In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Methods and Materials
2.1. Differential Expression of BIRC5/HIF1A/FLT4 in Normal, Tumor, and Metastatic Samples and a Correlation Analysis
2.2. Validation of Pathological Stages of BIRC5/HIF1A/FLT4 Oncogenes in NSCLC and Their Prognostic Relevance
2.3. Protein–Protein Interaction (PPI) Network Construction and Gene Enrichment Analysis (GEA)
2.4. Analysis of BIRC5/HIF1A/FLT4 Genetic Mutations in LUAD Solid Tumors
2.5. Analysis of scRNA-Seq Datasets Was Performed to Profile the Tumor Microenvironment (TME) in Primary and Metastatic Sites of Non-Small Cell Lung Cancer (NSCLC)
2.6. Correlation Analysis of Immune Cell Infiltration and BIRC5/HIF1A/FLT4 Expression
2.7. In Silico Flow Cytometric Analysis Using NSCLC Single RNA-Seq Bulk Tumors
2.8. Computational Evaluation of the Drug Likeness, and Properties of HN-N07
2.9. Receptor–Ligand Binding Interaction Predictions through an In Silico Molecular Docking Analysis
3. Results
3.1. Identification of Differentially Expressed Genes (DEGs)
3.2. Differential Expression of BIRC5/HIF1A/FLT4 in Normal, Tumor, and Metastatic NSCLC Samples
3.3. Validation of Pathological Stages of the BIRC5/HIF1A/FLT4 Oncogenes in NSCLC and Their Prognoses
3.4. PPI Network Construction and the GEA
3.5. Analysis of BIRC5/HIF1A/FLT4 Genetic Mutations in LUAD Solid Tumors
3.6. Single-Cell RNA Sequencing (scRNA-Seq) Profiling Unveiled the High Abundance and Immunosuppressive Role of BIRC5/HIF1A/FLT4 within the TME of Both Primary and Metastatic Non-Small Cell Lung Cancers (NSCLC)
3.7. Correlations between BIRC5/HIF1A/FLT4 and Infiltrating Immune Cells in NSCLC Patients
3.8. Digital Flow Cytometric Analysis of NSCLC RNA-Seq Bulk Tumors Revealed Abundant Infiltrating Immune Cells Associated with Poor Clinical Outcomes
3.9. Rationale for Drug Design via Scaffold Hopping to Determine the Physicochemical Properties of the Bioactive Compound—HN-N 07—And Its Anticancer Activities against NSCLC Cell Lines
3.10. BIRC5/HIF1A/FLT4 Are Potential Target Genes for the HN-N07 Compound
3.11. Molecular Docking Revealed Putative Interactions of HN-N07 with the BIRC5, FLT4, and HIFA Oncogenes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Manochakian, R.; James, L.; Azzouqa, A.G.; Shi, H.; Zhang, Y.; Zhao, Y.; Zhou, K.; Lou, Y. Emerging therapeutic agents for advanced non-small cell lung cancer. J. Hematol. Oncol. 2020, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, L.Q.; Huang, J.F.; Liu, K.; Chuai, Z.R.; Yang, Z.; Wang, Y.X.; Shi, D.C.; Liu, Q.; Huang, Q.; et al. BRAF mutations in patients with non-small cell lung cancer: A systematic review and meta-analysis. PLoS ONE 2014, 9, e101354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciuleanu, T.; Brodowicz, T.; Zielinski, C.; Kim, J.H.; Krzakowski, M.; Laack, E.; Wu, Y.L.; Bover, I.; Begbie, S.; Tzekova, V.; et al. Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: A randomised, double-blind, phase 3 study. Lancet 2009, 374, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Spiro, S.G.; Silvestri, G.A. One hundred years of lung cancer. Am. J. Respir. Crit. Care Med. 2005, 172, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ares, L.; de Marinis, F.; Dediu, M.; Thomas, M.; Pujol, J.L.; Bidoli, P.; Molinier, O.; Sahoo, T.P.; Laack, E.; Reck, M.; et al. Maintenance therapy with pemetrexed plus best supportive care versus placebo plus best supportive care after induction therapy with pemetrexed plus cisplatin for advanced non-squamous non-small-cell lung cancer (PARAMOUNT): A double-blind, phase 3, randomised controlled trial. Lancet Oncol. 2012, 13, 247–255. [Google Scholar] [CrossRef]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef]
- Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: A meta-analysis using updated data on individual patients from 52 randomised clinical trials. Non-small Cell Lung Cancer Collaborative Group. BMJ 1995, 311, 899–909. [Google Scholar] [CrossRef]
- Li, R.Z.; Fan, X.X.; Duan, F.G.; Jiang, Z.B.; Pan, H.D.; Luo, L.X.; Zhou, Y.L.; Li, Y.; Yao, Y.J.; Yao, X.J.; et al. Proscillaridin A induces apoptosis and suppresses non-small-cell lung cancer tumor growth via calcium-induced DR4 upregulation. Cell Death Dis. 2018, 9, 696. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Lu, T.; Yan, Z.; Lu, W.; Zhou, F.; Lyu, X.; Xu, B.; Jiang, H.; Chen, K.; Luo, C.; et al. Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins. Eur. J. Med. Chem. 2019, 182, 111633. [Google Scholar] [CrossRef]
- Wheatley, S.P.; Altieri, D.C. Survivin at a glance. J. Cell Sci. 2019, 132, jcs223826. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, P.K.; Goel, A.; Mittal, R.D. Survivin: A molecular biomarker in cancer. Indian J. Med. Res. 2015, 141, 389–397. [Google Scholar] [CrossRef]
- Ma, T.; Gu, J.; Wen, H.; Xu, F.; Ge, D. BIRC5 Modulates PD-L1 Expression and Immune Infiltration in Lung Adenocarcinoma. J. Cancer 2022, 13, 3140–3150. [Google Scholar] [CrossRef]
- Casati, C.; Dalerba, P.; Rivoltini, L.; Gallino, G.; Deho, P.; Rini, F.; Belli, F.; Mezzanzanica, D.; Costa, A.; Andreola, S.; et al. The apoptosis inhibitor protein survivin induces tumor-specific CD8+ and CD4+ T cells in colorectal cancer patients. Cancer Res. 2003, 63, 4507–4515. [Google Scholar]
- Becker, J.C.; Andersen, M.H.; Hofmeister-Müller, V.; Wobser, M.; Frey, L.; Sandig, C.; Walter, S.; Singh-Jasuja, H.; Kämpgen, E.; Opitz, A.; et al. Survivin-specific T-cell reactivity correlates with tumor response and patient survival: A phase-II peptide vaccination trial in metastatic melanoma. Cancer Immunol. Immunother. 2012, 61, 2091–2103. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Ambrosini, G.; Chu, E.Y.; Plescia, J.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998, 396, 580–584. [Google Scholar] [CrossRef]
- Coumar, M.S.; Tsai, F.Y.; Kanwar, J.R.; Sarvagalla, S.; Cheung, C.H. Treat cancers by targeting survivin: Just a dream or future reality? Cancer Treat. Rev. 2013, 39, 802–811. [Google Scholar] [CrossRef]
- Ambrosini, G.; Adida, C.; Altieri, D.C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 1997, 3, 917–921. [Google Scholar] [CrossRef]
- Li, F.; Aljahdali, I.; Ling, X. Cancer therapeutics using survivin BIRC5 as a target: What can we do after over two decades of study? J. Exp. Clin. Cancer Res. 2019, 38, 368. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Chen, J. Clinicopathological significance of survivin expression in patients with cervical cancer: A systematic meta-analysis. Bioengineered 2017, 8, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Ferguson Bennit, H.; Asuncion Valenzuela, M.M.; Turay, D.; Diaz Osterman, C.J.; Moyron, R.B.; Esebanmen, G.E.; Ashok, A.; Wall, N.R. Localization and upregulation of survivin in cancer health disparities: A clinical perspective. Biologics 2015, 9, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fäldt Beding, A.; Larsson, P.; Helou, K.; Einbeigi, Z.; Parris, T.Z. Pan-cancer analysis identifies BIRC5 as a prognostic biomarker. BMC Cancer 2022, 22, 322. [Google Scholar] [CrossRef] [PubMed]
