Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review
Abstract
:1. Introduction
2. Blood Microsamples
3. Plasma Microsamples
4. Urine Microsamples
5. Breast Milk Microsamples
6. Saliva Microsamples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgan, P.E. Microsampling Devices for Routine Therapeutic Drug Monitoring-Are We There Yet? Ther. Drug Monit. 2021, 43, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Tey, H.Y.; See, H.H. A Review of Recent Advances in Microsampling Techniques of Biological Fluids for Therapeutic Drug Monitoring. J. Chromatogr. A 2021, 1635, 461731. [Google Scholar] [CrossRef] [PubMed]
- Soldin, O.P.; Soldin, S.J. Review: Therapeutic Drug Monitoring in Pediatrics. Ther. Drug Monit. 2002, 24, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herviou, P.; Thivat, E.; Richard, D.; Roche, L.; Dohou, J.; Pouget, M.; Eschalier, A.; Durando, X.; Authier, N. Therapeutic Drug Monitoring and Tyrosine Kinase Inhibitors. Oncol. Lett. 2016, 12, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Pigliasco, F.; Cafaro, A.; Simeoli, R.; Barco, S.; Magnasco, A.; Faraci, M.; Tripodi, G.; Goffredo, B.M.; Cangemi, G. A UHPLC—MS/MS Method for Therapeutic Drug Monitoring of Aciclovir and Ganciclovir in Plasma and Dried Plasma Spots. Biomedicines 2021, 9, 1379. [Google Scholar] [CrossRef]
- Kocur, A.; Pawiński, T. Volumetric Absorptive Microsampling in Therapeutic Drug Monitoring of Immunosuppressive Drugs-From Sampling and Analytical Issues to Clinical Application. Int. J. Mol. Sci. 2022, 24, 681. [Google Scholar] [CrossRef]
- Kostić, N.; Dotsikas, Y.; Jović, N.; Stevanović, G.; Malenović, A.; Medenica, M. Vigabatrin in Dried Plasma Spots: Validation of a Novel LC-MS/MS Method and Application to Clinical Practice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 962, 102–108. [Google Scholar] [CrossRef]
- Cangemi, G.; Barco, S.; Castagnola, E.; Tripodi, G.; Favata, F.; D’Avolio, A. Development and Validation of UHPLC-MS/MS Methods for the Quantification of Colistin in Plasma and Dried Plasma Spots. J. Pharm. Biomed. Anal. 2016, 129, 551–557. [Google Scholar] [CrossRef]
- Martens-Lobenhoffer, J.; Hinderhofer, M.; Tröger, U.; Bode-Böger, S.M. Stability of Ceftolozane in Human Plasma and Dried Blood Spots: Implications for Transport and Storage. J. Pharmacol. Toxicol. Methods 2020, 103, 106692. [Google Scholar] [CrossRef]
- Remmerie, B.; De Meulder, M.; Weiner, S.; Savitz, A. Comparison of Capillary and Venous Drug Concentrations After Administration of a Single Dose of Risperidone, Paliperidone, Quetiapine, Olanzapine, or Aripiprazole. Clin. Pharmacol. Drug Dev. 2016, 5, 528–537. [Google Scholar] [CrossRef]
- Golbin, L.; Tron, C.; Franck, B.; Vigneau, C.; Verdier, M.C.; Lemaitre, F. First Experience of Optimization of Tacrolimus Therapeutic Drug Monitoring in a Patient Cotreated With Nirmatrelvir/Ritonavir: How Microsampling Approach Changes Everything. Transplantation 2023, 107, E68–E69. [Google Scholar] [CrossRef]
- Hawkins, R.C.W. Use of Common Reference Intervals Does Not Necessarily Allow Inter-Method Numerical Result Trending. Clin. Chem. Lab. Med. 2020, 59, E219–E220. [Google Scholar] [CrossRef] [PubMed]
- Guerra Valero, Y.; Dorofaeff, T.; Parker, L.; Coulthard, M.G.; Sparkes, L.; Lipman, J.; Wallis, S.C.; Roberts, J.A.; Parker, S.L. Microsampling to Support Pharmacokinetic Clinical Studies in Pediatrics. Pediatr. Res. 2022, 91, 1557–1561. [Google Scholar] [CrossRef]
- Lei, B.U.W.; Prow, T.W. A Review of Microsampling Techniques and Their Social Impact. Biomed. Microdevices 2019, 21, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vojnov, L.; Carmona, S.; Zeh, C.; Markby, J.; Boeras, D.; Prescott, M.R.; Mayne, A.L.H.; Sawadogo, S.; Adje-Toure, C.; Zhang, G.; et al. The Performance of Using Dried Blood Spot Specimens for HIV-1 Viral Load Testing: A Systematic Review and Meta-Analysis. PLoS Med. 2022, 19, e1004076. [Google Scholar] [CrossRef] [PubMed]
- Resano, M.; Belarra, M.A.; García-Ruiz, E.; Aramendía, M.; Rello, L. Dried Matrix Spots and Clinical Elemental Analysis. Current Status, Difficulties, and Opportunities. TrAC—Trends Anal. Chem. 2018, 99, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Waitt, C.; Diliiy Penchala, S.; Olagunju, A.; Amara, A.; Else, L.; Lamorde, M.; Khoo, S. Development, Validation and Clinical Application of a Method for the Simultaneous Quantification of Lamivudine, Emtricitabine and Tenofovir in Dried Blood and Dried Breast Milk Spots Using LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1060, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.; Rosado, T.; Barroso, M.; Gallardo, E. Determination of Antiepileptic Drugs Using Dried Saliva Spots. J. Anal. Toxicol. 2019, 43, 61–71. [Google Scholar] [CrossRef]
- Mingas, P.D.; Zdovc, J.; Grabnar, I.; Vovk, T. The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases. Molecules 2021, 26, 1787. [Google Scholar] [CrossRef]
- Kocur, A.; Marszałek, D.; Rubik, J.; Czajkowska, A.; Pawiński, T. Therapeutic Drug Monitoring of Tacrolimus Based on Volumetric Absorptive Microsampling Technique (VAMS) in Renal Transplant Pediatric Recipients-LC-MS/MS Method Development, Hematocrit Effect Evaluation, and Clinical Application. Pharmaceutics 2023, 15, 299. [Google Scholar] [CrossRef]
