x + j2y, (9)

ϑ =
iy

ix
(10)

where, ix, iy refers to the gradients in the directions of x and y. The ϑ exhibits the angle
from 0 to 180.

3.2.2. ResNet-V2

He et al. [30] proposed ResNet and the block of residual, comprising two conv. layers
and a connection for shortcut without any parameter that conveys the output of current
block to the next block. The modification gave better performance than existing unmodified
model in ILSVRC-2012 competition employing a 152 layered network and it was concluded
that increasing the depth of the network results in improved classification accuracy. After
the ResNet-V1, the authors improved the residual block so that ResLU function is not
required in the shortcut connection, consequently increasing the detection accuracy. The
main change in version 2 was implication of a stack as 1 × 1 batch normalization, 3 × 3
ReLU, and 1 × 1 2D convolutional layers. The architectures of ResNet-V1 and ResNet-V2
are shown in Figure 3.
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3.3. Fusion Process

Feature fusion has been widely applied in various machine learning applications,
including medical imaging [8]. It offers a dynamic approach to combining multiple feature
maps, maximizing their integration. The model used for false positive detection relies on
entropy. After obtaining the features, they are merged to form a single vector. Three vectors
were computed as shown below:

fRes 1×m = {ResV21×1, ResV21×2, ResV21×3, . . . . . . . . . , ResV21×n}, (11)

fHoG 1×D = {HoG1×1, HoG1×2, HoG1×3, . . . . . . ., HoG1×n}, (12)

The fusion of features was utilized as presented below:

Fusion(Featvector)1×P = ∑2
i=1{ f ResV11×m , f HOG1×D

}
, (13)

Here, {ResV11×1, ResV11×2, ResV11×3, . . . . . . . . . , ResV11×n} presents the feature vec-
tors by ResNetV2, and {HoG1×1, HoG1×2, HoG1×3, . . . . . . ., HoG1×n} presents the feature
vectors by HOG. In this context, the feature vector f has undergone fusion. Then, an entropy
value is calculated for the chosen features based on the specified value below.

Lhe = −Nheb∑n
i=1 p( fi), (14)

Fsel = Lhe(max( fi, 1126)) (15)

The probability of the features is denoted by p and their entropy is presented by Lhe.
The merged features are ultimately fed into the classifier to distinguish the samples with
tumors.

3.4. Classification

At this stage, we present our classification model that was trained using the merged
features to obtain optimal performance for detecting brain tumors. We utilized support
vector machines (SVM), decision tree (DT), and our novel Bidirectional Long Short Term
Memory (BiLSTM) to categorize the three categories of brain tumors. BiLSTM networks
have been shown to provide better predictions than traditional LSTM networks, as they
work in both forward and backward phases during training. The input features and weights
are passed through multiple layers to generate the output, which is then used to compute
the error. The parameters are adjusted during the backpropagation (BP) step to minimize
the estimation errors. Furthermore, Bi-LSTM layers perform sequential function on input
features. We set the hyperparameters as: ADAM optimizer, learning rate as 0.001, and
a batch size 32. Our proposed network achieved the best detection results, followed by
SVM, while the minimum detection accuracy was obtained using DT. The layers’ details
are presented in Table 2.

Table 2. Layer information of the Bi-LSTM.

Type Output Shape Number of Parameters

Feature input - 0
LSTM-1 (Forward pass) 100, 500 161,700

LSTM-2 (Backward pass) 100, 500 161,700
Max pooling layer 500 0

FC + ReLU 50 20,070
Dropout 50 0

FC (Sigmoid) 3 -



Biomedicines 2023, 11, 1715 8 of 15

4. Experimental Evaluation

Here, we explain the methods utilized for the performance assessment of the proposed
method such as implementation details, protocols for training and testing, and several
experiments.

4.1. Implementation Details

We utilized the several experiments employing a system integrated with a Graphical
Processing Unit (GPU) card, i.e., NVIDIA (GE-FORCE GTX) integrated with 4 GB memory.
The details of the environment are reported in Table 3.

Table 3. Experimental environment details for the proposed model.

Hardware Conditions

RAM 16 GB
Graphical Processing Unit NVIDIA GEFORCE GTX × 4

Central Processing Unit Intel Core i5
GPU Memory 4 GB

4.2. Dataset

The proposed system underwent training and evaluation utilizing two distinct datasets:
the Figshare dataset and Harvard medical images [31]. The Figshare dataset encompasses
T1-weighted contrast-enhanced MRI images sourced from 233 individuals, yielding a total
of 3064 brain images. This dataset consists of three categories of brain tumors, namely
pituitary (930), glioma (1426), and meningioma (708), all of which were obtained from
Nanfang hospital in China. The samples in this dataset measure 512 × 512 in size. On the
other hand, the Harvard medical dataset was composed of ten tumors, as diagnosed by
various experts. The brain MRIs in the Harvard dataset were captured in the axial plane,
T2-weighted, and measured 256 × 256 pixels. We assessed the efficacy of our proposed
detector using both datasets, but we only utilized the Figshare dataset for training purposes.
Some sample images are depicted in Figure 4.
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4.3. Metrics

The metrics used to evaluate the proposed model’s performance include precision,
accuracy, recall, and F1 score. Below is the mathematical expression for these metrics.