- Sah, N.K.; Khan, Z.; Khan, G.J.; Bisen, P.S. Structural, functional and therapeutic biology of survivin. Cancer Lett. 2006, 244, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res. 2008, 14, 5000–5005. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, X.; Zhao, J.; Chen, H.; Yun, Y.; Yang, G.; Jiang, Y.; Pan, Y.; Yuan, S.; Huang, J.; et al. Association of BIRC5 Gene Polymorphism with the Collateral Circulation and Severity of Large Artery Atherosclerotic Stroke. Int. J. Clin. Pract. 2022, 2022, 9177545. [Google Scholar] [CrossRef]
- Usatyuk, P.V.; Fu, P.; Mohan, V.; Epshtein, Y.; Jacobson, J.R.; Gomez-Cambronero, J.; Wary, K.K.; Bindokas, V.; Dudek, S.M.; Salgia, R.; et al. Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J. Biol. Chem. 2014, 289, 13476–13491. [Google Scholar] [CrossRef] [Green Version]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Shibuya, M. VEGF-VEGFR System as a Target for Suppressing Inflammation and other Diseases. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 135–144. [Google Scholar] [CrossRef]
- Siveen, K.S.; Prabhu, K.; Krishnankutty, R.; Kuttikrishnan, S.; Tsakou, M.; Alali, F.Q.; Dermime, S.; Mohammad, R.M.; Uddin, S. Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Curr. Vasc. Pharmacol. 2017, 15, 339–351. [Google Scholar] [CrossRef]
- Carlevaro, M.F.; Cermelli, S.; Cancedda, R.; Descalzi Cancedda, F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: Auto-paracrine role during endochondral bone formation. J. Cell Sci. 2000, 113 Pt 1, 59–69. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar]
- Marton, I.; Knezevic, F.; Ramic, S.; Milosevic, M.; Tomas, D. Immunohistochemical expression and prognostic significance of HIF-1α and VEGF-C in neuroendocrine breast cancer. Anticancer Res. 2012, 32, 5227–5232. [Google Scholar]
- Nakajima, T.; Anayama, T.; Koike, T.; Shingyoji, M.; Castle, L.; Kimura, H.; Yoshino, I.; Yasufuku, K. Endobronchial ultrasound doppler image features correlate with mRNA expression of HIF1-α and VEGF-C in patients with non-small-cell lung cancer. J. Thorac. Oncol. 2012, 7, 1661–1667. [Google Scholar] [CrossRef] [Green Version]
- Bréchot, J.M.; Chevret, S.; Charpentier, M.C.; Appere de Vecchi, C.; Capron, F.; Prudent, J.; Rochemaure, J.; Chastang, C. Blood vessel and lymphatic vessel invasion in resected nonsmall cell lung carcinoma. Correlation with TNM stage and disease free and overall survival. Cancer 1996, 78, 2111–2118. [Google Scholar] [CrossRef]
- Arigami, T.; Natsugoe, S.; Uenosono, Y.; Yanagita, S.; Ehi, K.; Arima, H.; Mataki, Y.; Nakajo, A.; Ishigami, S.; Aikou, T. Vascular endothelial growth factor-C and -D expression correlates with lymph node micrometastasis in pN0 early gastric cancer. J. Surg. Oncol. 2009, 99, 148–153. [Google Scholar] [CrossRef]
- Tsurusaki, T.; Kanda, S.; Sakai, H.; Kanetake, H.; Saito, Y.; Alitalo, K.; Koji, T. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br. J. Cancer 1999, 80, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Fielder, W.; Graeven, U.; Ergün, S.; Verago, S.; Kilic, N.; Stockschläder, M.; Hossfeld, D.K. Expression of FLT4 and its ligand VEGF-C in acute myeloid leukemia. Leukemia 1997, 11, 1234–1237. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, W.; Zhang, Y.; Qi, L.; Zhao, Q.; Li, N.; Lu, Y.; Zhang, L.; Zhou, F.; Wu, Y.; et al. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy 2022, 18, 1385–1400. [Google Scholar] [CrossRef]
- Veikkola, T.; Karkkainen, M.; Claesson-Welsh, L.; Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 2000, 60, 203–212. [Google Scholar]
- Kaipainen, A.; Korhonen, J.; Mustonen, T.; van Hinsbergh, V.W.; Fang, G.H.; Dumont, D.; Breitman, M.; Alitalo, K. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 1995, 92, 3566–3570. [Google Scholar] [CrossRef]
