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Abstract: The gastrointestinal tract can be heavily infected by SARS-CoV-2. Being an auto-immunogenic
virus, SARS-CoV-2 represents an environmental factor that might play a role in gut-associated
autoimmune diseases. However, molecular mimicry between the virus and the intestinal epitopes is
under-investigated. The present study aims to elucidate sequence similarity between viral antigens
and human enteric sequences, based on known cross-reactivity. SARS-CoV-2 epitopes that cross-
react with human gut antigens were explored, and sequence alignment was performed against
self-antigens implicated in enteric autoimmune conditions. Experimental SARS-CoV-2 epitopes were
aggregated from the Immune Epitope Database (IEDB), while enteric antigens were obtained from the
UniProt Knowledgebase. A Pairwise Local Alignment tool, EMBOSS Matcher, was employed for the
similarity search. Sequence similarity and targeted cross-reactivity were depicted between 10 pairs of
immunoreactive epitopes. Similar pairs were found in four viral proteins and seven enteric antigens
related to ulcerative colitis, primary biliary cholangitis, celiac disease, and autoimmune hepatitis.
Antibodies made against the viral proteins that were cross-reactive with human gut antigens are
involved in several essential cellular functions. The relationship and contribution of those intestinal
cross-reactive epitopes to SARS-CoV-2 or its potential contribution to gut auto-immuno-genesis
are discussed.

Keywords: SARS-CoV-2; COVID-19; gut; intestine; gastrointestinal tract; sequence similarity;
cross-reactivity; molecular mimicry; exposome

1. Introduction

Coronavirus disease 2019 (COVID-19) has been a global pandemic health concern
for the last three years. Its high infectivity, vast geographical distribution, wide clinical
heterogenicity, prognosis, mortality, and short/long-term outcome drove the clinical and
scientific communities to study the disease’s viral geoepidemiology, mode of action, and
potential therapeutic modalities in order to overcome the pandemic. One recently reported
aspect of COVID-19 is the plethora of autoimmune diseases (ADs) and corresponding
autoantibodies that are continuously being reported to be associated with the SARS-CoV-2
virus [1–5]. SARS-CoV-2 is now being described as an auto-immunogenic virus [6–12].
Ads have been recognized as part of the long COVID syndrome, and many are concerned
regarding a future surge in the incidence of those conditions [13].

It is well established that genetic background is crucial for the development of Ads, but
environmental factors are pivotal in their clinical expression [14–17]. In this sense, diet and
hygiene [18], gut microbial antigenicity [19], multiple infectious agents [17,20,21], various
vaccines [22,23], food processed additives [24–26], toxic agents [16], and even chemicals and
drugs [27] have been suggested to take part in the environmentally induced autoimmunity
of ASIA (autoimmune/inflammatory syndrome induced by adjuvants) [14,28]. Focusing
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on the gastrointestinal tract (GIT), many of the above-mentioned environmental factors
dwell in the lumen and are associated with ADs [16–21,25,26,29]. Intriguingly, SARS-CoV-2
infects the human intestine [30–35] and recently was enumerated as a “new runner in the
gastrointestinal tract” [30].

Many mechanisms for driving gut-originated local and systemic autoimmunity have
been suggested to operate in the human GIT. Increased gut permeability can result in
leaky gut syndrome [29], posttranslational modification of naïve proteins [36], dysbiosis
and its harmful mobilome [37], and horizontal gene transfer [38]. All those enteric events
irradiate peripherally and might induce systemic autoimmunity. Several mechanisms
drive autoimmunity [1]: molecular mimicry [19,39–41], epitope spreading [42,43], by-
stander activation [44,45] violation of biological barriers in immune-privileged organs [46],
polyclonal activation of lymphocytes as a result of the action of superantigens [47], and
finally, immune cross-reactivity between non-self- and self-antigens [48–52]. Several of
those modes of action were even suggested to drive SARS-CoV-2-associated autoimmu-
nity [1,11,12,40,47–50,53]. A major under-studied aspect of the SARS-CoV-2-induced ADs
is the molecular mimicry between the virus and the enteric epitopes. The present study
aims to elucidate sequence similarity between shared virus antigens and the human enteric
peptides’ sequences and compare it to known cross-reactivity between the two.