Precision =
TP

TP + FP
, (16)

The model’s accuracy is indicated by the correctly classified samples as per the pro-
posed model, and this can be represented by Equation (17).

Accuracy =
TP + TN

TP + TN + FP + FN
, (17)

The recall metric represents the proportion of diseased samples correctly identified by
the proposed model, even if they were classified as noncancerous. The equations for recall
and F1 score are presented below.

Recall =
TP

TP + FN
, (18)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

, (19)

The area under the curve (Auc) was found as below:

Auc =
∫ j

i
f (x)dx, (20)

4.4. Localization Results

The evaluation of our suggested segmentation method in this study is based on four
parameters: DOI, TC, area, and number of pixels, which are expressed mathematically as
follows:

DOI = ω/1 + ω

2
, (21)

TC = ∑m
x=1 ∑n

y=1

(
I′ ∩ I

)
/∑m

x=1 ∑n
y=1

(
I′ ∪ I

) (22)

area = ∑m
i=1 ∑n

j=1 I(i, j), (23)

The TC quantity ranges from 0 to 1, and we evaluated segmentation methods using
80 images from each dataset and compared the findings by computing metrics from their
corresponding ground truth images. The Harvard dataset’s ground truth images were
assessed by a radiologist expert. Results for 12 images from the Harvard dataset are
presented in Table 4, and those from the Figshare dataset are shown in Table 5. Table 6
presents a comparison of TC and DOI with other approaches over the Harvard dataset.

4.5. Classification Results

This experiment demonstrates the classification performance by our proposed ap-
proach on the Figshare and Harvard datasets. We used 500 images belonging to each class
of the Figshare dataset for training our classifier, and 300 images from the same dataset
for testing. Specifically, we tested 100 images for each of the three classes and achieved
significant classification results as presented in Table 7. In addition, we trained three
classifiers—decision tree (DT), SVM, and BiLSTM—and found that the BiLSTM network
performed the best with an accuracy of 99.3%, a recall of 99.1%, precision of 98.3%, an F1
score of 99.1%, and an AUC of 0.989. For AUC computation, we considered the binary
classes as pituitary vs all, glioma vs all, and meningioma vs all. Finally, we computed the
average of all AUCs to determine the performance of each algorithm.
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Table 4. The results on Harvard dataset of segmentation.

Image TC (%) DOI (%) Pixels Area (nm2)

Image 1 90 96 3244 7.1 × 1011

Image 2 92 97 2234 8.2 × 1012

Image 3 92 97 2321 8.3 × 1011

Image 4 96 98 3243 6.2 × 1014

Image 5 93 97 3421 6.3 × 1011

Image 6 90 94 2933 5.6 × 1013

Image 7 91 95 3284 7.2 × 1012

Image 8 97 99 4122 5.1 × 1010

Image 9 96 98 2847 3.5 × 1012

Image 10 98 98 4354 8.6 × 1010

Image 11 91 97 5121 7.0 × 1012

Image 12 98 99 2038 4.4 × 1013

Table 5. The results on Figshare dataset of segmentation.

Image TC (%) DOI (%) Pixels Area (nm2)

Image 1 91 93 2215 6.1 × 1013

Image 2 92 96 2225 5.1 × 1012

Image 3 93 96 3235 7.4 × 1014

Image 4 99 98 3357 5.4 × 1013

Image 5 93 97 3452 6.1 × 1014

Image 6 91 95 5312 6.8 × 1013

Image 7 92 95 4463 7.3 × 1013

Image 8 98 97 4471 6.1 × 1014

Image 9 99 99 3386 6.8 × 1012

Image 10 98 98 3496 6.8 × 1013

Image 11 0.99 98 2323 6.3 × 1014

Image 12 0.99 91 4344 7.3 × 1013

Table 6. The evaluation of results with Vishnuvarthanan et al. [32] using Harvard dataset.

Technique TC (%) DOI (%)

Graph Cut 27 43
SOM 23 37

SOM-FKM 31 47
FKM 22 36

Kernel 22 36
Our approach 99 97

Table 7. The classification results on Figshare dataset.