- Patel, S.R.; Bryan, P.; Spooner, N.; Timmerman, P.; Wickremsinhe, E. Microsampling for Quantitative Bioanalysis, an Industry Update: Output from an AAPS/EBF Survey. Bioanalysis 2019, 11, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Shokati, T.; Bodenberger, N.; Gadpaille, H.; Schniedewind, B.; Vinks, A.A.; Jiang, W.; Alloway, R.R.; Christians, U. Quantification of the Immunosuppressant Tacrolimus on Dried Blood Spots Using LC-MS/MS. J. Vis. Exp. 2015, 2015, e52424. [Google Scholar] [CrossRef] [Green Version]
- Brunet, M.; Van Gelder, T.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef] [PubMed]
- Gruzdys, V.; Merrigan, S.D.; Johnson-Davis, K.L. Feasibility of Immunosuppressant Drug Monitoring by a Microsampling Device. J. Appl. Lab. Med. 2019, 4, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Tretzel, L.; Thomas, A.; Piper, T.; Hedeland, M.; Geyer, H.; Schänzer, W.; Thevis, M. Fully Automated Determination of Nicotine and Its Major Metabolites in Whole Blood by Means of a DBS Online-SPE LC-HR-MS/MS Approach for Sports Drug Testing. J. Pharm. Biomed. Anal. 2016, 123, 132–140. [Google Scholar] [CrossRef]
- Luginbühl, M.; Gaugler, S. The Application of Fully Automated Dried Blood Spot Analysis for Liquid Chromatography-Tandem Mass Spectrometry Using the CAMAG DBS-MS 500 Autosampler. Clin. Biochem. 2020, 82, 33–39. [Google Scholar] [CrossRef]
- Duthaler, U.; Berger, B.; Erb, S.; Battegay, M.; Letang, E.; Gaugler, S.; Krähenbühl, S.; Haschke, M. Automated High Throughput Analysis of Antiretroviral Drugs in Dried Blood Spots. J. Mass Spectrom. 2017, 52, 534–542. [Google Scholar] [CrossRef]
- Martial, L.C.; van den Hombergh, E.; Tump, C.; Halmingh, O.; Burger, D.M.; van Maarseveen, E.M.; Brüggemann, R.J.; Aarnoutse, R.E. Manual Punch versus Automated Flow-through Sample Desorption for Dried Blood Spot LC-MS/MS Analysis of Voriconazole. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1089, 16–23. [Google Scholar] [CrossRef]
- Duthaler, U.; Suenderhauf, C.; Gaugler, S.; Vetter, B.; Krähenbühl, S.; Hammann, F. Development and Validation of an LC-MS/MS Method for the Analysis of Ivermectin in Plasma, Whole Blood, and Dried Blood Spots Using a Fully Automatic Extraction System. J. Pharm. Biomed. Anal. 2019, 172, 18–25. [Google Scholar] [CrossRef]
- Velghe, S.; Deprez, S.; Stove, C.P. Fully Automated Therapeutic Drug Monitoring of Anti-Epileptic Drugs Making Use of Dried Blood Spots. J. Chromatogr. A 2019, 1601, 95–103. [Google Scholar] [CrossRef]
- Frey, B.S.; Damon, D.E.; Badu-Tawiah, A.K. Emerging Trends in Paper Spray Mass Spectrometry: Microsampling, Storage, Direct Analysis, and Applications. Mass Spectrom. Rev. 2020, 39, 336–370. [Google Scholar] [CrossRef]
- Shi, R.Z.; El Gierari, E.T.M.; Manicke, N.E.; Faix, J.D. Rapid Measurement of Tacrolimus in Whole Blood by Paper Spray-Tandem Mass Spectrometry (PS-MS/MS). Clin. Chim. Acta 2015, 441, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Chace, D.H.; De Jesús, V.R.; Haynes, C.A. Analytical Perspectives on the Use of Dried Blood Spots and Mass Spectrometry in Newborn Screening. Encycl. Anal. Chem. 2015, 1–26. [Google Scholar] [CrossRef]
- Aranaz, M.; Valencia-Agudo, E.; Lobo, L.; Pereiro, R. Microsampling of Biological Fluids for Elemental and Isotopic Analysis by ICP-MS: Strategies and Applications for Disease Diagnosis. J. Anal. At. Spectrom. 2022, 37, 50–68. [Google Scholar] [CrossRef]
- Mortensen, Ó.; Lydersen, L.N.; Apol, K.D.; Andorsdóttir, G.; Steig, B.; Gregersen, N.O. Using Dried Blood Spot Samples from a Trio for Linked-Read Whole-Exome Sequencing. Eur. J. Hum. Genet. 2019, 27, 980–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadler Simões, S.; Castañera Ajenjo, A.; Dias, M.J. Dried Blood Spots Combined to an UPLC-MS/MS Method for the Simultaneous Determination of Drugs of Abuse in Forensic Toxicology. J. Pharm. Biomed. Anal. 2018, 147, 634–644. [Google Scholar] [CrossRef]
- Nakajima, D.; Ohara, O.; Kawashima, Y. Toward Proteome-Wide Exploration of Proteins in Dried Blood Spots Using Liquid Chromatography-Coupled Mass Spectrometry. Proteomics 2021, 21, 2100019. [Google Scholar] [CrossRef]
- Milosheska, D.; Grabnar, I.; Vovk, T. Dried Blood Spots for Monitoring and Individualization of Antiepileptic Drug Treatment. Eur. J. Pharm. Sci. 2015, 75, 25–39. [Google Scholar] [CrossRef]
- Neels, H.M.; Sierens, A.C.; Naelaerts, K.; Scharpé, S.L.; Hatfield, G.M.; Lambert, W.E. Therapeutic Drug Monitoring of Old and Newer Anti-Epileptic Drugs. Clin. Chem. Lab. Med. 2004, 42, 1228–1255. [Google Scholar] [CrossRef]
- Pohanka, A.; Mahindi, M.; Masquelier, M.; Gustafsson, L.L.; Beck, O. Quantification of Valproic Acid in Dried Blood Spots. Scand. J. Clin. Lab. Investig. 2014, 74, 648–652. [Google Scholar] [CrossRef]
- Evans, C.; Spooner, N. Pharmaceutical Perspectives of Use of Dried Blood Spots. Dried Blood Spots Appl. Tech. 2014, 151–159. [Google Scholar] [CrossRef]