- Breiteneder-Geleff, S.; Soleiman, A.; Kowalski, H.; Horvat, R.; Amann, G.; Kriehuber, E.; Diem, K.; Weninger, W.; Tschachler, E.; Alitalo, K.; et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 1999, 154, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Aprelikova, O.; Pajusola, K.; Partanen, J.; Armstrong, E.; Alitalo, R.; Bailey, S.K.; McMahon, J.; Wasmuth, J.; Huebner, K.; Alitalo, K. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. Cancer Res. 1992, 52, 746–748. [Google Scholar] [PubMed]
- Swartz, M.A.; Skobe, M. Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc. Res. Tech. 2001, 55, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Krilleke, D.; Shima, D.T. VEGF function in vascular pathogenesis. Exp. Cell Res. 2006, 312, 527–537. [Google Scholar] [CrossRef]
- Takahashi, H.; Shibuya, M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. 2005, 109, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling—In control of vascular function. Nat. Rev. Mol. Cell Biol. 2006, 7, 359–371. [Google Scholar] [CrossRef]
- Tanno, S.; Ohsaki, Y.; Nakanishi, K.; Toyoshima, E.; Kikuchi, K. Human small cell lung cancer cells express functional VEGF receptors, VEGFR-2 and VEGFR-3. Lung Cancer 2004, 46, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, T.; Jussila, L.; Veikkola, T.; Karpanen, T.; Kettunen, M.I.; Pulkkanen, K.J.; Kauppinen, R.; Jackson, D.G.; Kubo, H.; Nishikawa, S.; et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 2001, 7, 199–205. [Google Scholar] [CrossRef]
- Okada, K.; Osaki, M.; Araki, K.; Ishiguro, K.; Ito, H.; Ohgi, S. Expression of hypoxia-inducible factor (HIF-1alpha), VEGF-C and VEGF-D in non-invasive and invasive breast ductal carcinomas. Anticancer Res. 2005, 25, 3003–3009. [Google Scholar]
- Li, Y.; Hodge, J.; Liu, Q.; Wang, J.; Wang, Y.; Evans, T.D.; Altomare, D.; Yao, Y.; Murphy, E.A.; Razani, B.; et al. TFEB is a master regulator of tumor-associated macrophages in breast cancer. J. Immunother. Cancer 2020, 8, e000543. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, L.Z.; Cheng, J.T.; Lam, W.S.T.; Ma, X.; Xiang, X.; Wong, A.L.; Goh, B.C.; Gong, Q.; Sethi, G.; et al. Targeting Hypoxia-Inducible Factor-1-Mediated Metastasis for Cancer Therapy. Antioxid. Redox Signal. 2021, 34, 1484–1497. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018, 834, 188–196. [Google Scholar] [CrossRef]
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pal, M. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview. Curr. Med. Chem. 2013, 20, 4386–4410. [Google Scholar] [CrossRef]
- Jasial, S.; Hu, Y.; Bajorath, J. Assessing the Growth of Bioactive Compounds and Scaffolds over Time: Implications for Lead Discovery and Scaffold Hopping. J. Chem. Inf. Model. 2016, 56, 300–307. [Google Scholar] [CrossRef]
- Heffeter, P.; Pape, V.F.S.; Enyedy, É.A.; Keppler, B.K.; Szakacs, G.; Kowol, C.R. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxid. Redox Signal 2019, 30, 1062–1082. [Google Scholar] [CrossRef] [Green Version]
- Lawal, B.; Kuo, Y.C.; Rachmawati Sumitra, M.; Wu, A.T.H.; Huang, H.S. Identification of a novel immune-inflammatory signature of COVID-19 infections, and evaluation of pharmacokinetics and therapeutic potential of RXn-02, a novel small-molecule derivative of quinolone. Comput. Biol. Med. 2022, 148, 105814. [Google Scholar] [CrossRef]