2. Materials and Methods

To perform sequence alignment between self-enteric antigens and SARS-CoV-2 epi-
topes, assays of enteric antigens and SARS-CoV-2 epitope databases were explored. IEDB
was searched with the following keywords: “Linear Epitope”, “SARS-CoV-2 Organism”,
and “Human Host”. Assays included: “T cells,” “B cells”, “HLA-I”, and “HLA-II” and were
rated as “Positive Assays”. In this search, 10,794 SARS-CoV-2 epitopes were retrieved. IEDB
was also used to identify antigens that are implicated in enteric ADs. Out of 12,957 self-
antigens, 32 were detected in IEDB, and their derived sequence was extracted from the
UniProt Knowledgebase [54]. A Pairwise Local Alignment tool, EMBOSS Matcher [55],
was employed to explore local similarities between the aggregated SARS-CoV-2 epitopes
and those auto-antigens. This tool implements an algorithm that is based on Bill Pear-
son’s Lalign application, version 2.0u4 (February 1996). Using a Python script that can be
found at https://www.ebi.ac.uk/Tools/emboss/ (accessed on 30 December 2022), EM-
BOSS Matcher was applied to each of the SARS-CoV-2 epitopes against the sequence of the
32 enteric antigens. According to publications by Kanduc D. [56–58], a peptide motif of
five amino acids (AAs) can act as a minimal antigenic determinant in humoral and cellular
immune recognition, particularly when these five-residue peptides are in the central core
of T-cell epitopes of 8 to 20 AA long. A recent example of how sequence similarity between
foreign and self-proteins can induce molecular mimicry was found between Epstein–Barr
virus nuclear antigen 1 (EBNA1) and the glial cell adhesion molecule, a protein of the
central nervous system [59], in which five out of six AAs were identical. Therefore, in our
research, the aligned peptides’ cut-off was kept at a minimum of six identical AAs and
at peptide length ≥ seven AAs. The result was 58 similar sequences. All SARS-CoV-2
epitopes were captured in IEDB from experimental assays that were published in scientific
literature. However, since EMBOSS Matcher randomly extracted similar peptides out of the
enteric whole proteins, an additional analysis was required to assess their immunological
potential reactivity. Although computational methods continue to improve, they cannot
replace experimental validation conducted through laboratory assays [60]; therefore, an
additional search was required in IEDB for epitopes that (1) harbor one of those enteric sim-
ilar sequences, (2) were experimentally validated as auto-immunogenic in various assays,
and (3) are derived from antigens that are implicated with at least one of the seven enteric
ADs and preferably antigens that exhibited cross-reactivity with SARS-CoV-2 proteins. To
eliminate redundancy, overlapping epitopes were removed so that each enteric protein
has one epitope per similar sequence. The abovementioned methodology is presented as a
flowchart in Figure 1.

https://www.ebi.ac.uk/Tools/emboss/
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Figure 1. A graphical representation of the workflow. Data Aggregation: SARS-CoV-2 epitopes were
extracted from IEDB, and human antigens that are implicated in enteric ADs were depicted. UniProt
was searched to retrieve proteins sequences of the enteric self-antigens. Sequence Alignment:
Emboss Matcher was employed; 58 Similar Sequences were found with a cut-off of at least 6 identical
AAs and peptide length > 7. Data Validation: IEDB was searched to validate that the assayed enteric
epitopes harbor those peptide sequences. Out of those, 10 were part of antigens that were previously
identified to cross-react with SARS-CoV-2 antigens.

3. Results

Cross-reactivity between human intestinal and hepatic antigens and SARS-CoV-2 pep-
tides was studied by analyzing the publications of Vojdani A. et al. on the topic [16,17,48–50].
Multiple human self-proteins cross-react with the virus epitopes. The strongest to mod-
erate reaction between the spike, envelope, membrane, and nucleoprotein of the virus
was detected against intestinal epithelial cells, mitochondrial antigen (M2), the liver micro-
some, and tissue transglutaminase. A weaker but still positive cross-reaction was shown
for intestinal barrier proteins such as actin, occludin, zonulin, β-catenin, α-myosin, and
S100B [49]. A comparatively weak reaction was detected against human collagen and
histone, two integral proteins of the human gut and liver.

In searching for autoantigenic enteric epitopes in experimental studies, seven ADs
were examined: autoimmune gastritis, autoimmune hepatitis (AIH), autoimmune pan-
creatitis, celiac disease (CD), primary biliary cholangitis (PBC), and two categories of
inflammatory bowel disease (IBD), ulcerative colitis (UC), and Crohn’s disease. Out of the
58 pairs of similar sequences, 10 were also identified as cross-reactive against four specific
SARS-CoV-2 proteins, as reported by Vojdani A. et al. [16,17,48–50]. Interestingly, there are
additional seven similarities between those intestinal antigens and SARS-CoV-2 ORF1ab
polyprotein. Notably, this protein is cleaved to form nonstructural proteins [61]. Since it
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was not explored for cross-reactivity, it is not included in Tables 1–3; instead, this protein is
included in the Supplemental material in Tables S1–S3.

