Cardiovascular Diseases: Therapeutic Potential of SGLT-2 Inhibitors
Abstract
:1. Introduction
2. Empagliflozin
3. Dapagliflozin
4. Canagliflozin
5. Ertugliflozin
6. Bexagliflozin
7. SGLT-2 Inhibitors’ Effects on the Kidney and Heart
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6MWT | 6 min walk test |
AF | Atrial fibrillation |
AFL | Atrial flutter |
CAD | Coronary artery disease |
CKD | Chronic kidney disease |
CVD | Cardiovascular disease |
DAPA-HF | Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure |
DECLARE–TIMI 58 | Dapagliflozin Effect on Cardiovascular Events–Thrombolysis in Myocardial Infarction 58 |
DM | Diabetes mellitus |
DDP4 | Dipeptidylpeptidase 4 |
eGFR | Estimated glomerular filtration rate |
EMA | European Medicines Agency |
EMPA-REG OUTCOME | Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose |
FDA | Food and Drug Administration |
GLP-1 RAs | Glucagon-like peptide-1 receptor agonists |
HF | Heart failure |
HFE | Heart failure event |
HFrEF | Heart failure with reduced ejection fraction |
LVEDV | Left ventricular end-diastolic volume |
LVEF | Left ventricular ejection fraction |
LVESD | Left ventricular end-systolic diameter |
LVESV | Left ventricular end-systolic volume |
MACE | Major adverse cardiovascular events |
NYHA | New York Heart Association |
SBP | Systolic blood pressure |
SGLT2 | Sodium/glucose cotransporter 2 |
T2DM | Type 2 diabetes mellitus |
References
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, A.G.; Hundley, W.G.; Massing, M.W.; Bonds, D.E.; Burke, G.L.; Goff, D.C. Heart Failure Prevalence, Incidence, and Mortality in the Elderly with Diabetes. Diabetes Care 2004, 27, 699–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seferović, P.M.; Petrie, M.C.; Filippatos, G.S.; Anker, S.D.; Rosano, G.; Bauersachs, J.; Paulus, W.J.; Komajda, M.; Cosentino, F.; de Boer, R.A.; et al. Type 2 diabetes mellitus and heart failure: A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 853–872. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Zhao, Y.-X.; Zhang, X.-X.; Liao, H.-L.; Gu, N. Reappraisal on pharmacological and mechanical treatments of heart failure. Cardiovasc. Diabetol. 2020, 19, 55. [Google Scholar] [CrossRef]
- Nichols, G.A.; Hillier, T.A.; Erbey, J.R.; Brown, J.B. Congestive heart failure in type 2 diabetes: Prevalence, incidence, and risk factors. Diabetes Care. Diabetes Care 2001, 24, 1614–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Gu, N. Empagliflozin in the treatment of heart failure and type 2 diabetes mellitus: Evidence from several large clinical trials. Int. J. Med. Sci. 2022, 19, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 1972, 30, 595–602. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Albanese, G.; Di Martino, A.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Sasso, F.C. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front. Med. 2021, 8, 695792. [Google Scholar] [CrossRef]
- Lago, R.M.; Singh, P.P.; Nesto, R.W. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: A meta-analysis of randomised clinical trials. Lancet 2007, 370, 1129–1136. [Google Scholar] [CrossRef]
- Scirica, B.M.; Braunwald, E.; Raz, I.; Cavender, M.A.; Morrow, D.A.; Jarolim, P.; Udell, J.A.; Mosenzon, O.; Im, K.; Umez-Eronini, A.A.; et al. Heart Failure, Saxagliptin, and Diabetes Mellitus: Observations from the SAVOR-TIMI 53 Randomized Trial. Circulation 2014, 130, 1579–1588, Erratum in Circulation 2015, 132, e198. [Google Scholar] [CrossRef] [Green Version]
- Pham, D.; Rocha, N.D.A.; McGuire, D.K.; Neeland, I.J. Impact of empagliflozin in patients with diabetes and heart failure. Trends Cardiovasc. Med. 2017, 27, 144–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [Green Version]
- Halvorsen, Y.C.; Walford, G.A.; Massaro, J.; Aftring, R.P.; Freeman, M.W. A 96-week, multinational, randomized, double-blind, parallel-group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes Obes. Metab. 2019, 21, 2496–2504. [Google Scholar] [CrossRef]
- Odutayo, A.; da Costa, B.R.; Pereira, T.V.; Garg, V.; Iskander, S.; Roble, F.; Lalji, R.; Hincapié, C.A.; Akingbade, A.; Rodrigues, M.; et al. Sodium-Glucose Cotransporter 2 Inhibitors, All-Cause Mortality, and Cardiovascular Outcomes in Adults with Type 2 Diabetes: A Bayesian Meta-Analysis and Meta-Regression. J. Am. Heart Assoc. 2021, 10, e019918. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.; Bonaca, M.P.; Mosenzon, O.; Kato, E.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39, Erratum in Lancet 2019, 393, 30. [Google Scholar] [CrossRef]