- Liu, D.; Gharavi, R.; Pitta, M.; Gleichmann, M.; Mattson, M.P. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol. Med. 2009, 11, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Huang, K.F.; Lin, P.Y.; Huang, F.C.; Chen, C.L.; Chen, T.C.; Guh, J.H.; Lin, J.J.; Huang, H.S. Synthesis, antiproliferative activities and telomerase inhibition evaluation of novel asymmetrical 1,2-disubstituted amidoanthraquinone derivatives. Eur. J. Med. Chem. 2012, 47, 323–336. [Google Scholar] [CrossRef]
- Chang, Y.L.; Lee, H.J.; Liu, S.T.; Lin, Y.S.; Chen, T.C.; Hsieh, T.Y.; Huang, H.S.; Huang, S.M. Different roles of p53 in the regulation of DNA damage caused by 1,2-heteroannelated anthraquinones and doxorubicin. Int. J. Biochem. Cell Biol. 2011, 43, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Bartha, Á.; Győrffy, B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int. J. Mol. Sci. 2021, 22, 2622. [Google Scholar] [CrossRef] [PubMed]
- von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003, 31, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á.; Győrffy, B. muTarget: A platform linking gene expression changes and mutation status in solid tumors. Int. J. Cancer 2021, 148, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Neu, K.E.; Tang, Q.; Wilson, P.C.; Khan, A.A. Single-Cell Genomics: Approaches and Utility in Immunology. Trends Immunol. 2017, 38, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Giladi, A.; Amit, I. Single-Cell Genomics: A Stepping Stone for Future Immunology Discoveries. Cell 2018, 172, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Wang, J.; Han, Y.; Dong, X.; Ge, J.; Zheng, R.; Shi, X.; Wang, B.; Li, Z.; Ren, P.; et al. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021, 49, D1420–D1430. [Google Scholar] [CrossRef]
- Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017, 77, e108–e110. [Google Scholar] [CrossRef] [Green Version]
- Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; et al. TISIDB: An integrated repository portal for tumor-immune system interactions. Bioinformatics 2019, 35, 4200–4202. [Google Scholar] [CrossRef]
- Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol. Biol. 2018, 1711, 243–259. [Google Scholar] [CrossRef]
- Mokgautsi, N.; Wang, Y.C.; Lawal, B.; Khedkar, H.; Sumitra, M.R.; Wu, A.T.H.; Huang, H.S. Network Pharmacological Analysis through a Bioinformatics Approach of Novel NSC765600 and NSC765691 Compounds as Potential Inhibitors of CCND1/CDK4/PLK1/CD44 in Cancer Types. Cancers 2021, 13, 2523. [Google Scholar] [CrossRef]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef]
- Ali, A.A.; Lee, Y.R.; Chen, T.C.; Chen, C.L.; Lee, C.C.; Shiau, C.Y.; Chiang, C.H.; Huang, H.S. Novel Anthra[1,2-c][1,2,5]Thiadiazole-6,11-Diones as Promising Anticancer Lead Compounds: Biological Evaluation, Characterization & Molecular Targets Determination. PLoS ONE 2016, 11, e0154278. [Google Scholar] [CrossRef] [Green Version]
- Mokgautsi, N.; Kuo, Y.C.; Tang, S.L.; Liu, F.C.; Chen, S.J.; Wu, A.T.H.; Huang, H.S. Anticancer Activities of 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c] quinolin-11-one (SJ10) in Glioblastoma Multiforme (GBM) Chemoradioresistant Cell Cycle-Related Oncogenic Signatures. Cancers 2022, 14, 262. [Google Scholar] [CrossRef]
- Lawal, B.; Liu, Y.L.; Mokgautsi, N.; Khedkar, H.; Sumitra, M.R.; Wu, A.T.H.; Huang, H.S. Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines. Biomedicines 2021, 9, 92. [Google Scholar] [CrossRef]
- Kuhn, E.; Morbini, P.; Cancellieri, A.; Damiani, S.; Cavazza, A.; Comin, C.E. Adenocarcinoma classification: Patterns and prognosis. Pathologica 2018, 110, 5–11. [Google Scholar]
- Steen, C.B.; Liu, C.L.; Alizadeh, A.A.; Newman, A.M. Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx. Methods Mol. Biol. 2020, 2117, 135–157. [Google Scholar] [CrossRef]
- Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem. 2009, 9, 1648–1654. [Google Scholar] [CrossRef]
- Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta 2015, 1856, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Osmani, L.; Askin, F.; Gabrielson, E.; Li, Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin. Cancer Biol. 2018, 52, 103–109. [Google Scholar] [CrossRef]
- Evison, M. The current treatment landscape in the UK for stage III NSCLC. Br. J. Cancer 2020, 123, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Kim, S.Y.; Cheng, H. Update 2020: Management of Non-Small Cell Lung Cancer. Lung 2020, 198, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Li, K.; Wang, Q.; Zhang, L.; Shi, J.; Wang, Z.; Cheng, Y.; He, J.; Shi, Y.; Zhao, Y.; et al. Effect of Anlotinib as a Third-Line or Further Treatment on Overall Survival of Patients with Advanced Non-Small Cell Lung Cancer: The ALTER 0303 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2018, 4, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
- Manzo, A.; Montanino, A.; Carillio, G.; Costanzo, R.; Sandomenico, C.; Normanno, N.; Piccirillo, M.C.; Daniele, G.; Perrone, F.; Rocco, G.; et al. Angiogenesis Inhibitors in NSCLC. Int. J. Mol. Sci. 2017, 18, 2021. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2002, 2, 795–803. [Google Scholar] [CrossRef]
- Ellis, P.M.; Al-Saleh, K. Multitargeted anti-angiogenic agents and NSCLC: Clinical update and future directions. Crit. Rev. Oncol. Hematol. 2012, 84, 47–58. [Google Scholar] [CrossRef]
- Sanhueza, C.; Wehinger, S.; Castillo Bennett, J.; Valenzuela, M.; Owen, G.I.; Quest, A.F. The twisted survivin connection to angiogenesis. Mol. Cancer 2015, 14, 198. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Zhu, J.; Liu, D.Y.; Li, H.Y.; Xu, N.; Hou, M. Over-expression of survivin and VEGF in small-cell lung cancer may predict the poorer prognosis. Med. Oncol. 2014, 31, 775. [Google Scholar] [CrossRef]
- Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Yang, L.; Cao, Z.; Li, F.; Post, D.E.; Van Meir, E.G.; Zhong, H.; Wood, W.C. Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther. 2004, 11, 1215–1223. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhao, C.L.; Li, W. Effect of hypoxia-inducible factor-1alpha on transcription of survivin in non-small cell lung cancer. J. Exp. Clin. Cancer Res. 2009, 28, 29. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.H.; Karna, P.; Cao, Z.; Jiang, B.H.; Zhou, M.; Yang, L. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J. Biol. Chem. 2006, 281, 25903–25914. [Google Scholar] [CrossRef] [Green Version]
- Pezzuto, A.; Perrone, G.; Orlando, N.; Citarella, F.; Ciccozzi, M.; Scarlata, S.; Tonini, G. A close relationship between HIF-1α expression and bone metastases in advanced NSCLC, a retrospective analysis. Oncotarget 2019, 10, 7071–7079. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.; Miao, R.; Zhang, J.; Zhu, H.; Zhang, C.; Zeng, L.; Zhao, Y.; Cheng, W.; Shao, J. Discovery of novel hypoxia-activated, nitroimidazole constructed multi-target kinase inhibitors on the basis of AZD9291 for the treatment of human lung cancer. Bioorg. Med. Chem. 2023, 91, 117384. [Google Scholar] [CrossRef]
- Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 2021, 20, 39–63. [Google Scholar] [CrossRef]
Target | Common Name | Uniprot ID | ChEMBL ID | Target Class |
---|---|---|---|---|
Serotonin 1f (5-HT1f) receptor | HTR1F | P30939 | CHEMBL1805 | Family A–G protein-coupled receptor |
Dopamine D2 receptor (by homology) | DRD2 | P14416 | CHEMBL217 | Family A–G protein-coupled receptor |