Table 1. Sequence similarity between SARS-CoV-2 proteins and enteric self-antigens related to ADs.

Human Protein
(Autoimmune-Related Disease) 1

SARS-CoV-2
Protein

Human vs.
SARS-CoV-2 Ln Identity % Similarity % Score 2

Cytochrome P450 2D6
(AIH, CD)

Membrane
glycoprotein

KKSLEQW
7 85.7 85.7 33KKLLEQW

Keratin,
type I cytoskeletal 18

(AIH)

Spike
glycoprotein

VSETNDTK
8 75 75 26VSGTNGTK

Spike
glycoprotein

EELDKYW
7 85.7 100 33EELDKYF

nucleocapsid
phosphoprotein

NARIVLQI
8 75 87.5 28NAAIVLQL

Myosin-11
(AIH)

Envelope small
membrane protein

VKNDNSSR
8 87.5 87.5 30VKNLNSSR

Actin, alpha skeletal muscle (AIH)
Spike

glycoprotein
GDGVTHNV

8 75 75 28GIGVTQNV

Pyruvate dehydrogenase E1
component subunit alpha, somatic

form, mitochondrial (PBC)

Spike
glycoprotein

ATRFAAAY
8 75 87.5 32

ATRFASVY

Dihydrolipoyllysine-residue
acetyltransferase component of

pyruvate dehydrogenase complex,
mitochondrial (PBC)

Spike
glycoprotein

PATPAGPK
8 75 75 32PATVCGPK

Spike
glycoprotein

DVPIGAIIC
9 77.8 88.9 39

DIPIGAGIC

Histone H1.0 (UC)
Nucleocapsid

phosphoprotein
PKKAKKPK

8 75 75 29PKKDKKKK
1 Human proteins that are implicated in enteric autoimmune diseases: autoimmune hepatitis (AIH), celiac disease
(CD), primary biliary cholangitis (PBC), and ulcerative colitis (UC). 2 Score is based on BLOSUM62 substitution
matrix between amino acids.

Table 2. The functionality of enteric antigens and their corresponding similar sequences.

Similar Peptides Enteric Protein and Potential Function/Pathogenesis AD 1 Ref.

KKSLEQW

Cytochrome P450 2D6 (CYP2D6, UniProt:P10635)
Has been recognized as the major autoantigen in type 2 AIH. In patients

with AIH-2, the target for anti-LKM-1 antibodies has been identified as the
2D6 isoform of the large cytochrome P450 enzyme family.

AIH
CD [62–65]

VSETNDTK
EELDKYW
NARIVLQI

Keratin, type I cytoskeletal 18 (Keratin-18, UniProt:P05783)
Keratin 18 (K18) is an intermediate filament protein whose

phosphorylation/transamidation associates with its aggregation in
Mallory-Denk bodies found in patients with various liver diseases:

cirrhosis, PBC, and AIH.

AIH
PBC [66,67]

VKNDNSSR

Myosin-11 (SMMHC, UniProt:P35749)
Autoantibodies to non-muscle myosin heavy chain were reported in

patients with chronic liver diseases. Patients presenting with ANA and/or
smooth muscle antibodies (SMA) account for about 80% of cases of AIH.

AIH [68,69]

GDGVTHNV

Actin, alpha skeletal muscle (Alpha-actin-1, UniProt:P68133)
Anti-actin antibodies were the first anti-cytoskeleton autoantibodies

described in liver diseases. They are considered a marker of AIH-1 and are
also frequently detected in PBC.

AIH
PBC [70]
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Table 2. Cont.

Similar Peptides Enteric Protein and Potential Function/Pathogenesis AD 1 Ref.

ATRFAAAY

Pyruvate dehydrogenase E1 component subunit alpha, somatic form,
mitochondrial (PDH-E1α, UniProt:P08559)

Autoantibodies against multiple antigens of the PDH complex are found in
sera of more than 90% of patients with PBC, in particular against the

PDH-E1α subunit. Anti-mitochondrial autoantibodies (AMA) appear to be
directed to a functional site of PDC-E1α inasmuch as they are able to

inhibit enzyme function.