- Raymundo, S.; Muller, V.V.; Andriguetti, N.B.; Tegner, M.; Artmann, A.C.; Kluck, H.M.; Franzoi, M.A.; Vilela, R.M.M.; Schwartsmann, G.; Linden, R.; et al. Determination of Docetaxel in Dried Blood Spots by LC-MS/MS: Method Development, Validation and Clinical Application. J. Pharm. Biomed. Anal. 2018, 157, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Verougstraete, N.; Stove, V.; Verstraete, A.G.; Stove, C.P. Therapeutic Drug Monitoring of Tyrosine Kinase Inhibitors Using Dried Blood Microsamples. Front. Oncol. 2022, 12, 821807. [Google Scholar] [CrossRef] [PubMed]
- Nijenhuis, C.M.; Huitema, A.D.R.; Marchetti, S.; Blank, C.; Haanen, J.B.A.G.; van Thienen, J.V.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H. The Use of Dried Blood Spots for Pharmacokinetic Monitoring of Vemurafenib Treatment in Melanoma Patients. J. Clin. Pharmacol. 2016, 56, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Knapen, L.M.; de Beer, Y.; Brüggemann, R.J.M.; Stolk, L.M.; de Vries, F.; Tjan-Heijnen, V.C.G.; van Erp, N.P.; Croes, S. Development and Validation of an Analytical Method Using UPLC-MS/MS to Quantify Everolimus in Dried Blood Spots in the Oncology Setting. J. Pharm. Biomed. Anal. 2018, 149, 106–113. [Google Scholar] [CrossRef]
- Vu, H.; Alffenaar, J.W.; Edelbroek, P.M.; Brouwers, J.R.; Uges, D.R. Dried Blood Spots: A New Tool for Tuberculosis Treatment Optimization. Curr. Pharm. Des. 2011, 17, 2931–2939. [Google Scholar] [CrossRef]
- Berm, E.J.J.; Brummel-Mulder, E.; Paardekooper, J.; Hak, E.; Wilffert, B.; Maring, J.G. Determination of Venlafaxine and O-Desmethylvenlafaxine in Dried Blood Spots for TDM Purposes, Using LC-MS/MS. Anal. Bioanal. Chem. 2014, 406, 2349–2353. [Google Scholar] [CrossRef]
- Berm, E.J.J.; Paardekooper, J.; Brummel-Mulder, E.; Hak, E.; Wilffert, B.; Maring, J.G. A Simple Dried Blood Spot Method for Therapeutic Drug Monitoring of the Tricyclic Antidepressants Amitriptyline, Nortriptyline, Imipramine, Clomipramine, and Their Active Metabolites Using LC-MS/MS. Talanta 2015, 134, 165–172. [Google Scholar] [CrossRef]
- Hahn, R.Z.; Antunes, M.V.; Costa Arnhold, P.; Andriguetti, N.B.; Verza, S.G.; Linden, R. Determination of Topiramate in Dried Blood Spots Using Single-Quadrupole Gas Chromatography-Mass Spectrometry after Flash Methylation with Trimethylanilinium Hydroxide. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1046, 131–137. [Google Scholar] [CrossRef]
- Bruschettini, M.; Barco, S.; Romantsik, O.; Risso, F.; Gennai, I.; Chinea, B.; Ramenghi, L.A.; Tripodi, G.; Cangemi, G. DBS-LC-MS/MS Assay for Caffeine: Validation and Neonatal Application. Bioanalysis 2016, 8, 1893–1902. [Google Scholar] [CrossRef]
- Lee, K.; Jun, S.H.; Choi, M.S.; Song, S.H.; Park, J.S.; Lee, J.H.; Park, K.U.; Song, J. Application of the Isoniazid Assay in Dried Blood Spots Using the Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Clin. Biochem. 2017, 50, 882–885. [Google Scholar] [CrossRef]
- Lee, H.; Park, Y.; Jo, J.; In, S.; Park, Y.; Kim, E.; Pyo, J.; Choe, S. Analysis of Benzodiazepines and Their Metabolites Using DBS Cards and LC-MS/MS. Forensic Sci. Int. 2015, 255, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Patteet, L.; Maudens, K.E.; Sabbe, B.; Morrens, M.; De Doncker, M.; Neels, H. High Throughput Identification and Quantification of 16 Antipsychotics and 8 Major Metabolites in Serum Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Clin. Chim. Acta 2014, 429, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Spooner, N.; Denniff, P.; Michielsen, L.; De Vries, R.; Ji, Q.C.; Arnold, M.E.; Woods, K.; Woolf, E.J.; Xu, Y.; Boutet, V.; et al. A Device for Dried Blood Microsampling in Quantitative Bioanalysis: Overcoming the Issues Associated Blood Hematocrit. Bioanalysis 2015, 7, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Ackermans, M.T.; de Kleijne, V.; Martens, F.; Heijboer, A.C. Hematocrit and Standardization in DBS Analysis: A Practical Approach for Hormones Mainly Present in the Plasma Fraction. Clin. Chim. Acta 2021, 520, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Velghe, S.; Delahaye, L.; Stove, C.P. Is the Hematocrit Still an Issue in Quantitative Dried Blood Spot Analysis? J. Pharm. Biomed. Anal. 2019, 163, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rabie, P.; Denniff, P.; Spooner, N.; Chowdhry, B.Z.; Pullen, F.S. Investigation of Different Approaches to Incorporating Internal Standard in DBS Quantitative Bioanalytical Workflows and Their Effect on Nullifying Hematocrit-Based Assay Bias. Anal. Chem. 2015, 87, 4996–5003. [Google Scholar] [CrossRef]
- Zheng, N.; Yuan, L.; Ji, Q.C.; Mangus, H.; Song, Y.; Frost, C.; Zeng, J.; Aubry, A.F.; Arnold, M.E. “Center Punch” and “Whole Spot” Bioanalysis of Apixaban in Human Dried Blood Spot Samples by UHPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 988, 66–74. [Google Scholar] [CrossRef]
- Andriguetti, N.B.; Hahn, R.Z.; Lizot, L.F.; Raymundo, S.; Costa, J.L.; da Cunha, K.F.; Vilela, R.M.M.; Kluck, H.M.; Schwartsmann, G.; Antunes, M.V.; et al. Analytical and Clinical Validation of a Dried Blood Spot Assay for the Determination of Paclitaxel Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Clin. Biochem. 2018, 54, 123–130. [Google Scholar] [CrossRef]