- Muscoli, S.; Barillà, F.; Tajmir, R.; Meloni, M.; Della Morte, D.; Bellia, A.; Di Daniele, N.; Lauro, D.; Andreadi, A. The New Role of SGLT2 Inhibitors in the Management of Heart Failure: Current Evidence and Future Perspective. Pharmaceutics 2022, 14, 1730. [Google Scholar] [CrossRef]
- Packer, M.; Butler, J.; Filippatos, G.S.; Jamal, W.; Salsali, A.; Schnee, J.; Kimura, K.; Zeller, C.; George, J.; Brueckmann, M.; et al. Evaluation of the effect of sodium–glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: Rationale for and design of the EMPEROR-Reduced trial. Eur. J. Heart Fail. 2019, 21, 1270–1278. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Packer, M.; Filippatos, G.; Ferreira, J.P.; Zeller, C.; Schnee, J.; Brueckmann, M.; Pocock, S.J.; Zannad, F.; Anker, S.D. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur. Heart J. 2022, 43, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Khan, M.S.; Marx, N.; Lam, C.S.; Schnaidt, S.; Ofstad, A.P.; Brueckmann, M.; Jamal, W.; et al. Effect of Empagliflozin on Cardiovascular and Renal Outcomes in Patients with Heart Failure by Baseline Diabetes Status: Results from the EMPEROR-Reduced Trial. Circulation 2021, 143, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.P.; Contreras, J.P.; Fergus, I.; Abascal, V.; Moreno, P.; Atallah-Lajam, F.; Tamler, R.; et al. Rationale and Design of the EMPA-TROPISM Trial (ATRU-4): Are the “Cardiac Benefits” of Empagliflozin Independent of its Hypoglycemic Activity? Cardiovasc. Drugs Ther. 2019, 33, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Requena-Ibáñez, J.A.; Santos-Gallego, C.G.; Rodriguez-Cordero, A.; Vargas-Delgado, A.P.; Mancini, D.; Sartori, S.; Atallah-Lajam, F.; Giannarelli, C.; Macaluso, F.; Lala, A.; et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study. JACC: Heart Fail. 2021, 9, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.Y.; Brooksbank, K.J.M.; Wetherall, K.; Mangion, K.; Roditi, G.; Campbell, R.T.; Berry, C.; Chong, V.; Coyle, L.; Docherty, K.F.; et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients with Type 2 Diabetes, or Prediabetes, and Heart Failure with Reduced Ejection Fraction (SUGAR-DM-HF). Circulation 2021, 143, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Verma, S.; McMurray, J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 2018, 61, 2108–2117. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, T.; Galiero, R.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Coviello, F.; Di Martino, A.; Albanese, G.; Colantuoni, S.; Medicamento, G.; et al. Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes. Biomolecules 2022, 12, 176. [Google Scholar] [CrossRef]
- Zinman, B.; Inzucchi, S.E.; Lachin, J.M.; Wanner, C.; Ferrari, R.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Kempthorne-Rawson, J.; Newman, J.; et al. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME™). Cardiovasc. Diabetol. 2014, 13, 102. [Google Scholar] [CrossRef] [Green Version]
- Patorno, E.; Pawar, A.; Franklin, J.M.; Najafzadeh, M.; Déruaz-Luyet, A.; Brodovicz, K.G.; Sambevski, S.; Bessette, L.G.; Santiago Ortiz, A.J.; Kulldorff, M.; et al. Empagliflozin and the Risk of Heart Failure Hospitalization in Routine Clinical Care. Circulation 2019, 139, 2822–2830. [Google Scholar] [CrossRef]
- Salvatore, T.; Caturano, A.; Galiero, R.; Di Martino, A.; Albanese, G.; Vetrano, E.; Sardu, C.; Marfella, R.; Rinaldi, L.; Sasso, F.C. Cardiovascular Benefits from Gliflozins: Effects on Endothelial Function. Biomedicines 2021, 9, 1356. [Google Scholar] [CrossRef]
- Oelze, M.; Kröller-Schön, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinßius, E.; Agdauletova, S.; et al. The Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Improves Diabetes-Induced Vascular Dysfunction in the Streptozotocin Diabetes Rat Model by Interfering with Oxidative Stress and Glucotoxicity. PLoS ONE 2014, 9, e112394. [Google Scholar] [CrossRef] [Green Version]
- Juni, R.P.; Kuster, D.W.; Goebel, M.; Helmes, M.; Musters, R.J.; van der Velden, J.; Koolwijk, P.; Paulus, W.J.; van Hinsbergh, V.W. Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin. JACC: Basic Transl. Sci. 2019, 4, 575–591. [Google Scholar] [CrossRef]