PBC [71,72]

PATPAGPKDVPIGAIIC

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate
dehydrogenase complex, mitochondrial (PDC-E2, UniProt:P10515)

PBC patients have been characterized to have autoreactive T-cell and B-cell
responses directed at self-PDC-E2. The diagnosis of PBC is readily reached

by the detection of specific AMA directed against PDH-E2.

PBC [73,74]

PKKAKKPK
Histone H1.0 (UniProt:P07305)

Histone H1 bears a recurring COOH-terminal epitope recognized by
monoclonal ulcerative colitis-associated pANCA marker antibodies.

IBD [75]

1 Autoimmune diseases: autoimmune hepatitis (AIH), celiac disease (CD), primary biliary cholangitis (PBC),
ulcerative colitis (UC), and inflammatory bowel disease (IBD—including UC and Crohn’s disease).

Table 3. Similar epitopes’ sequence with immunoreactive validation in experimental assays in IEDB.

Human Epitope SARS-CoV-2 Epitope Human vs.
SARS-CoV-2

IEDB Human
Assays’ References

IEDB SARS-CoV-2 Assays’
References

STLRNLGLGKK
SLEQWVTEE EELKKLLEQWNLVIG

KKSLEQW
Tcell [76] Tcell [77]; Bcell(IgA) [78]

KKLLEQW

VVSETNDTK WFHAIHVSGTNGTKRFD
VSETNDTK HLA-C*06:02 [79];

HLA-B*27:09 [80]
HLA-I/II [81]; Tcell [77];

Bcell(IgM) [82]VSGTNGTK

EELDKYWSQ DSFKEELDKYFKNHT
EELDKYW

HLA-I [83]
Tcell [84]; Bcell(IgG) [85]; HLA-
DRA*01:01/DRB1*04:01 [81];

Bcell(IgG1) [86]EELDKYF

NARIVLQI PANNAAIVLQLPQGT
NARIVLQI

HLA-B*51:01 [87] Tcell [88]; Bcell(IgM) [89]
NAAIVLQL

NAKTVKNDNSSRFG RVKNLNSSR
VKNDNSSR

HLA-II [90]
HLA-A*30:01; Tcell [91];

HLA-A*01:01 [92];
Bcell(IgM) [89]VKNLNSSR

SGDGVTHNVPI QMAYRFNGIGVTQNV
GDGVTHNV

HLA-II [93] Tcell [94]; Bcell(IgM) [89];
HLA-II [95]GIGVTQNV

EATRFAAAY ATRFASVYA
ATRFAAAY HLA-B*15:02 [96];

HLA-B*44:02 [97]
HLA-A*30:01; Tcell [91];

HLA-II [95]; Bcell(IgG) [98]ATRFASVY

VPPTPQPLAPTPS
APCPATPAGPK VLSFELLHAPATVCGPK

PATPAGPK HLA-DQ [99];
Bcell(IgG) [100]

HLA-
DRA*01:01/DRB1*04:01 [81];
Tcell [101]; Bcell(IgG) [102]PATVCGPK

GTRDVPIGAIICIT
VGKPEDIEAFK

SYECDIPIGAGICASYQ
DVPIGAIIC

Bcell(IgG) [100] HLA-I/II [81]; Tcell [94];
Bcell(IgG) [103]DIPIGAGIC

AATPKKAKKPKT TEPKKDKKKKADETQ
PKKAKKPK HLA-II [93]; HLA-DR [104];

HLA-DRB1*11:03 [93]
Tcell [88]; Bcell(IgG) [85];

Bcell(IgM) [82]PKKDKKKK

Table 1 presents the 10 sequence similarities driven by seven antigens. One antigen
relates to UC; three relate to PBC; one relates to CD; and five relate to AIH, out of which
one is implicated with two ADs. The similarity of paired sequences is displayed in red,
(human on top of SARS-CoV-2), and the isolated AA mismatches are marked in black. The
alignment cut-off was kept at a minimum of six identical AAs, and peptide length > seven
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AAs. The resulting enteric sequences are presented in Table 2 highlighting the antigens’
functionality and their implications in various ADs. Table 3 presents the epitopes that had
immunoreactive validation in experimental assays, as curated in IEDB, and were found
to harbor one of the paired sequences similarities. Each epitope sequence is listed with
its reference to the related immune-biological assay used. In addition to the 10 pairs of
sequences described in Table 1, 48 pairs whose epitopes did not match with cross-reactive
antigens are included in the Supplemental Tables S1–S3.