- Abu-Rabie, P.; Denniff, P.; Spooner, N.; Brynjolffssen, J.; Galluzzo, P.; Sanders, G. Method of Applying Internal Standard to Dried Matrix Spot Samples for Use in Quantitative Bioanalysis. Anal. Chem. 2011, 83, 8779–8786. [Google Scholar] [CrossRef]
- Liao, H.W.; Lin, S.W.; Chen, G.Y.; Kuo, C.H. Estimation and Correction of the Blood Volume Variations of Dried Blood Spots Using a Postcolumn Infused-Internal Standard Strategy with LC-Electrospray Ionization-MS. Anal. Chem. 2016, 88, 6457–6464. [Google Scholar] [CrossRef] [PubMed]
- Jhang, R.S.; Lin, S.Y.; Peng, Y.F.; Chao, H.C.; Tsai, I.L.; Lin, Y.T.; Liao, H.W.; Tang, S.C.; Kuo, C.H.; Jeng, J.S. Using the PCI-IS Method to Simultaneously Estimate Blood Volume and Quantify Nonvitamin K Antagonist Oral Anticoagulant Concentrations in Dried Blood Spots. Anal. Chem. 2020, 92, 2511–2518. [Google Scholar] [CrossRef]
- Ruggiero, C.; Ramirez, S.; Ramazzotti, E.; Mancini, R.; Muratori, R.; Raggi, M.A.; Conti, M. Multiplexed Therapeutic Drug Monitoring of Antipsychotics in Dried Plasma Spots by LC-MS/MS. J. Sep. Sci. 2020, 43, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- la Marca, G.; Malvagia, S.; Filippi, L.; Fiorini, P.; Innocenti, M.; Luceri, F.; Pieraccini, G.; Moneti, G.; Francese, S.; Dani, F.R.; et al. Rapid Assay of Topiramate in Dried Blood Spots by a New Liquid Chromatography-Tandem Mass Spectrometric Method. J. Pharm. Biomed. Anal. 2008, 48, 1392–1396. [Google Scholar] [CrossRef]
- la Marca, G.; Malvagia, S.; Filippi, L.; Luceri, F.; Moneti, G.; Guerrini, R. A New Rapid Micromethod for the Assay of Phenobarbital from Dried Blood Spots by LC-Tandem Mass Spectrometry. Epilepsia 2009, 50, 2658–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.M.; Hawwa, A.F.; Millership, J.S.; Collier, P.S.; McElnay, J.C. A Simple Bioanalytical Method for the Quantification of Antiepileptic Drugs in Dried Blood Spots. J. Chromatogr. B 2013, 923–924, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aburuz, S.; Al-Ghazawi, M.; Al-Hiari, Y. A Simple Dried Blood Spot Assay for Therapeutic Drug Monitoring of Lamotrigine. Chromatographia 2010, 71, 1093–1099. [Google Scholar] [CrossRef]
- la Marca, G.; Malvagia, S.; Filippi, L.; Innocenti, M.; Rosati, A.; Falchi, M.; Pellacani, S.; Moneti, G.; Guerrini, R. Rapid Assay of Rufinamide in Dried Blood Spots by a New Liquid Chromatography–Tandem Mass Spectrometric Method. J. Pharm. Biomed. Anal. 2011, 54, 192–197. [Google Scholar] [CrossRef]
- Déglon, J.; Versace, F.; Lauer, E.; Widmer, C.; Mangin, P.; Thomas, A.; Staub, C. Rapid LC–MS/MS Quantification of the Major Benzodiazepines and Their Metabolites on Dried Blood Spots Using a Simple and Cost-Effective Sample Pretreatment. Bioanalysis 2012, 4, 1337–1350. [Google Scholar] [CrossRef]
- Lim, S.H.; Chan, E.; Ho, P.C. Estimation and Comparison of Carbamazepine Population Pharmacokinetics Using Dried Blood Spot and Plasma Concentrations from People with Epilepsy: The Clinical Implication. J. Clin. Pharmacol. 2014, 54, 225–233. [Google Scholar] [CrossRef]
- Poetto, A.S.; Posocco, B.; Gagno, S.; Orleni, M.; Zanchetta, M.; Iacuzzi, V.; Canil, G.; Buzzo, M.; Montico, M.; Guardascione, M.; et al. A New Dried Blood Spot LC-MS/MS Method for Therapeutic Drug Monitoring of Palbociclib, Ribociclib, and Letrozole in Patients with Cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1185, 122985. [Google Scholar] [CrossRef] [PubMed]
- Veenhof, H.; Koster, R.A.; Junier, L.A.T.; Zweipfenning, P.; Touw, D.J. Results From a Proficiency Testing Pilot for Immunosuppressant Microsampling Assays. Ther. Drug Monit. 2023, 45, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Veenhof, H.; Koster, R.A.; Alffenaar, J.W.C.; Van Den Berg, A.P.; De Groot, M.R.; Verschuuren, E.A.M.; Berger, S.P.; Bakker, S.J.L.; Touw, D.J. Clinical Application of a Dried Blood Spot Assay for Sirolimus and Everolimus in Transplant Patients. Clin. Chem. Lab. Med. 2019, 57, 1854–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenk, G.; Sandkvist, S.; Pohanka, A.; Stemme, G.; Beck, O.; Roxhed, N. A Disposable Sampling Device to Collect Volume-Measured DBS Directly from a Fingerprick onto DBS Paper. Bioanalysis 2015, 7, 2085–2094. [Google Scholar] [CrossRef]
- Neto, R.; Gooley, A.; Breadmore, M.C.; Hilder, E.F.; Lapierre, F. Precise, Accurate and User-Independent Blood Collection System for Dried Blood Spot Sample Preparation. Anal. Bioanal. Chem. 2018, 410, 3315–3323. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Otani, N.; Ueno, T.; Hashimoto, K. Development of a Hematocrit-Insensitive Device to Collect Accurate Volumes of Dried Blood Spots without Specialized Skills for Measuring Clozapine and Its Metabolites as Model Analytes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1087–1088, 70–79. [Google Scholar] [CrossRef]
- Deprez, S.; Paniagua-González, L.; Velghe, S.; Stove, C.P. Evaluation of the Performance and Hematocrit Independence of the HemaPEN as a Volumetric Dried Blood Spot Collection Device. Anal. Chem. 2019, 91, 14467–14475. [Google Scholar] [CrossRef] [Green Version]
- Denniff, P.; Spooner, N. Volumetric Absorptive Microsampling: A Dried Sample Collection Technique for Quantitative Bioanalysis. Anal. Chem. 2014, 86, 8489–8495. [Google Scholar] [CrossRef]