- Cooper, S.; Teoh, H.; Campeau, M.A.; Verma, S.; Leask, R.L. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro. Mol. Cell. Biochem. 2019, 459, 121–130. [Google Scholar] [CrossRef]
- Suzuki, J.-I.; Ogawa, M.; Watanabe, R.; Takayama, K.; Hirata, Y.; Nagai, R.; Isobe, M. Roles of Prostaglandin E2 in Cardiovascular Diseases. Int. Heart J. 2011, 52, 266–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.H.; Oh, T.J.; Lee, G.; Maeng, H.J.; Lee, D.H.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lee, H.S.; Park, K.S.; et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE−/− mice fed a western diet. Diabetologia 2017, 60, 364–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitchett, D.; Inzucchi, S.E.; Zinman, B.; Wanner, C.; Schumacher, M.; Schmoor, C.; Ohneberg, K.; Ofstad, A.P.; Salsali, A.; George, J.T.; et al. Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial. ESC Heart Fail. 2021, 8, 4517–4527. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Filippatos, G.; Butler, J.; Farmakis, D.; Zannad, F.; Ofstad, A.P.; Ferreira, J.P.; Green, J.B.; Rosenstock, J.; Schnaidt, S.; Brueckmann, M.; et al. Empagliflozin for Heart Failure with Preserved Left Ventricular Ejection Fraction With and Without Diabetes. Circulation 2022, 146, 676–686. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G.; Vargas-Delgado, A.P.; Requena-Ibanez, J.A.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.; Macaluso, F.; Sartori, S.; Roque, M.; Sabatel-Perez, F.; et al. Randomized Trial of Empagliflozin in Nondiabetic Patients With Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2020, 77, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Angermann, C.E.; Collins, S.P.; Teerlink, J.R.; Ponikowski, P.; Biegus, J.; Comin-Colet, J.; Ferreira, J.P.; Mentz, R.J.; Nassif, M.E.; et al. Effects of Empagliflozin on Symptoms, Physical Limitations, and Quality of Life in Patients Hospitalized for Acute Heart Failure: Results from the EMPULSE Trial. Circulation 2022, 146, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Forycka, J.; Hajdys, J.; Krzemińska, J.; Wilczopolski, P.; Wronka, M.; Młynarska, E.; Rysz, J.; Franczyk, B. New Insights into the Use of Empagliflozin—A Comprehensive Review. Biomedicines 2022, 10, 3294. [Google Scholar] [CrossRef] [PubMed]
- Täger, T.; Atar, D.; Agewall, S.; Katus, H.A.; Grundtvig, M.; Cleland, J.G.F.; Clark, A.L.; Fröhlich, H.; Frankenstein, L. Comparative efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular outcomes in type 2 diabetes: A systematic review and network meta-analysis of randomised controlled trials. Heart Fail. Rev. 2020, 26, 1421–1435. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, P.; Fu, L.; Sun, L.; Shen, W.; Wu, Q. Comparative Cardiovascular Outcomes of SGLT2 Inhibitors in Type 2 Diabetes Mellitus: A Network Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 802992. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Kaneko, H.; Okada, A.; Itoh, H.; Matsuoka, S.; Fujiu, K.; Michihata, N.; Jo, T.; Takeda, N.; Morita, H.; et al. Comparison of cardiovascular outcomes between SGLT2 inhibitors in diabetes mellitus. Cardiovasc. Diabetol. 2022, 21, 67. [Google Scholar] [CrossRef]
- Tang, H.; Fang, Z.; Wang, T.; Cui, W.; Zhai, S.; Song, Y. Meta-Analysis of Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Cardiovascular Outcomes and All-Cause Mortality Among Patients with Type 2 Diabetes Mellitus. Am. J. Cardiol. 2016, 118, 1774–1780. [Google Scholar] [CrossRef] [Green Version]
- Vivian, E.M. Dapagliflozin: A new sodium–glucose cotransporter 2 inhibitor for treatment of type 2 diabetes. Am. J. Heart Pharm. 2015, 72, 361–372. [Google Scholar] [CrossRef]
- Al-Bazz, D.Y.; Wilding, J.P. Dapagliflozin and cardiovascular outcomes in patients with Type 2 diabetes. Futur. Cardiol. 2020, 16, 77–88. [Google Scholar] [CrossRef]
- Dhillon, S. Dapagliflozin: A Review in Type 2 Diabetes. Drugs 2019, 79, 1135–1146, Erratum in Drugs 2019, 79, 2013. [Google Scholar] [CrossRef] [Green Version]
- Plosker, G.L. Dapagliflozin: A Review of Its Use in Patients with Type 2 Diabetes. Drugs 2014, 74, 2191–2209. [Google Scholar] [CrossRef]