4. Discussion

SARS-CoV-2 causes COVID-19 disease which geo-epidemiologically represents a
continuing pandemic, impacting most countries. The contagious pandemic might cause
a severe disease, resulting in extensive morbidity and high mortality, mainly affecting
the elderly and various vulnerable populations. Interestingly, the name of the offending
virus (Severe Acute Respiratory Syndrome Coronavirus 2) implies that the target organ
is the upper respiratory ways and lungs. However, the GIT and its affiliated organs are
no less end-target organs. In previous recent publications, it was observed that the virus
angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 receptors have a wide enteric
distribution, the gut is heavily infected, there is stool SARS-CoV-2 shading, and the affected
patients are often symptomatic [30–35]. As evidence for the substantial GIT contamination,
fecal–oral transmission is suggested [105–108].

One of the major pathophysiological pathways by which the virus operates in COVID-19
involves hyper-stimulation of the immune system and the resulting cytokine storm [109].
Being aware of the potential consequences, the autoimmune immunologists suspected a
flare of ADs in the post-COVID period. Their suspicions were confirmed, and SARS-CoV-2
is described, currently, as an auto-immunogenic virus [2–12,53,110]. Several pathways
were suggested to operate in the SARS-CoV-2-AD cross-talks [1,11,12]. However, the most
accepted and reported mechanism is molecular mimicry between the viral epitopes and hu-
man antigens [9,40,41,53,111]. Molecular mimicry is defined as the process where sequence
similarities between foreign and self-peptides are sufficient to result in the cross-activation
of B or autoreactive T cells, induced by pathogen-derived peptides [39,112]. The definition
can be expanded to other environmental factors, including food components, toxins, or
many other exposomes, where cross-reactive antibodies were identified [16,17,48–52]. The
contribution of the present work fills the gap of the under-explored cross-talks between
cross-reactivity and sequence similarity between the SARS-CoV-2 virus and the human
GIT and its associated organs. Both phenomena join together to drive molecular mimicry
(Figures 2 and 3). Cross-reactive antibodies and sequence similarity between viral and
self-antigens display a potentially major role in the pathophysiology of ADs [16,17,39,112].
Several studies described those phenomena in mammalians or on the whole human body
level; however, the present report concentrates, for the first time, exclusively on shared
SARS-CoV-2 and GIT epitopes related to specific ADs and not on shared epitopes with
various anti-COVID 19 vaccines.

After obtaining the enteric epitopes, similar sequence pairing was detected in 58 dif-
ferent SARS-CoV-2 epitopes, displaying 100% core identity. Intriguingly, those shared
sequences are related to five gut-associated ADs (Tables 1 and S1). Most of the shared
sequences, 31 out of 58, are related to AIH; 10 are related to IBD (UC, and Crohn’s Disease);
13 are related to PBC; and eight are related to CD (some are implicated with two ADs). It
appears that the human hepatic ADs (AIH, PBC) shared more epitopes, compared to the
human-affected bowel ones (CD, IBD), or mythologically, the IEDB platform contains more
hepatic epitopes a priory. In reality, the liver is a target organ in COVID-19 disease [113–115].
AIH was described post-SARS-CoV-2 disease even after vaccination [116–118], and PBC
is also related to COVID-19 [119]. Analyzing the potential mechanistic aspects of those
human proteins, it is interesting to discover that all of them had potential roles and might
be involved in the induction of each of those five ADs (Tables 2 and S2). The potential
pathological involvement of those proteins, being mutated or experiencing loss of function
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under certain environmental pressures, such as COVID-19, is far from being elucidated.
In general, they are involved in many cellular, sub-cellular, and biological functions in
the human intestinal tract. The list includes cell division, enteric tight junction functional
integrity, nuclear matrix, and filament cytoskeleton morphogenesis, muscle contractility,
immune modulation and autoantibody production, and epigenetic modification, all of
which are involved in CD and AIH (Tables 2 and S2). The immunogenicity of similar
sequences was assessed by searching IEDB for epitopes that harbor these sequences and
which were experimentally validated. These 58 corresponding epitopes, their matching
sequences, and their various types of assays are detailed in Tables 3 and S3. Notably, some
epitopes were detected with more than one assay, which implies their prevalence. Since
viral versus self-antigens have been studied for different aspects, most of the human assays
were performed on specific HLA-I/II alleles, mainly for auto-immunogenic evaluation,
while SARS-CoV-2 peptides are more diverse and contain many T-cells/B-cells epitopes.
This can also be explained due to the fact that all the viral assays were performed within
the last three years, with readily available advanced equipment.