- Kok, M.G.M.; Fillet, M. Volumetric Absorptive Microsampling: Current Advances and Applications. J. Pharm. Biomed. Anal. 2018, 147, 288–296. [Google Scholar] [CrossRef]
- Giannoutsos, S.; Venkataramanan, R.; Dodeja, P.; Caritis, S. Applications of Volumetric Absorptive Microsampling Technique: A Systematic Critical Review. Ther. Drug Monit. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Wiltse, A.; Emo, J.; Hilchey, S.P.; Zand, M.S. Application of Volumetric Absorptive Microsampling (VAMS) to Measure Multidimensional Anti-Influenza IgG Antibodies by the MPlex-Flu Assay. J. Clin. Transl. Sci. 2019, 3, 332–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protti, M.; Mandrioli, R.; Mercolini, L. Tutorial: Volumetric Absorptive Microsampling (VAMS). Anal. Chim. Acta 2019, 1046, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Roberts, J.A.; Lipman, J.; Wallis, S.C. Quantitative Bioanalytical Validation of Fosfomycin in Human Whole Blood with Volumetric Absorptive Microsampling. Bioanalysis 2015, 7, 2585–2595. [Google Scholar] [CrossRef] [PubMed]
- Harahap, Y.; Diptasaadya, R.; Purwanto, D.J. Volumetric Absorptive Microsampling as a Sampling Alternative in Clinical Trials and Therapeutic Drug Monitoring During the COVID-19 Pandemic: A Review. Drug Des. Devel. Ther. 2020, 14, 5757–5771. [Google Scholar] [CrossRef]
- Kip, A.E.; Kiers, K.C.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C. Volumetric Absorptive Microsampling (VAMS) as an Alternative to Conventional Dried Blood Spots in the Quantification of Miltefosine in Dried Blood Samples. J. Pharm. Biomed. Anal. 2017, 135, 160–166. [Google Scholar] [CrossRef]
- Xie, I.; Xu, Y.; Anderson, M.; Wang, M.; Xue, L.; Breidinger, S.; Goykhman, D.; Woolf, E.J.; Bateman, K.P. Extractability-Mediated Stability Bias and Hematocrit Impact: High Extraction Recovery Is Critical to Feasibility of Volumetric Adsorptive Microsampling (VAMS) in Regulated Bioanalysis. J. Pharm. Biomed. Anal. 2018, 156, 58–66. [Google Scholar] [CrossRef]
- Grassin-Delyle, S.; Lamy, E.; Semeraro, M.; Runge, I.; Treluyer, J.M.; Mansukhani, R.; Arribas, M.; Roberts, I.; Shakur-Still, H. Clinical Validation of a Volumetric Absorptive Micro-Sampling Device for Pharmacokinetic Studies With Tranexamic Acid. Front. Pharmacol. 2021, 12, 764379. [Google Scholar] [CrossRef]
- Harahap, Y.; Steven, S.; Suryadi, H. Development and Validation of a UPLC-MS/MS Method with Volumetric Absorptive Microsampling to Quantitate Cyclophosphamide and 4-Hydroxycyclophosphamide. Front. Pharmacol. 2022, 13, 928721. [Google Scholar] [CrossRef]
- Marasca, C.; Mandrioli, R.; Sardella, R.; Vovk, T.; Armirotti, A.; Cavalli, A.; Serretti, A.; Protti, M.; Mercolini, L. Dried Volumetric Microsampling Approaches for the Therapeutic Drug Monitoring of Psychiatric Patients Undergoing Clozapine Treatment. Front. Psychiatry 2022, 13, 794609. [Google Scholar] [CrossRef]
- Dubois, S.; Marchese, F.; Pigliasco, F.; Barco, S.; Tripodi, G.; Lomonaco, T.; Lattanzi, S.; Russo, E.; Cangemi, G.; Striano, P. A Volumetric Absorptive Microsampling Technique to Monitor Cannabidiol Levels in Epilepsy Patients. Front. Pharmacol. 2020, 11, 582286. [Google Scholar] [CrossRef]
- Pigliasco, F.; Malaca, S.; Lo Faro, A.F.; Tini, A.; Cangemi, G.; Cafaro, A.; Barco, S.; Riva, A.; Pisati, A.; Amadori, E.; et al. Cannabidiol, ∆9-Tetrahydrocannabinol, and Metabolites in Human Blood by Volumetric Absorptive Microsampling and LC-MS/MS Following Controlled Administration in Epilepsy Patients. Front. Pharmacol. 2022, 13, 1038754. [Google Scholar] [CrossRef] [PubMed]
- Pigliasco, F.; Barco, S.; Dubois, S.; Marchese, F.; Striano, P.; Lomonaco, T.; Mattioli, F.; Tripodi, G.; Cangemi, G. Cannabidiol Determination on Peripheral Capillary Blood Using a Microsampling Method and Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry with on-Line Sample Preparation. Molecules 2020, 25, 3608. [Google Scholar] [CrossRef] [PubMed]
- Damon, D.E.; Yin, M.; Allen, D.M.; Maher, Y.S.; Tanny, C.J.; Oyola-Reynoso, S.; Smith, B.L.; Maher, S.; Thuo, M.M.; Badu-Tawiah, A.K. Dried Blood Spheroids for Dry-State Room Temperature Stabilization of Microliter Blood Samples. Anal. Chem. 2018, 90, 9353–9358. [Google Scholar] [CrossRef] [PubMed]
- Nuchtavorn, N.; Dvořák, M.; Kubáň, P. Paper-Based Molecularly Imprinted-Interpenetrating Polymer Network for on-Spot Collection and Microextraction of Dried Blood Spots for Capillary Electrophoresis Determination of Carbamazepine. Anal. Bioanal. Chem. 2020, 412, 2721–2730. [Google Scholar] [CrossRef] [Green Version]
- Zeh, C.; Ndiege, K.; Inzaule, S.; Achieng, R.; Williamson, J.; Chang, J.C.W.; Ellenberger, D.; Nkengasong, J. Evaluation of the Performance of Abbott M2000 and Roche COBAS Ampliprep/COBAS Taqman Assays for HIV-1 Viral Load Determination Using Dried Blood Spots and Dried Plasma Spots in Kenya. PLoS ONE 2017, 12, e0179316. [Google Scholar] [CrossRef]
- Dwivedi, J.; Namdev, K.K.; Chilkoti, D.C.; Verma, S.; Sharma, S. An Improved LC-ESI-MS/MS Method to Quantify Pregabalin in Human Plasma and Dry Plasma Spot for Therapeutic Monitoring and Pharmacokinetic Applications. Ther. Drug Monit. 2018, 40, 610–619. [Google Scholar] [CrossRef]