- Seufert, J.; Laubner, K. Outcome-Studien zu SGLT-2-Inhibitoren [Outcome studies on SGLT-2 inhibitors]. Internist 2019, 60, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Sposetti, G.; MacKinnon, I.; Barengo, N.C. Dapagliflozin: Drug profile and its role in individualized treatment. Expert Rev. Cardiovasc. Ther. 2015, 13, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Kato, E.T.; Silverman, M.G.; Mosenzon, O.; Zelniker, T.A.; Cahn, A.; Furtado, R.H.M.; Kuder, J.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; et al. Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Pharmacodynamics, Efficacy and Safety of Sodium–Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs 2014, 75, 33–59. [Google Scholar] [CrossRef]
- Gupta, M.; Rao, S.; Manek, G.; Fonarow, G.C.; Ghosh, R.K. The Role of Dapagliflozin in the Management of Heart Failure: An Update on the Emerging Evidence. Ther. Clin. Risk Manag. 2021, 17, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Ren, L.; Liu, Y.; Yin, X.; Cui, S.; Gao, W.; Yu, L. Efficacy and safety of dapagliflozin in the treatment of chronic heart failure: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e26420. [Google Scholar] [CrossRef]
- Brust-Sisti, L.; Rudawsky, N.; Gonzalez, J.; Brunetti, L. The Role of Sodium-Glucose Cotransporter-2 Inhibition in Heart Failure with Preserved Ejection Fraction. Pharmacy 2022, 10, 166. [Google Scholar] [CrossRef]
- Blair, H.A. Dapagliflozin: A Review in Symptomatic Heart Failure with Reduced Ejection Fraction. Am. J. Cardiovasc. Drugs 2021, 21, 701–710, Erratum in Am. J. Cardiovasc. Drugs 2022, 22, 109. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Jhund, P.S.; Docherty, K.; Diez, M.; Petrie, M.C.; Verma, S.; Nicolau, J.; Merkely, B.; Kitakaze, M.; DeMets, D.L.; et al. Effects of Dapagliflozin on Symptoms, Function, and Quality of Life in Patients with Heart Failure and Reduced Ejection Fraction: Results from the DAPA-HF Trial. Circulation 2020, 141, 90–99. [Google Scholar] [CrossRef]
- Kaplinsky, E. DAPA-HF trial: Dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure. Drugs Context 2020, 9, 2019-11-3. [Google Scholar] [CrossRef]
- Alshnbari, A.S.; Millar, S.A.; O’sullivan, S.E.; Idris, I. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Endothelial Function: A Systematic Review of Preclinical Studies. Diabetes Ther. 2020, 11, 1947–1963. [Google Scholar] [CrossRef]
- Palandurkar, G.; Kumar, S. Current Status of Dapagliflozin in Congestive Heart Failure. Cureus 2022, 14, e29413. [Google Scholar] [CrossRef]
- Cheng, L.; Fu, Q.; Zhou, L.; Fan, Y.; Liu, F.; Fan, Y.; Zhang, X.; Lin, W.; Wu, X. Dapagliflozin, metformin, monotherapy or both in patients with metabolic syndrome. Sci. Rep. 2021, 11, 24263. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Rådholm, K.; Figtree, G.; Perkovic, V.; Solomon, S.D.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Barrett, T.D.; Shaw, W.; Desai, M.; et al. Canagliflozin and heart failure in type 2 diabetes mellitus: Results from the CANVAS program. Circulation 2018, 138, 458–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.J.; Merton, K.; Vijapurkar, U.; Yee, J.; Qiu, R. Efficacy and safety of canagliflozin in patients with type 2 diabetes based on history of cardiovascular disease or cardiovascular risk factors: A post hoc analysis of pooled data. Cardiovasc. Diabetol. 2017, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Blonde, L.; Stenlöf, K.; Fung, A.; Xie, J.; Canovatchel, W.; Meininger, G. Effects of canagliflozin on body weight and body composition in patients with type 2 diabetes over 104 weeks. Postgrad. Med. 2016, 128, 371–380. [Google Scholar] [CrossRef]
- Davies, M.J.; Trujillo, A.; Vijapurkar, U.; Damaraju, C.V.; Meininger, G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes, Obes. Metab. 2015, 17, 426–429. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, M.; Townsend, R.R.; Davies, M.J.; Vijapurkar, U.; Ren, J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: A post hoc analysis. Cardiovasc. Diabetol. 2017, 16, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, R.E.; Mende, C.; Vijapurkar, U.; Sha, S.; Davies, M.J.; Desai, M. Effects of Canagliflozin on Serum Magnesium in Patients with Type 2 Diabetes Mellitus: A Post Hoc Analysis of Randomized Controlled Trials. Diabetes Ther. 2017, 8, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spertus, J.A.; Birmingham, M.C.; Nassif, M.; Damaraju, C.V.; Abbate, A.; Butler, J.; Lanfear, D.E.; Lingvay, I.; Kosiborod, M.N.; Januzzi, J.L. The SGLT2 inhibitor canagliflozin in heart failure: The CHIEF-HF remote, patient-centered randomized trial. Nat. Med. 2022, 28, 809–813. [Google Scholar] [CrossRef]