Figure 2. Schematic presentation of sequence similarity that leads to cross-reactivity between SARS-
CoV-2 and gut-associated ADs. (A) Sequence similarity between a SARS-CoV-2 epitope and a Human
epitope. (B) Interaction of viral antigens with immune cells and activating an adaptive immune
system. (C) Cross-reactivity at B cell level when clonal antibodies bind to viral epitopes and to
similar self-epitopes. (D) Cross-reactivity at the T cell level involves the recognition of viral epitopes
and similar self-epitopes by the same CD4 T cell. CD4 T cells initiate an immune response against
SARS-CoV-2 when APC present viral epitopes on HLA-II, but the same T cells have autoreactive
potential when these epitopes are similar to self-epitopes, and an immune response will be directed
against host-antigens as well. (E) Autoreactive CD8 T cells that recognize viral antigens through
MHC-I may directly cause tissue damage when these epitopes are similar to self-epitopes.



Biomedicines 2023, 11, 1937 8 of 17

Figure 3. Schematic presentation of sequence similarity leading to cross-reactivity between SARS-
CoV-2 and self-antigens implicated in gut-associated ADs. (A) During homeostasis, the epithelial
cells interact together and maintain tight junction functional integrity. (B) Epithelial cells that express
ACE2 are exposed to SARS-CoV-2 infection. Upon cellular penetration, intestinal homeostasis is
compromised. The damaged epithelium enhances intestinal permeability and increases local and
systemic inflammation, resulting in hyperstimulation of the immune responses. (C) Viral antigens are
detected and processed by the immune cells, and antigen-presenting cells deliver them to lymphoid
tissues. (D) When adaptive immune cells are activated, they proliferate and migrate to the site of
infection, trying to eliminate the invasive pathogen. (E) Cross-reactivity at the T cell level involves
the recognition of viral epitopes and similar self-epitopes by the same CD4/CD8 T cell. (F) Cross-
reactivity at the B cell level occurs when clonal antibodies bind to viral epitopes that are similar to
self-epitopes. (G) As the viral infection spreads into enteric organs, effector T and B cells extend their
defense as well. Thus, increasing their likelihood to encounter self-antigens with similar epitopes
and invoking an auto-reactive attack.

Cross-reactivity between the SARS-CoV-2 spike, envelope, and nucleoprotein and the
intestinal and hepatic antigens was extensively reported in a study by Vojdani A. et al. [48].
The accepted assumption is that following infection or COVID-19 vaccination, an immune
response is triggered against the viral antigens that cross-react with human gut self-antigens
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which share sequence similarity with viral constituents, resulting in an auto-immunogenic
cascade, eventually progressing to an AD phenotype. Interestingly, several intestinal barrier
proteins were described to cross-react with the spike, nucleo, envelope, and membrane pro-
tein of the SARS-CoV-2 virus, and enhanced intestinal permeability is a major pathway that
drives ADs [25,29], including IBD, CD, AIH, and PBC. Of note, several major tight junction
proteins (actin, occludin, zonulin, β-catenin, α-myosin, and S100B) shared cross-reactive
antibodies with SARS-CoV-2. While all of them are integral structural components of the
intestinal tight junction, the last one merits some explanation. Intestinal glial cells were
shown to secrete S100B [120]. Local S100B over-expression is associated with enhanced in-
flammation in the human gut, thus playing a major role in gut–brain-induced inflammation
and autoimmunity [121]. More so, those cross-reactive antibodies might lead to other leaky
barriers in organs such as the lung or brain in genetically susceptible individuals [122].
Intriguingly, COVID-19-induced intestinal immune events might irradiate peripherally
to induce ADs related to remote organs or play a role in the induction of other chronic
diseases [123], many of which represent significant risk factors for enhanced morbidity and
mortality in the current pandemic [124]. Those cross-reactive antibodies, by disrupting
enteric permeability, might be responsible for multiple extra-intestinal manifestations of
COVID-19, including hepatic autoimmune diseases, in the gut–liver axis frame [125]. Con-
sequently, leaky gut induced by cross-reactive antibodies might enhance viral spreading to
other organs and potentiate the cytokine storm [126].

The cross-reactivity with human hepatic protein, namely, liver microsomal and mito-
chondrial (M2) proteins, two pivotal autoantigens in AIH and PBC, respectively [71,72,127],
might have paramount importance. Tissue transglutaminase (tTG) is the autoantigen that
drives CD [128,129]. Indeed, all the last three proteins, the liver microsomal, the M2, and
the transglutaminase-2 (tTG2) proteins, share cross-reactivity and sequence similarity, thus
reinforcing their molecular mimicry with the SARS-CoV-2 structural components. Further-
more, the parallel detection, for the first time, of cross-reactive antibodies and sequence
identity between the COVID-19 virus and the intestinal tight junction proteins, namely,
actin, indicates again the connection to peptide mimicry autoimmunity progression.