- Cafaro, A.; Pigliasco, F.; Barco, S.; Penco, F.; Schena, F.; Caorsi, R.; Volpi, S.; Tripodi, G.; Gattorno, M.; Cangemi, G. A Novel LC—MS/MS-Based Method for the Diagnosis of ADA2 Deficiency from Dried Plasma Spot. Molecules 2021, 26, 5707. [Google Scholar] [CrossRef]
- Sturm, R.; Henion, J.; Abbott, R.; Wang, P. Novel Membrane Devices and Their Potential Utility in Blood Sample Collection Prior to Analysis of Dried Plasma Spots. Bioanalysis 2015, 7, 1987–2002. [Google Scholar] [CrossRef]
- Hauser, J.; Lenk, G.; Ullah, S.; Beck, O.; Stemme, G.; Roxhed, N. An Autonomous Microfluidic Device for Generating Volume-Defined Dried Plasma Spots. Anal. Chem. 2019, 91, 7125–7130. [Google Scholar] [CrossRef]
- D’urso, A.; Cangemi, G.; Barco, S.; Striano, P.; D’avolio, A.; De Grazia, U. LC-MS/MS-Based Quantification of 9 Antiepileptic Drugs From a Dried Sample Spot Device. Ther. Drug Monit. 2019, 41, 331–339. [Google Scholar] [CrossRef]
- Barone, R.; Conti, M.; Cojutti, P.G.; Gatti, M.; Viale, P.; Pea, F. Fast and Simple Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry Method for Therapeutic Drug Monitoring of Dalbavancin in Long-Term Treatment of Subacute and/or Chronic Infections. Pharmaceutics 2023, 15, 480. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Conti, M.; Cojutti, P.G.; Gatti, M.; Viale, P.; Pea, F. Fast and Sensitive Analysis of Cefiderocol in Human Plasma Microsamples by Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry for Therapeutic Drug Monitoring. Antibiotics 2023, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- D’Avolio, A.; Simiele, M.; Siccardi, M.; Baietto, L.; Sciandra, M.; Bonora, S.; Di Perri, G. HPLC-MS Method for the Quantification of Nine Anti-HIV Drugs from Dry Plasma Spot on Glass Filter and Their Long Term Stability in Different Conditions. J. Pharm. Biomed. Anal. 2010, 52, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, A.; Motta, I.; Milia, M.G.; Rostagno, R.; Simiele, M.; Libanore, V.; Fontana, S.; D’Avolio, A.; Ghisetti, V.; Di Perri, G.; et al. Dried Plasma/Blood Spots for Monitoring Antiretroviral Treatment Efficacy and Pharmacokinetics: A Cross-Sectional Study in Rural Burundi. Br. J. Clin. Pharmacol. 2015, 79, 801–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Jiang, Y.; Lin, T.; Wan, Q.; Yang, X.; Xu, G.; Huang, J.; Li, Z. Amantadine Hydrochloride Monitoring by Dried Plasma Spot Technique: High-Performance Liquid Chromatography-Tandem Mass Spectrometry Based Clinical Assay. J. Sep. Sci. 2020, 43, 2264–2269. [Google Scholar] [CrossRef]
- Avataneo, V.; D’Avolio, A.; Cusato, J.; Cantù, M.; De Nicolò, A. LC-MS Application for Therapeutic Drug Monitoring in Alternative Matrices. J. Pharm. Biomed. Anal. 2019, 166, 40–51. [Google Scholar] [CrossRef]
- Petrides, A.K.; Melanson, S.E.F.; Kantartjis, M.; Le, R.D.; Demetriou, C.A.; Flood, J.G. Monitoring Opioid and Benzodiazepine Use and Abuse: Is Oral Fluid or Urine the Preferred Specimen Type? Clin. Chim. Acta 2018, 481, 75–82. [Google Scholar] [CrossRef]
- Bluett, J.; Riba-Garcia, I.; Hollywood, K.; Verstappen, S.M.M.; Barton, A.; Unwin, R.D. A HPLC-SRM-MS Based Method for the Detection and Quantification of Methotrexate in Urine at Doses Used in Clinical Practice for Patients with Rheumatological Disease: A Potential Measure of Adherence. Analyst 2015, 140, 1981–1987. [Google Scholar] [CrossRef]
- De Nicolò, A.; Avataneo, V.; Rabbia, F.; Sciandra, M.; Tosello, F.; Cusato, J.; Perlo, E.; Mulatero, P.; Veglio, F.; Di Perri, G.; et al. UHPLC–MS/MS Method with Sample Dilution to Test Therapeutic Adherence through Quantification of Ten Antihypertensive Drugs in Urine Samples. J. Pharm. Biomed. Anal. 2017, 142, 279–285. [Google Scholar] [CrossRef]
- Simiele, M.; Carcieri, C.; De Nicolò, A.; Ariaudo, A.; Sciandra, M.; Calcagno, A.; Bonora, S.; Di Perri, G.; D’Avolio, A. A LC-MS Method to Quantify Tenofovir Urinary Concentrations in Treated Patients. J. Pharm. Biomed. Anal. 2015, 114, 8–11. [Google Scholar] [CrossRef]
- Forman, M.; Valsamakis, A.; Arav-Boger, R. Dried Urine Spots for Detection and Quantification of Cytomegalovirus in Newborns. Diagn. Microbiol. Infect. Dis. 2012, 73, 326–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dirbashi, O.Y.; Kölker, S.; Ng, D.; Fisher, L.; Rupar, T.; Lepage, N.; Rashed, M.S.; Santa, T.; Goodman, S.I.; Geraghty, M.T.; et al. Diagnosis of Glutaric Aciduria Type 1 by Measuring 3-Hydroxyglutaric Acid in Dried Urine Spots by Liquid Chromatography Tandem Mass Spectrometry. J. Inherit. Metab. Dis. 2011, 34, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.; Pratt, S.M.; Curran, D.A.; Stanczyk, F.Z. Evaluating Urinary Estrogen and Progesterone Metabolites Using Dried Filter Paper Samples and Gas Chromatography with Tandem Mass Spectrometry (GC-MS/MS). BMC Chem. 2019, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Lai, K.K.Y.; Sadrzadeh, S.M.H. Simultaneous Detection of 19 Drugs of Abuse on Dried Urine Spot by Liquid Chromatography-Tandem Mass Spectrometry. Clin. Biochem. 2013, 46, 1118–1124. [Google Scholar] [CrossRef]