- Fitchett, D.; Zinman, B.; Wanner, C.; Lachin, J.M.; Hantel, S.; Salsali, A.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the EMPA-REG OUTCOME®trial. Eur. Heart J. 2016, 37, 1526–1534. [Google Scholar] [CrossRef] [Green Version]
- Psaty, B.M.; Lumley, T.; Furberg, C.D.; Schellenbaum, G.; Pahor, M.; Alderman, M.H.; Weiss, N.S. Health Outcomes Associated with Various Antihypertensive Therapies Used as First-Line Agents. JAMA 2003, 289, 2534–2544. [Google Scholar] [CrossRef] [PubMed]
- Staels, B. Cardiovascular Protection by Sodium Glucose Cotransporter 2 Inhibitors: Potential Mechanisms. Am. J. Med. 2017, 130, S30–S39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marti, C.N.; Gheorghiade, M.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Quyyumi, A.A.; Butler, J. Endothelial Dysfunction, Arterial Stiffness, and Heart Failure. J. Am. Coll. Cardiol. 2012, 60, 1455–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tye, S.C.; Jongs, N.; Coca, S.G.; Sundström, J.; Arnott, C.; Neal, B.; Perkovic, V.; Mahaffey, K.W.; Vart, P.; Heerspink, H.J.L. Initiation of the SGLT2 inhibitor canagliflozin to prevent kidney and heart failure outcomes guided by HbA1c, albuminuria, and predicted risk of kidney failure. Cardiovasc. Diabetol. 2022, 21, 194. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Sattar, N.; Xu, J.; Butler, J.; Mahaffey, K.W.; Neal, B.; Shaw, W.; Rosenthal, N.; Pfeifer, M.; Hansen, M.K.; et al. Stress Cardiac Biomarkers, Cardiovascular and Renal Outcomes, and Response to Canagliflozin. J. Am. Coll. Cardiol. 2022, 79, 432–444. [Google Scholar] [CrossRef]
- Figtree, G.A.; Rådholm, K.; Barrett, T.D.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Matthews, D.R.; Shaw, W.; Neal, B. Effects of Canagliflozin on Heart Failure Outcomes Associated with Preserved and Reduced Ejection Fraction in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2591–2593. [Google Scholar] [CrossRef] [Green Version]
- Nasiri-Ansari, N.; Dimitriadis, G.K.; Agrogiannis, G.; Perrea, D.; Kostakis, I.D.; Kaltsas, G.; Papavassiliou, A.G.; Randeva, H.S.; Kassi, E. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc. Diabetol. 2018, 17, 106. [Google Scholar] [CrossRef] [Green Version]
- Lim, V.G.; Bell, R.M.; Arjun, S.; Kolatsi-Joannou, M.; Long, D.A.; Yellon, D.M. SGLT2 Inhibitor, Canagliflozin, Attenuates Myocardial Infarction in the Diabetic and Nondiabetic Heart. JACC: Basic Transl. Sci. 2019, 4, 15–26. [Google Scholar] [CrossRef]
- Huynh, K. Diabetes: Lower risk of cardiovascular death with canagliflozin. Nat. Rev. Cardiol. 2017, 14, 442. [Google Scholar] [CrossRef]
- Sabe, S.A.; Xu, C.M.; Sabra, M.; Harris, D.D.; Malhotra, A.; Aboulgheit, A.; Stanley, M.; Abid, M.R.; Sellke, F.W. Canagliflozin Improves Myocardial Perfusion, Fibrosis, and Function in a Swine Model of Chronic Myocardial Ischemia. J. Am. Heart Assoc. 2023, 12, e028623. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Butler, J.; Jarolim, P.; Sattar, N.; Vijapurkar, U.; Desai, M.; Davies, M.J. Effects of Canagliflozin on Cardiovascular Biomarkers in Older Adults with Type 2 Diabetes. J. Am. Coll. Cardiol. 2017, 70, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Sayour, A.A.; Korkmaz-Icöz, S.; Loganathan, S.; Ruppert, M.; Sayour, V.N.; Oláh, A.; Benke, K.; Brune, M.; Benkő, R.; Horváth, E.M.; et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia–reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J. Transl. Med. 2019, 17, 127. [Google Scholar] [CrossRef] [PubMed]
- Ju, F.; Abbott, G.W.; Li, J.; Wang, Q.; Liu, T.; Liu, Q.; Hu, Z. Canagliflozin Pretreatment Attenuates Myocardial Dysfunction and Improves Postcardiac Arrest Outcomes After Cardiac Arrest and Cardiopulmonary Resuscitation in Mice. Cardiovasc. Drugs Ther. 2023. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.C.; Fernandes, A.; Cardoso, R.; Penalver, J.; Knijnik, L.; Mitrani, R.D.; Myerburg, R.J.; Goldberger, J.J. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm. 2021, 18, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Engström, A.; Wintzell, V.; Melbye, M.; Hviid, A.; Eliasson, B.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Svanström, H.; Pasternak, B.; et al. Sodium–Glucose Cotransporter 2 Inhibitor Treatment and Risk of Atrial Fibrillation: Scandinavian Cohort Study. Diabetes Care 2022, 46, 351–360. [Google Scholar] [CrossRef]