Vascular endothelial growth factor receptor 3 | FLT4 | P35916 | CHEMBL1955 | Kinase |
Serine/threonine-protein kinase mTOR | MTOR | P42345 | CHEMBL2842 | Kinase |
Cyclin-dependent kinase 2/cyclin A | CDK2 CCNA1 CCNA2 | P24941 P78396 P20248 | CHEMBL2094128 | Other cytosolic protein |
Dipeptidyl peptidase IV | DPP4 | P27487 | CHEMBL284 | Protease |
Serine/threonine-protein kinase B-raf | BRAF | P15056 | CHEMBL5145 | Kinase |
Dual specificity mitogen-activated protein kinase 1 | MAP2K1 | Q02750 | CHEMBL3587 | Kinase |
Fibroblast growth factor receptor 1 | FGFR1 | P11362 | CHEMBL3650 | Kinase |
Cyclin-dependent kinase 4 | CDK4 | P11802 | CHEMBL331 | Kinase |
Gonadotropin-releasing hormone receptor | GNRHR | P30968 | CHEMBL1855 | Family A–G protein-coupled receptor |
Hypoxia-inducible factor 1 alpha | HIF1A | Q16665 | CHEMBL4261 | Transcription factor |
Hepatocyte growth factor receptor | MET | P08581 | CHEMBL3717 | Kinase |
Peptide N-myristoyltransferase 1 | NMT1 | P30419 | CHEMBL2593 | Enzyme |
HN-N07—BIRC5 Complex ΔG = −8.2 kcal/mol | Flavokawain A—BIRC5 Complex ΔG = −6.8 | ||
---|---|---|---|
Type of Interactions and Number of Bonds | Distance of Interacting Amino Acids | Type of Interactions and Number of Bonds | Distance of Interacting Amino Acids |
Conventional hydrogen bond (3) | PHE93 (2.81 Å), GLU40 (2.02 Å) | Conventional hydrogen bond (3) | PHE93 (2.77 Å), ASP16 (1.79 Å), LYS15 (2.16 Å), |
Carbon hydrogen bond | GLN92, VAL89, LYS91 | Pi-Cation | ARG18 |
Pi-Cation | ARG18 | Alkyl | LEU14, PRO4 |
Pi-sigma | LEU96 | Pi-Alkyl | VAL89, LEU104 |
Pi-Sulfur | PHE86 | ||
Pi-Alkyl | PHE13, PHE101, LYS15 |
HN-N07—FLT4 Complex (ΔG = −7.7 kcal/mol) | Sorafenib—FLT4 Complex (ΔG = −7.9 kcal/mol) | ||
---|---|---|---|
Type of Interactions and Number of Bonds | Distance of Interacting Amino Acids | Type of Interactions and Number of Bonds | Distance of Interacting Amino Acids |
Carbon hydrogen bond | ASP34 | Conventional hydrogen bond (4) | LEU32 (2.85 Å), SER50 (1.79 Å), ASP63 (2.16 Å), LYS48 (2.69 Å) |
Pi-Anion | GLU64 | Halogen | ASN62, PHE47 |
Pi-Sigma | CYS60 | PI-Anion | ASN34 |
Pi-Sulfur | PHE35 | Pi-Sulfur | CYS51 |
Alkyl | ILE46 | Alkyl | ILE46 |
HN-N07—HIF1A Complex ΔG = −8.2 kcal/mol | Belzutifan—HIF1A Complex ΔG = −8.1 kcal/mol | ||
---|---|---|---|
Type of Interactions and Number of Bonds | Distance of Interacting Amino Acids | Type of Interactions and Number of Bonds | Distance of Interacting Amino Acids |
Conventional hydrogen bond (2) | LYS196 (2.37 Å) | Conventional hydrogen bond (2) | LEU128 (5.88 Å), ASN42 (2.47 Å) |
Carbon hydrogen bond | CYS184 | Carbon hydrogen bond | LYS182 |
Pi-Donor Hydrogen Bond | TRP181 | Halogen | TRP181, GLN40, LEU38 |
Pi-Pi-T-shaped | GLN40 | Pi-Alkyl | VAL41 |
Alkyl | LYS182 | ||
Pi-Alkyl | VAL41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-C.; Mokgautsi, N.; Kuo, Y.-C.; Wu, A.T.H.; Huang, H.-S. In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines 2023, 11, 2011. https://doi.org/10.3390/biomedicines11072011
Chen L-C, Mokgautsi N, Kuo Y-C, Wu ATH, Huang H-S. In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines. 2023; 11(7):2011. https://doi.org/10.3390/biomedicines11072011
Chicago/Turabian StyleChen, Lung-Ching, Ntlotlang Mokgautsi, Yu-Cheng Kuo, Alexander T. H. Wu, and Hsu-Shan Huang. 2023. "In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer" Biomedicines 11, no. 7: 2011. https://doi.org/10.3390/biomedicines11072011
APA StyleChen, L. -C., Mokgautsi, N., Kuo, Y. -C., Wu, A. T. H., & Huang, H. -S. (2023). In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines, 11(7), 2011. https://doi.org/10.3390/biomedicines11072011