Algorithm Accuracy (%) Recall (%) Precision (%) AUC F1 Score (%)

DT 97.3 96.8 97.2 0.900 97.2
SVM 98.3 98.1 98.9 0.912 98.5

BiLSTM 99.3 99.1 98.3 0.989 99.1

The highest classification results were obtained using SVM (98.3% accuracy) and then
DT (97.3% accuracy) after implementing the BiLSTM. For the second trial, the Harvard
dataset was utilized, consisting of 100 images from each of the three classes: pituitary,
glioma, and meningioma. Our suggested BiLSTM achieved the best results, with 99.1%
accuracy, 98.1% recall, 98.2% precision, 98.3% F1 score, and 0.974 AUC. After implementing
our proposed classifier, the considerable classification results were achieved using DT, with
an accuracy of 99.0%. The SVM classifier resulted in a minimum accuracy of 98.1% during
cross-validation, as shown in Table 8.
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Table 8. The classification results on Harvard dataset.

Algorithm Accuracy (%) Recall (%) Precision (%) AUC F1 Score (%)

DT 99.0 98.2 98.9 0.921 98.0
SVM 98.1 97.4 97.9 0.901 97.2

BiLSTM 99.1 98.1 98.2 0.974 98.3

4.6. Comparison with Existing Segmentation-Based Techniques

The objective of this experiment was to evaluate the effectiveness of our proposed
MFO with a multilevel thresholding approach as a segmentation method. We conducted
experiments in which we compared the performance of our method against several other
established segmentation techniques including edge-based, region-based, multi-threshold,
watershed, and otsu. We assessed the accuracy of the segmentation methods using the
Harvard dataset and the results were presented in Table 9. Our experimental findings clearly
demonstrate that our proposed segmentation-based method outperforms the traditional
methods. A comparative plot illustrating the superiority of our segmentation-based method
is presented in Figure 5.

Table 9. Comparison with state-of-the-art methods on Harvard dataset.

Algorithm Year Accuracy (%)

[32] 2016 96.18
[33] 2018 99.69
[34] 2015 98.89
[35] 2018 98.67
[36] 2015 91.8
[37] 2015 97.78

Proposed 2023 99.1
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4.7. Comparison with Existing DL-Based Techniques

In this unit, we showcase various deep learning-based approaches for detecting and
classifying brain tumors. We conducted an experiment to evaluate the accuracy of our
proposed features fusion-based method compared to existing algorithms, and we reported
the findings in Table 10. Our segmentation and features fusion-based approach performed
exceptionally well, achieving an accuracy of 99.3%, which outperforms all other existing
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methods, including [26], which achieved the second-highest accuracy of 97.01%. In contrast,
the lowest accuracy of 84% was obtained by [38], which utilized the VggNet-LSTM classifier.
Our experiment clearly demonstrates that our proposed technique excels in segmentation,
feature extraction, and brain tumor classification. Figure 6 displays the comparative plot of
our results.

Table 10. Comparison with existing models based on deep learning.

Reference Year Method Accuracy (%)

[39] 2018 CNN + KELM 93.68
[40] 2018 DWT 93.94
[41] 2018 SVM, Perceptron, and Logistic Regression 93
[42] 2018 VggNet-LSTM 84
[43] 2019 ResNet-50 95
[44] 2019 Deep NN 96.13
[18] 2020 Improved Model 97.01
[45] 2020 nLBP + KNN 95.56

Proposed 2023 ResNet-V2 + HoG + BiLSTM 99.3
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5. Conclusions

This study proposes a robust brain tumor detection method based on feature fu-
sion that efficiently performs without requiring the preprocessing of brain samples. The
proposed method involves segmentation using the mayfly optimization technique with
multilevel thresholding for localizing tumors in brain MRI images. Features are extracted
using HOG for local feature mining and ResNet-V2 for valuable feature mining. The
merged features are then classified into three categories (pituitary, glioma, and menin-
gioma) using a BiLSTM classifier. We trained and tested our model using the Figshare
dataset and evaluated its robustness using the Harvard dataset. The proposed method
achieved an accuracy of 99.3%, a recall of 99.1%, precision of 98.3%, an F1 score of 99.1%,
and an AUC of 0.989, outperforming state-of-the-art segmentation and DL-based brain
tumor detectors.

This automated method can be used directly by radiologists and oncologists to assist
in the early detection of brain tumors. Additionally, the system provides precise tumor
locations that can aid physicians in making surgical decisions.

Our approach has a limitation in terms of training time, which could be addressed
using high computational systems. We also discovered that our system may have difficulty
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predicting the type of brain tumor when the MR images are blurry. To address these issues
in the future, we aim to reduce the required time for training while maintaining the same
level of performance. We also plan to add a preprocessing step to enhance images in
situations where high-resolution imaging tools are unavailable. Furthermore, we intend to
use our proposed method for detecting various cancers such as lungs, skin, and bone.
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