- Nishinarita, R.; Niwano, S.; Niwano, H.; Nakamura, H.; Saito, D.; Sato, T.; Matsuura, G.; Arakawa, Y.; Kobayashi, S.; Shirakawa, Y.; et al. Canagliflozin Suppresses Atrial Remodeling in a Canine Atrial Fibrillation Model. J. Am. Heart Assoc. 2021, 10, e017483. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Hidru, T.H.; Yang, X.; Wang, Y.; Chen, C.; Li, K.H.C.; Tang, Y.; Wei, Y.; Tse, G.; et al. Protective Effects of Sodium-Glucose Transporter 2 Inhibitors on Atrial Fibrillation and Atrial Flutter: A Systematic Review and Meta- Analysis of Randomized Placebo-Controlled Trials. Front. Endocrinol. 2021, 12, 619586. [Google Scholar] [CrossRef]
- Fediuk, D.J.; Nucci, G.; Dawra, V.K.; Cutler, D.L.; Amin, N.B.; Terra, S.G.; Boyd, R.A.; Krishna, R.; Sahasrabudhe, V. Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor. Clin. Pharmacokinet. 2020, 59, 949–965. [Google Scholar] [CrossRef] [Green Version]
- Cinti, F.; Moffa, S.; Impronta, F.; Cefalo, C.M.A.; Sun, V.A.; Sorice, G.P.; Mezza, T.; Giaccari, A. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: Evidence to date. Drug Des. Dev. Ther. 2017, 11, 2905–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosentino, F.; Cannon, C.P.; Cherney, D.Z.; Masiukiewicz, U.; Pratley, R.; Dagogo-Jack, S.; Frederich, R.; Charbonnel, B.; Mancuso, J.; Shih, W.J.; et al. Efficacy of Ertugliflozin on Heart Failure-Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease: Results of the VERTIS CV Trial. Circulation 2020, 142, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Charbonnel, B.; Cosentino, F.; Dagogo-Jack, S.; McGuire, D.K.; Pratley, R.; Shih, W.J.; Frederich, R.; Maldonado, M.; Pong, A.; et al. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: An analysis from the randomised VERTIS CV trial. Diabetologia 2021, 64, 1256–1267. [Google Scholar] [CrossRef]
- Cherney, D.Z.; Cosentino, F.; Dagogo-Jack, S.; McGuire, D.K.; Pratley, R.; Frederich, R.; Maldonado, M.; Liu, C.-C.; Liu, J.; Pong, A.; et al. Ertugliflozin and Slope of Chronic eGFR: Prespecified Analyses from the Randomized VERTIS CV Trial. Clin. J. Am. Soc. Nephrol. 2021, 16, 1345–1354. [Google Scholar] [CrossRef]
- Allegretti, A.S.; Zhang, W.; Zhou, W.; Thurber, T.K.; Rigby, S.P.; Bowman-Stroud, C.; Trescoli, C.; Serusclat, P.; Freeman, M.W.; Halvorsen, Y.-D.C. Safety and Effectiveness of Bexagliflozin in Patients with Type 2 Diabetes Mellitus and Stage 3a/3b CKD. Am. J. Kidney Dis. 2019, 74, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Brenzavvy (Bexagliflozin) Dosing, Indications, Interactions, Adverse Effects, and More. 13 April 2023. Available online: https://reference.medscape.com/drug/brenzavvy-bexagliflozin-4000358#92 (accessed on 12 May 2023).
- Halvorsen, Y.; Lock, J.P.; Zhou, W.; Zhu, F.; Freeman, M.W. A 24-week, randomized, double-blind, active-controlled clinical trial comparing bexagliflozin with sitagliptin as an adjunct to metformin for the treatment of type 2 diabetes in adults. Diabetes Obes. Metab. 2019, 21, 2248–2256. [Google Scholar] [CrossRef]
- Halvorsen, Y.; Lock, J.P.; Frias, J.P.; Tinahones, F.J.; Dahl, D.; Conery, A.L.; Freeman, M.W. A 96-week, double-blind, randomized controlled trial comparing bexagliflozin to glimepiride as an adjunct to metformin for the treatment of type 2 diabetes in adults. Diabetes, Obes. Metab. 2022, 25, 293–301. [Google Scholar] [CrossRef]
- Mcmurray, J.J.; Freeman, M.W.; Massaro, J.; Solomon, S.; Lock, P.; Riddle, M.C.; Lewis, E.; Halvorsen, Y.-D.C. 32-OR: The Bexagliflozin Efficacy and Safety Trial (BEST): A Randomized, Double-Blind, Placebo-Controlled, Phase IIII, Clinical Trial. Diabetes 2020, 69 (Suppl. S1), 32-OR. [Google Scholar] [CrossRef]
- Maan, A.; Heist, E.K.; Passeri, J.; Inglessis, I.; Baker, J.; Ptaszek, L.; Vlahakes, G.; Ruskin, J.N.; Palacios, I.; Sundt, T.; et al. Impact of Atrial Fibrillation on Outcomes in Patients Who Underwent Transcatheter Aortic Valve Replacement. Am. J. Cardiol. 2015, 115, 220–226. [Google Scholar] [CrossRef]
- Khan, S.S.; Butler, J.; Gheorghiade, M. Management of Comorbid Diabetes Mellitus and Worsening Heart Failure. JAMA 2014, 311, 2379–2380. [Google Scholar] [CrossRef]
- Food US and Admin Drug. Guidance for Industry on Diabetes Mellitus—Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes; Availability. Fed. Regist 73. 2008. Available online: https://www.govinfo.gov/content/pkg/FR-2008-12-19/pdf/E8-30086.pdf (accessed on 14 May 2023).