- Verstraete, A.G. Detection Times of Drugs of Abuse in Blood, Urine, and Oral Fluid. Ther. Drug Monit. 2004, 26, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Pope, J.D.; Black, M.J.; Drummer, O.H.; Schneider, H.G. Challenges for Detecting Valproic Acid in a Nontargeted Urine Drug Screening Method. Ther. Drug Monit. 2017, 39, 457–460. [Google Scholar] [CrossRef]
- Gonzalez, D.; Melloni, C.; Poindexter, B.B.; Yogev, R.; Atz, A.M.; Sullivan, J.E.; Mendley, S.R.; Delmore, P.; Delinsky, A.; Zimmerman, K.; et al. Simultaneous Determination of Trimethoprim and Sulfamethoxazole in Dried Plasma and Urine Spots. Bioanalysis 2015, 7, 1137–1149. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Y.; Duan, G.; Wang, X.; Shen, B.; Xiang, P. Simultaneous Determination of Selegiline, Desmethylselegiline, R/S-Methamphetamine, and R/S-Amphetamine on Dried Urine Spots by LC/MS/MS: Application to a Pharmacokinetic Study in Urine. Front. Chem. 2019, 7, 248. [Google Scholar] [CrossRef] [Green Version]
- Protti, M.; Mandrioli, R.; Mercolini, L. Microsampling and LC-MS/MS for Antidoping Testing of Glucocorticoids in Urine. Bioanalysis 2020, 12, 769–782. [Google Scholar] [CrossRef]
- Fleishaker, J.C. Models and Methods for Predicting Drug Transfer into Human Milk. Adv. Drug Deliv. Rev. 2003, 55, 643–652. [Google Scholar] [CrossRef]
- Hale, T.W. Maternal Medications during Breastfeeding. Clin. Obstet. Gynecol. 2004, 47, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Fríguls, B.; Joya, X.; García-Algar, O.; Pallás, C.R.; Vall, O.; Pichini, S. A Comprehensive Review of Assay Methods to Determine Drugs in Breast Milk and the Safety of Breastfeeding When Taking Drugs. Anal. Bioanal. Chem. 2010, 397, 1157–1179. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, S.J.; Wong, A.; Joyce, D.A. A Liquid Chromatography-Tandem Mass Spectrometry Method for Quantifying Amisulpride in Human Plasma and Breast Milk, Applied to Measuring Drug Transfer to a Fully Breast-Fed Neonate. Ther. Drug Monit. 2016, 38, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Palombi, L.; Pirillo, M.F.; Marchei, E.; Jere, H.; Sagno, J.B.; Luhanga, R.; Floridia, M.; Andreotti, M.; Galluzzo, C.M.; Pichini, S.; et al. Concentrations of Tenofovir, Lamivudine and Efavirenz in Mothers and Children Enrolled under the Option B-Plus Approach in Malawi. J. Antimicrob. Chemother. 2016, 71, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Schoretsanitis, G.; Augustin, M.; Saßmannshausen, H.; Franz, C.; Gründer, G.; Paulzen, M. Antidepressants in Breast Milk; Comparative Analysis of Excretion Ratios. Arch. Womens Ment. Health 2019, 22, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Kubono, N.; Deguchi, S.; Sugihara, M.; Itoh, H.; Kanayama, N.; Kawakami, J. Amlodipine Passage into Breast Milk in Lactating Women with Pregnancy-Induced Hypertension and Its Estimation of Infant Risk for Breastfeeding. J. Hum. Lact. 2015, 31, 301–306. [Google Scholar] [CrossRef]
- Ramírez-Ramírez, A.; Sánchez-Serrano, E.; Loaiza-Flores, G.; Plazola-Camacho, N.; Rodríguez-Delgado, R.G.; Figueroa-Damián, R.; Domínguez-Castro, M.; López-Martínez, M.; Flores-García, Z.; Hernández-Pineda, J. Simultaneous Quantification of Four Antiretroviral Drugs in Breast Milk Samples from HIV-Positive Women by an Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) Method. PLoS ONE 2018, 13, e0191236. [Google Scholar] [CrossRef] [Green Version]
- Waitt, C.; Olagunju, A.; Nakalema, S.; Kyohaire, I.; Owen, A.; Lamorde, M.; Khoo, S. Plasma and Breast Milk Pharmacokinetics of Emtricitabine, Tenofovir and Lamivudine Using Dried Blood and Breast Milk Spots in Nursing African Mother-Infant Pairs. J. Antimicrob. Chemother. 2018, 73, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Olagunju, A.; Amara, A.; Waitt, C.; Else, L.; Penchala, S.D.; Bolaji, O.; Soyinka, J.; Siccardi, M.; Back, D.; Owen, A.; et al. Validation and Clinical Application of a Method to Quantify Nevirapine in Dried Blood Spots and Dried Breast-Milk Spots. J. Antimicrob. Chemother. 2015, 70, 2816–2822. [Google Scholar] [CrossRef] [Green Version]
- Saito, J.; Yakuwa, N.; Kaneko, K.; Nakajima, K.; Takai, C.; Goto, M.; Yamatani, A.; Murashima, A. Clinical Application of the Dried Milk Spot Method for Measuring Tocilizumab Concentrations in the Breast Milk of Patients with Rheumatoid Arthritis. Int. J. Rheum. Dis. 2019, 22, 1130–1137. [Google Scholar] [CrossRef]
- Alvim, J.; Lopes, B.R.; Cass, Q.B. Simultaneous Enantioselective Quantification of Fluoxetine and Norfluoxetine in Human Milk by Direct Sample Injection Using 2-Dimensional Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1451, 120–126. [Google Scholar] [CrossRef]
- Müller, M.J.; Preuß, C.; Paul, T.; Streit, F.; Brandhorst, G.; Seeliger, S. Serotonergic Overstimulation in a Preterm Infant after Sertraline Intake via Breastmilk. Breastfeed Med. 2013, 8, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Patsalos, P.N.; Berry, D.J. Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva. Ther. Drug Monit. 2013, 35, 4–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langman, L.J. The Use of Oral Fluid for Therapeutic Drug Management: Clinical and Forensic Toxicology. Ann. N. Y. Acad. Sci. 2007, 1098, 145–166. [Google Scholar] [CrossRef]
