Non-Neuronal Acetylcholinesterase Activity Shows Limited Utility for Early Detection of Sepsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.B. Cholinergic Modulation of the Immune System Presents New Approaches for Treating Inflammation. Pharm. Ther. 2017, 179, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Acetylcholinesterase and Butyrylcholinesterase as Possible Markers of Low-Grade Systemic Inflammation. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2007, 13, RA214-21. [Google Scholar]
- Zujalovic, B.; Mayer, B.; Hafner, S.; Balling, F.; Barth, E. AChE-Activity in Critically Ill Patients with Suspected Septic Encephalopathy: A Prospective, Single-Centre Study. BMC Anesth. 2020, 20, 287. [Google Scholar] [CrossRef]
- Cox, M.A.; Bassi, C.; Saunders, M.E.; Nechanitzky, R.; Morgado-Palacin, I.; Zheng, C.; Mak, T.W. Beyond Neurotransmission: Acetylcholine in Immunity and Inflammation. J. Intern. Med. 2020, 287, 120–133. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Paul, G.M.; Hofer, S.; Schmidt, K.; Brenner, T.; Weigand, M.A.; Decker, S.O. Increased Enzymatic Activity of Acetylcholinesterase Indicates the Severity of the Sterile Inflammation and Predicts Patient Outcome Following Traumatic Injury. Biomolecules 2023, 13, 267. [Google Scholar] [CrossRef]
- Kawashima, K.; Fujii, T.; Moriwaki, Y.; Misawa, H. Critical Roles of Acetylcholine and the Muscarinic and Nicotinic Acetylcholine Receptors in the Regulation of Immune Function. Life Sci. 2012, 91, 1027–1032. [Google Scholar] [CrossRef]
- Leal, J.K.F.; Adjobo-Hermans, M.J.W.; Brock, R.; Bosman, G.J.C.G.M. Acetylcholinesterase Provides New Insights into Red Blood Cell Ageing In Vivo and In Vitro. Blood Transfus. Trasfus. Del. Sangue 2016, 15, 232–238. [Google Scholar] [CrossRef]
- Massoulié, J.; Legay, C.; Anselmet, A.; Krejci, E.; Coussen, F.; Bon, S. Biosynthesis and Integration of Acetylcholinesterase in the Cholinergic Synapse. Prog. Brain Res. 1996, 109, 55–65. [Google Scholar] [CrossRef]
- Grando, S.A.; Kawashima, K.; Kirkpatrick, C.J.; Meurs, H.; Wessler, I. The Non-Neuronal Cholinergic System: Basic Science, Therapeutic Implications and New Perspectives. Life Sci. 2012, 91, 969–972. [Google Scholar] [CrossRef]
- Grando, S.A.; Kawashima, K.; Kirkpatrick, C.J.; Kummer, W.; Wessler, I. Recent Progress in Revealing the Biological and Medical Significance of the Non-Neuronal Cholinergic System. Int. Immunopharmacol. 2015, 29, 107034. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Mashimo, M.; Moriwaki, Y.; Misawa, H.; Ono, S.; Horiguchi, K.; Kawashima, K. Physiological Functions of the Cholinergic System in Immune Cells. J. Pharm. Sci. 2017, 134, 1–21. [Google Scholar] [CrossRef]
- Saldanha, C. Human Erythrocyte Acetylcholinesterase in Health and Disease. Molecules 2017, 22, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decker, S.O.; Sigl, A.; Grumaz, C.; Stevens, P.; Vainshtein, Y.; Zimmermann, S.; Weigand, M.A.; Hofer, S.; Sohn, K.; Brenner, T. Immune-Response Patterns and Next Generation Sequencing Diagnostics for the Detection of Mycoses in Patients with Septic Shock—Results of a Combined Clinical and Experimental Investigation. Int. J. Mol. Sci. 2017, 18, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Schmidt, K.; Sigl, A.; Decker, S.O.; Brenner, T.; Hofer, S. Reduced Serum Butyrylcholinesterase Activity Indicates Severe Systemic Inflammation in Critically Ill Patients. Mediat. Inflamm. 2015, 2015, 274607. [Google Scholar] [CrossRef]
- Ba, L.; Wu, D.; Qian, A.; Zhang, M.; Xiong, B. Dynamic Changes of Serum Cholinesterase Activity after Severe Trauma. J. Zhejiang Univ. Sci. B. 2014, 15, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Wessler, I.; Kirkpatrick, C.J. Acetylcholine beyond Neurons: The Non-neuronal Cholinergic System in Humans. Brit. J. Pharm. 2008, 154, 1558–1571. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, A.R.; Schmidt, K.; Stein, T.; Münzberg, M.; Brenner, T.; Weigand, M.A.; Kleinschmidt, S.; Hofer, S. Bedside-Measurement of Serum Cholinesterase Activity Predicts Patient Morbidity and Length of the Intensive Care Unit Stay Following Major Traumatic Injury. Sci. Rep. 2019, 9, 10437. [Google Scholar] [CrossRef] [Green Version]
- Libby, P. Inflammatory Mechanisms: The Molecular Basis of Inflammation and Disease. Nutr. Rev. 2007, 65, S140–S146. [Google Scholar] [CrossRef]