- Biviano, A.B.; Nazif, T.; Dizon, J.; Garan, H.; Fleitman, J.; Hassan, D.; Kapadia, S.; Babaliaros, V.; Xu, K.; Parvataneni, R.; et al. Atrial Fibrillation Is Associated With Increased Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement: Insights From the Placement of Aortic Transcatheter Valve (PARTNER) Trial. Circ. Cardiovasc. Interv. 2016, 9, e002766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Tang et al. [46] | Zelniker et al. [16] | Täger et al. [43] | Suzuki et al. [45] | Jiang et al. [44] |
---|---|---|---|---|---|
Year | 2016 | 2019 | 2021 | 2022 | 2022 |
Study design | Meta-analysis | Meta-analysis | Meta-analysis | Retrospective cohort study | Meta-analysis |
No of patients | 28,859 | 34,322 | 74,874 | 25,315 | 70,574 |
Patient’s characteristics | Patients > 18 years old with T2DM | Mean age 63.5 years, 60.2% patients with atherosclerotic CVD, 11.3% patients with history of HF, 14.9% patients with eGFR < 60 mL/min per 1.73 m2 | Patients 52–69 years old, HbA1c level between 7.2% and 9.3% | Median age 52 years, median HbA1c level 7.5% | Mean age 59.2 years old, mean HbA1c level 8.3% |
SGLT2 inhibitors | Canagliflozin, dapagliflozin, or empagliflozin vs. placebo or other active anti-diabetic treatments | Empagliflozin 10 mg, 25 mg, canagliflozin 100 mg, 300 mg, dapagliflozin 10 mg | Canagliflozin, dapagliflozin, empagliflozin, ertugliflozin | Empagliflozin, dapagliflozin, canagliflozin, other SGLT2 inhibitors (ipragliflozin, tofogliflozin, luseogliflozin) | Empagliflozin 5 mg, 10 mg, 25 mg, 50 mg, canagliflozin 100 mg, 300 mg, dapagliflozin 2.5 mg, 5 mg, 10 mg, placebo |
Comparison of SGLT2 inhibitors | Empagliflozin significantly lower the risk of MACE and any-cause mortality than placebo and other SGLT2 inhibitors. Furthermore, empagliflozin lower risk of HF and HF requiring hospitalization. | Empagliflozin has superior effect on reducing death from cardiovascular causes than canagliflozin or dapagliflozin. There is an increased risk of fractures and amputations with canagliflozin. | Empagliflozin is superior to canagliflozin and dapagliflozin in reducing all-cause mortality and cardiovascular mortality. However, all without significant differences reduce HF worsening. | There were no relevant differences in the risk of myocardial infarction, angina pectoris, heart failure, atrial fibrillation and stroke among individual SGLT2 inhibitors. | Empagliflozin is associated with significantly lower risk of all-cause mortality and cardiovascular events than canagliflozin and dapagliflozin. |
Characteristics in Patients with T2DM |
---|
Higher body mass index |
More obese individuals |
More people with a history of myocardial infarction, ischemic disease, coronary artery disease |
NYHA score II–IV |
Higher serum NT-proBNP levels |
Lower values of mean eGFR |
More patients with hypertension |
Study | Year | Study Design | Participants | Findings |
---|---|---|---|---|
Januzzi, J.L.; Butler, J.; Jarolim, P. et al. [83] | 2017 | Randomized, double-blind, placebo-controlled | 666 patients with DM type 2 and high cardiovascular risk | Canagliflozin had a favorable effect on cardiovascular biomarkers in older adults with DM type 2. In comparison to a placebo, the administration of canagliflozin in older patients with DM type 2 resulted in a significant delay in the increase of serum NT-proBNP and hsTnI levels |
Huynh, K. [81] | 2017 | Randomized, controlled | 10,142 patients with type 2 DM and high cardiovascular risk | Canagliflozin was associated with a lower risk of cardiovascular events in patients with DM type 2. |
Lim, V.G.; Bell, R.M.; Arjun, S.; Kolatsi-Joannou, M.; Long, D.A.; Yellon, D.M. [80] | 2019 | Randomized, double-blind, placebo-controlled | Diabetic and non-diabetic rats | Canagliflozin attenuated myocardial infarction in both diabetic and non-diabetic mice. The observed effects were independent of glucose levels during the occurrence of ischemia/reperfusion injury. |
Sayour, A.A.; Korkmaz-Icöz, S.; Loganathan, S. et al. [84] | 2019 | Randomized, controlled | Non-diabetic male rats | Acute canagliflozin treatment protected against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhanced endothelium-dependent vasorelaxation. |
Sabe, S.A.; Xu, C.M.; Sabra, M.; et al. [82] | 2023 | Randomized, controlled | Swine model of chronic myocardial ischemia | Canagliflozin improved myocardial perfusion, fibrosis, and function in a swine model of chronic myocardial ischemia. |