- Liu, H.; Delgado, M.R. Therapeutic Drug Concentration Monitoring Using Saliva Samples. Focus on Anticonvulsants. Clin. Pharmacokinet. 1999, 36, 453–470. [Google Scholar] [CrossRef]
- O’Neal, C.L.; Crouch, D.J.; Rollins, D.E.; Fatah, A.; Cheever, M.L. Correlation of Saliva Codeine Concentrations with Plasma Concentrations after Oral Codeine Administration. J. Anal. Toxicol. 1999, 23, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westenberg, H.G.M.; van der Kleijn, E.; Oei, T.T.; de Zeeuw, R.A. Kinetics of Carbamazepine and Carbamazepine-Epoxide, Determined by Use of Plasma and Saliva. Clin. Pharmacol. Ther. 1978, 23, 320–328. [Google Scholar] [CrossRef]
- MacKichan, J.; Duffner, P.; Cohen, M. Salivary Concentrations and Plasma Protein Binding of Carbamazepine and Carbamazepine 10,11-Epoxide in Epileptic Patients. Br. J. Clin. Pharmacol. 1981, 12, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Knott, C.; Reynolds, F. The Place of Saliva in Antiepileptic Drug Monitoring. Ther. Drug Monit. 1984, 6, 35–41. [Google Scholar] [CrossRef]
- Schmidt, D.; Kupferberg, H.J. Diphenylhydantoin, Phenobarbital, and Primidone in Saliva, Plasma, and Cerebrospinal Fluid. Epilepsia 1975, 16, 735–741. [Google Scholar] [CrossRef]
- Elmongy, H.; Abdel-Rehim, M. Saliva as an Alternative Specimen to Plasma for Drug Bioanalysis: A Review. TrAC Trends Anal. Chem. 2016, 83, 70–79. [Google Scholar] [CrossRef]
- Gallardo, E.; Barroso, M.; Queiroz, J.A. Current Technologies and Considerations for Drug Bioanalysis in Oral Fluid. Bioanalysis 2009, 1, 637–667. [Google Scholar] [CrossRef] [PubMed]
- Lødøen, C.P.; Eng Eibak, L.E.; Rasmussen, K.E.; Pedersen-Bjergaard, S.; Andersen, T.; Gjelstad, A. Storage of Oral Fluid as Dried Spots on Alginate and Chitosan Foam—A New Concept for Oral Fluid Collection. Bioanalysis 2013, 5, 317–325. [Google Scholar] [CrossRef]
- Hsiao, Y.C.; Lin, S.Y.; Chien, K.Y.; Chen, S.F.; Wu, C.C.; Chang, Y.T.; Chi, L.M.; Chu, L.J.; Chiang, W.F.; Chien, C.Y.; et al. An Immuno-MALDI Mass Spectrometry Assay for the Oral Cancer Biomarker, Matrix Metalloproteinase-1, in Dried Saliva Spot Samples. Anal. Chim. Acta 2020, 1100, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, Y.; Oikawa, M.T.; Mendelson, E.; Osovsky, M.; Klinger, G.; Bilavsky, E. Diagnosing Congenital Cytomegalovirus by Saliva on Guthrie Paper. J. Clin. Virol. 2020, 126, 104337. [Google Scholar] [CrossRef]
- Bills, B.; Manicke, N. Using Sesame Seed Oil to Preserve and Preconcentrate Cannabinoids for Paper Spray Mass Spectrometry. J. Am. Soc. Mass Spectrom 2020, 31, 675–684. [Google Scholar] [CrossRef]
- Han, Y.; Li, X.L.; Zhang, M.; Wang, J.; Zeng, S.; Min, J.Z. Potential Use of a Dried Saliva Spot (DSS) in Therapeutic Drug Monitoring and Disease Diagnosis. J. Pharm. Anal. 2022, 12, 815–823. [Google Scholar] [CrossRef]
- Antunes, M.V.; Raymundo, S.; Cezimbra Da Silva, A.C.; Muller, V.V.; Vicente Neto, O.J.; Schwartsmann, G.; Linden, R. Determination of Endogenous Concentrations of Uracil and Dihydrouracil in Dried Saliva Spots by LC-MS/MS: Method Development, Validation, and Clinical Application. Ther. Drug Monit. 2019, 41, 383–390. [Google Scholar] [CrossRef]
- Marasca, C.; Protti, M.; Mandrioli, R.; Atti, A.R.; Armirotti, A.; Cavalli, A.; De Ronchi, D.; Mercolini, L. Whole Blood and Oral Fluid Microsampling for the Monitoring of Patients under Treatment with Antidepressant Drugs. J. Pharm. Biomed. Anal. 2020, 188, 113384. [Google Scholar] [CrossRef]
Matrix | Microsampling Devices | References |
---|---|---|
Blood | Dried Blood Spot | [11,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75] |
Volumetric Absorptive Paper Minidiscs (VAPD-mini) | [76] | |
Hemapen® | [77] | |
VAMS | [78,79,80,85,86,87,88,89,90,91,92,93,94,96] | |
Plasma | Dried Plasma Spot | [5,7,8,63,71,95,96,97,98,99,100,101,102,103,104,105,117] |
Novel membrane devices | [98] | |
Urine | Dried Urine Spot | [108,109,110,111,112,113,114,115,116,117,118] |
VAMS spotted with urine | [80,119] | |
Breast Milk | Dried Breast Milk Spot | [16,120,121,122,124,125,126,127,128,129,130,131,132] |
Saliva | Dried Saliva Spot | [18,135,137,138,140,141,143,144,145,146,147,148] |
VAMS spotted with saliva | [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cafaro, A.; Conti, M.; Pigliasco, F.; Barco, S.; Bandettini, R.; Cangemi, G. Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review. Biomedicines 2023, 11, 1962. https://doi.org/10.3390/biomedicines11071962
Cafaro A, Conti M, Pigliasco F, Barco S, Bandettini R, Cangemi G. Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review. Biomedicines. 2023; 11(7):1962. https://doi.org/10.3390/biomedicines11071962
Chicago/Turabian StyleCafaro, Alessia, Matteo Conti, Federica Pigliasco, Sebastiano Barco, Roberto Bandettini, and Giuliana Cangemi. 2023. "Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review" Biomedicines 11, no. 7: 1962. https://doi.org/10.3390/biomedicines11071962
APA StyleCafaro, A., Conti, M., Pigliasco, F., Barco, S., Bandettini, R., & Cangemi, G. (2023). Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review. Biomedicines, 11(7), 1962. https://doi.org/10.3390/biomedicines11071962