SARS-CoV-2 spike protein and nucleoprotein reacted with tTG2. Since this enzyme
has a wide distribution with almost all cell types in the body expressing it, the cross-reactive
antibodies can potentially react with any cell that expresses the enzyme. This means that
any remote organ, not just the intestines, might be affected. Even the brain can be affected,
as was recently suggested for neurodegenerative conditions [130]. Another gastrointestinal
protein, namely, intestinal epithelial cell antigen, reacted against SARS-CoV-2 envelope
protein, using rabbit polyclonal antibody [49], thus augmenting an additional enteric target
that might be affected by the SARS-CoV-2 virus cross-reactive antibodies.

To further pursue proof for this concept, the present study aimed to determine whether
human monoclonal antibody, which mimics natural antibodies produced by the immune
system to fight the SARS-CoV-2 virus, will react with several enteric and hepatic tissue
antigens that are involved in the corresponding gut–liver affected ADs. Combining the
observations of Vojdani et al. on cross-reactivity [16,17,48–52] with the presently reported
sequence identity, several conclusions, representing the study contributions, can be drawn:

1. SARS-CoV-2 spike, nucleo, envelope, and membrane protein cross-react with major
enteric and hepatic self-antigens.

2. Sequence similarity exists between multiple coronavirus and intestinal/hepatic epi-
topes.

3. Cross-reactive autoantibodies and sequence similarity are major potential drivers of
molecular mimicry in the auto-immunogenic avalanche.

4. The combined shared cross-reactive and sequence identical core in gut-associated
epitopes further strengthens the connection to molecular mimicry [39,131]. The two
mechanisms detected major essential proteins that represent specific autoantigens for
CD, AIH, and PBC or contribute to leaky gut by disrupting tight junction functionality,
thus becoming directly involved in the corresponding auto-immuno-genesis [29].
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Cross-reactive antibodies against the mitochondrial M2 antigen might have pathophys-
iological and clinical consequences. Mitochondrial M2 had strong to very strong reactions
with all four SARS-CoV-2 protein antibodies [49]. Pathophysiological mitochondrial dys-
function is part of the multi-organ dysfunction or failure associated with COVID-19 disease
and post-COVID syndrome [132,133]. M2 is part of the pyruvate dehydrogenase complex,
and 90–95% of the PBC-affected patients are positive for the anti-mitochondrial antibod-
ies [134]. Taking into account the present dual positivity between the M2 cross-reactive
antibodies [49] and the presently shared sequence similarity between M2 and the SARS-
CoV-2 epitopes, one wonders what role is played by the mitochondrial M2 dysfunction in
AIH [135] and PBC [119,135] induction or exacerbation.

The plethora of those matches between SARS-CoV-2 sequences and human tissues
might explain why monoclonal antibodies made against SARS-CoV-2 proteins reacted with
so many tissue antigens. It should be noted though, that the present study was limited
to the intestine and its associated organs, namely, the liver and the pancreas. Moreover,
since the identification of general cross-reactive antibody responses was targeted at the
level of antigens, while sequence similarity was inspected on specific epitopes, there is no
guarantee that those antibodies cross-react within the same epitopes. Furthermore, the issue
of linear/conformational epitopes was not part of the experimental design of the present
or other studies [48–50,110]. In vivo, the conformational epitopes are much more relevant
for the production of monoclonal neutralizing antibodies and targeted for autoantibody
secretion in ADs [136]. The results may indicate that the SARS-CoV-2 antibodies reacted
against conformational epitopes in the tissue antigens. Our study design did not specifically
include analyses that would capture conformational or non-linear epitopes, but any of
the tissue sequences that were found to match with the viral sequences, especially the
highly recurring ones, could possibly be conformational epitopes. Conformational epitopes
are not only important in the production of monoclonal neutralizing antibodies, but they
could also be major targets of autoantibody production in ADs [137,138]. Other antigens
among our list that had moderate or greater reactions with SARS-CoV-2 may also have
sequences in their structure that could potentially be triggers of autoimmunity and likewise
deserve additional attention and study. Further investigation to identify the specific
cross-reactive epitopes will require specific peptide fragment inhibition studies as well as
computational and immunogenicity predicational modeling including HLA-I/II alleles
affinity. More precise identification of conformational autoepitopes is needed to clarify
the role of SARS-CoV-2 in autoimmunity. Furthermore, very similar to earlier studies
by Vojdani et al. [48,49], antibodies made against various SARS-CoV-2 proteins should
be applied to the peptides that were shown to mimic various gut-associated epitopes
described in this current study. The binding of these SARS-CoV-2 antibodies to these gut-
associated epitopes would validate the findings of this study experimentally. Practically,
this would require the synthesis of these gut-associated epitopes and their reaction with
the SARS-CoV-2 antibodies, which is not within the scope of this current database study.