Cardiovascular Benefit | Effect on Cardiovascular Risk Factors | Mechanism of Action |
---|---|---|
Reduction in cardiovascular events | Lowered body weight and blood pressure, improved body composition, uric acid levels, vascular stiffness, pulse pressure, cardiac workload, and magnesium levels. | Not fully investigated. |
Improvement in heart failure symptoms | Improvement in volume and hemodynamic effects, natriuresis-induced decreases in preload and afterload, systemic blood pressure lowering, modification of the intrarenal renin–angiotensin axis, and reduction in arterial stiffness. | Not fully investigated. |
Reduction in cardiovascular death rates and hospitalization for heart failure | Decrease in atherosclerosis progression, adhesion molecules, and markers of inflammation. | Enhanced atherosclerotic plaque stability in mouse models. |
Preservation of cardiac function during myocardial ischemia | Attenuation of myocardial infarct size. | Antioxidant signaling, adenosine monophosphate-activated protein kinase activation, and attenuation of fibrosis via decreased Jak/STAT signaling. |
Slower increase in biomarkers of cardiac wall stress | Inhibition of onset of systolic and diastolic dysfunction after ischemia-reperfusion damage. | Not fully investigated. |
Cardioprotective effect against cardiac arrest and resuscitation-induced cardiac dysfunction | Improved survival rates, shorter return of spontaneous circulation, and higher neurological scores following resuscitation. | STAT-3-dependent cell-survival signaling pathway. |
Possible benefit in the development and progression of atrial fibrillation | Reduced atrial electrical and structural remodelling, interstitial fibrosis, and oxidative stress levels in canine models. | Not fully established; conflicting results in clinical studies. |
Renal Impairment | eGRF (mL/min/1.73 m2) | Dosage Modifications |
---|---|---|
Mild-to-moderate | 0–89 | No dosage adjustment required. |
Severe | <30 | Not recommended owing to the decline of glucose-lowering effect and reduction in urine output. |
Dialysis | - | Contraindicated. |
Hepatic Impairment | Child–Pugh Score | Dosage Modifications |
---|---|---|
Mild-to-moderate | A or B | No dosage adjustment required. |
Severe | C | Not studied. |
Side Effects | Prevention |
---|---|
Ketoacidosis | Consideration of predisposing factors, discontinuing bexagliflozin for at least 3 days prior to surgery and clinical situations known to predispose to ketoacidosis. |
Lower limb amputation | Consideration of predisposing factors, monitoring for signs and symptoms of infection, new pain or tenderness, sores or ulcers involving the lower limbs. |
Volume depletion | Assessment of volume status and renal function, monitoring for signs and symptoms of volume depletion. |
Urosepsis and pyelonephritis | Evaluation patients for signs and symptoms of urinary tract infections. |
Hypoglycemia with concomitant use with insulin and insulin secretagogues | lower dose of insulin or insulin secretagogue. |
Necrotizing fasciitis of the perineum (Fournier’s gangrene) | Evaluation of patients for pain or tenderness, erythema, or swelling in the genital or perineal areas, along with fever or malaise. |
Genital mycotic infections | Monitoring patients with a history of genital mycotic infections and those who are uncircumcised. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frąk, W.; Hajdys, J.; Radzioch, E.; Szlagor, M.; Młynarska, E.; Rysz, J.; Franczyk, B. Cardiovascular Diseases: Therapeutic Potential of SGLT-2 Inhibitors. Biomedicines 2023, 11, 2085. https://doi.org/10.3390/biomedicines11072085
Frąk W, Hajdys J, Radzioch E, Szlagor M, Młynarska E, Rysz J, Franczyk B. Cardiovascular Diseases: Therapeutic Potential of SGLT-2 Inhibitors. Biomedicines. 2023; 11(7):2085. https://doi.org/10.3390/biomedicines11072085
Chicago/Turabian StyleFrąk, Weronika, Joanna Hajdys, Ewa Radzioch, Magdalena Szlagor, Ewelina Młynarska, Jacek Rysz, and Beata Franczyk. 2023. "Cardiovascular Diseases: Therapeutic Potential of SGLT-2 Inhibitors" Biomedicines 11, no. 7: 2085. https://doi.org/10.3390/biomedicines11072085
APA StyleFrąk, W., Hajdys, J., Radzioch, E., Szlagor, M., Młynarska, E., Rysz, J., & Franczyk, B. (2023). Cardiovascular Diseases: Therapeutic Potential of SGLT-2 Inhibitors. Biomedicines, 11(7), 2085. https://doi.org/10.3390/biomedicines11072085