The present study might evoke concerns regarding anti-COVID-19 vaccinations. Po-
tentially, the vaccines can induce cross-reactive antibodies against human tissue antigens,
and the shared sequences may potentiate molecular mimicry between the vaccine-induced
immunogenic epitopes and human ones, thus increasing the incidence of ADs [22,139,140].
However, vaccine-related cross-reactivity may not always necessarily be a bad thing. In
2020, Reche et al. decided to explore the question of why children are apparently largely
spared from the ongoing COVID-19 epidemic [141]. The study found that combined vac-
cines for treating diphtheria, tetanus, and pertussis infectious diseases (DTaP vaccine) were
significant sources of potential cross-reactive immunity to SARS-CoV-2. Reche et al. con-
cluded that the DT antigens in combination DTaP vaccines are likely to keep children safe
from COVID-19 worldwide. In the search for peptide matches with common pathogens,
Reche et al. also found that, in addition, Bacillus Calmette-Guerin (BCG), had a stag-
gering 3807 epitopes that matched with SARS-CoV-2. BCG is used against tuberculosis,
and the Reche team noted that countries that implement BCG vaccination have fewer
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COVID-19 cases [141]. Thus, with regards to DTaP and BCG, cross-reactivity may mean
cross-protective immunity. In support of Reche’s findings, very recently Vojdani et al.
reacted monoclonal and polyclonal antibodies made against SARS-CoV-2 spike protein and
nucleoprotein with different bacterial and viral antigens as well as the DTaP vaccine [142].
They found that SARS-CoV-2 spike protein and nucleoprotein reacted most significantly
with the DTaP vaccine. The findings indicated that the cross-reactivity elicited by DTaP
vaccines may indeed be keeping some individuals safe from COVID-19.

Finally, the present study documented, for the first time, cross-reactivity and sequence
similarity between the SARS-CoV-2 virus and the gut-associated immunogenic epitopes.
Although epitope sharing between SARS-CoV-2 and gut-targeted proteins is a very im-
portant factor, by itself it is not enough for the production of cross-reactive antibodies
against autoantigens. This is why in addition to molecular mimicry, Vojdani emphasized
the importance of the reaction of polyclonal and monoclonal antibodies made against
SARS-CoV-2 proteins with a variety of human tissue antigens [17,48,49,52,142]. The present
report further substantiates and confirms, thus, contributing to the importance of sequence
similarity and cross-reactivity in auto-immuno-genesis. Those two phenomena are crucial
for molecular mimicry, a major mechanism for the induction of ADs [23].

The topic is in its infancy, and only the tip of the iceberg is visible. Currently, we do
not know how the emergence of SARS-CoV-2 variants and their effect on protein structure
may influence this similarity and cross-reactivity with various tissue antigens, including
those associated with the gut. It is hoped that our result will stimulate more studies in
order to clarify this enigma and further resolve the mosaic of autoimmunity [143,144]. It
still remains to elucidate how exactly viruses could shape autoimmunity.

5. Conclusions

Several articles have suggested that molecular mimicry between SARS-CoV-2 and
human proteins drives autoimmunity. They postulate a connection between this mimicry
and the multi-organ distribution of COVID-19, many of them beyond the respiratory
system. In the present study, the known cross-reactive antibodies combined with the
sequence core similarity between the virus and the GIT further strengthen the autoimmune
pathway of molecular mimicry. It should be stressed that the present exploration deals with
the SARS-CoV-2 and the human GIT autoimmune cross-talks and not with the potential,
mRNA-based, anti-virus vaccination immune consequences. Since post-vaccination ADs
are increasingly being reported, public health safety should be a prime concern to vaccinate
against the virus, hence minimizing its harmful effects, including avoiding a surge in the
incidence of ADs. Our findings of cross-reactivity and sequence similarity between the
SARS-CoV-2 viral proteins and human tissue antigens provide support for the role of
mimicry in autoimmunity. More extensive research on this subject can greatly aid in the
battle against not just pandemics such as COVID-19 but also their various gut-associated
autoimmune diseases, some of which could last a lifetime.
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