- Mosevoll, K.A.; Skrede, S.; Markussen, D.L.; Fanebust, H.R.; Flaatten, H.K.; Aßmus, J.; Reikvam, H.; Bruserud, Ø. Inflammatory Mediator Profiles Differ in Sepsis Patients with and Without Bacteremia. Front. Immunol. 2018, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Stoecklein, V.M.; Osuka, A.; Lederer, J.A. Trauma Equals Danger—Damage Control by the Immune System. J. Leukoc. Biol. 2012, 92, 539–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubartelli, A.; Lotze, M.T.; Latz, E.; Manfredi, A. Mechanisms of Sterile Inflammation. Front. Immunol. 2013, 4, 398. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.; Thiemermann, C.; Brohi, K. Trauma Alarmins as Activators of Damage-induced Inflammation. Brit. J. Surg. 2012, 99, 12–20. [Google Scholar] [CrossRef]
- Lenz, A.; Franklin, G.A.; Cheadle, W.G. Systemic Inflammation after Trauma. Injury 2007, 38, 1336–1345. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010, 10, 826. [Google Scholar] [CrossRef] [Green Version]
- Tracey, K.J. The Inflammatory Reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef]
- Nathan, C.; Ding, A. Nonresolving Inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.G.; Boncyk, C.S.; Fedeles, B.; Pandharipande, P.P.; Chen, W.; Patel, M.B.; Brummel, N.E.; Jackson, J.C.; Raman, R.; Ely, E.W.; et al. Association between Cholinesterase Activity and Critical Illness Brain Dysfunction. Crit. Care 2022, 26, 377. [Google Scholar] [CrossRef] [PubMed]
- Wolters, A.E.; Zaal, I.J.; Veldhuijzen, D.S.; Cremer, O.L.; Devlin, J.W.; van Dijk, D.; Slooter, A.J.C. Anticholinergic Medication Use and Transition to Delirium in Critically Ill Patients. Crit. Care Med. 2015, 43, 1846–1852. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Bender, J.; Brenner, T.; Hofer, S.; Schmidt, K. Reduced Butyrylcholinesterase Activity Is an Early Indicator of Trauma-Induced Acute Systemic Inflammatory Response. J. Inflamm. Res. 2016, 9, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, A.R.; Tourelle, K.M.; Brenner, T.; Weigand, M.A.; Hofer, S.; Schmidt, K. Reduced Serum Cholinesterase Activity Indicates Splenic Modulation of the Sterile Inflammation. J. Surg. Res. 2017, 220, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, L.; Grandone, I.; Contaldo, F.; Pasanisi, F. Butyrylcholinesterase as a Prognostic Marker: A Review of the Literature. J. Cachexia Sarcopenia Muscle 2013, 4, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatonnet, A.; Lockridge, O. Comparison of Butyrylcholinesterase and Acetylcholinesterase. Biochem. J. 1989, 260, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Shenhar-Tsarfaty, S.; Berliner, S.; Bornstein, N.M.; Soreq, H. Cholinesterases as Biomarkers for Parasympathetic Dysfunction and Inflammation-Related Disease. J. Mol. Neurosci. 2014, 53, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Surbatovic, M.; Popovic, N.; Vojvodic, D.; Milosevic, I.; Acimovic, G.; Stojicic, M.; Veljovic, M.; Jevdjic, J.; Djordjevic, D.; Radakovic, S. Cytokine Profile in Severe Gram-Positive and Gram-Negative Abdominal Sepsis. Sci. Rep. 2015, 5, 11355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surbatovic, M.; Veljovic, M.; Jevdjic, J.; Popovic, N.; Djordjevic, D.; Radakovic, S. Immunoinflammatory Response in Critically Ill Patients: Severe Sepsis and/or Trauma. Mediat. Inflamm. 2013, 2013, 362793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, K.; Zhang, Y.; Hao, J.; Zhao, J.; Qi, Y.; Liu, C. Correlation Analysis of Systemic Immune Inflammatory Index, Serum IL-35 and HMGB-1 with the Severity and Prognosis of Sepsis. Pak. J. Méd. Sci. 2023, 39, 497–501. [Google Scholar] [CrossRef]
- Cai, J.; Lin, Z. Correlation of Blood High Mobility Group Box-1 Protein with Mortality of Patients with Sepsis: A Meta-Analysis. Heart Lung 2021, 50, 885–892. [Google Scholar] [CrossRef]
- Yang, H.; Liu, H.; Zeng, Q.; Imperato, G.H.; Addorisio, M.E.; Li, J.; He, M.; Cheng, K.F.; Al-Abed, Y.; Harris, H.E.; et al. Inhibition of HMGB1/RAGE-Mediated Endocytosis by HMGB1 Antagonist Box A, Anti-HMGB1 Antibodies, and Cholinergic Agonists Suppresses Inflammation. Mol. Med. 2019, 25, 13. [Google Scholar] [CrossRef] [Green Version]
- de Pablo, R.; Monserrat, J.; Reyes, E.; Díaz, D.; Rodríguez-Zapata, M.; de la Hera, A.; Prieto, A.; Álvarez-Mon, M. Sepsis-Induced Acute Respiratory Distress Syndrome with Fatal Outcome Is Associated to Increased Serum Transforming Growth Factor Beta-1 Levels. Eur. J. Intern. Med. 2012, 23, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Fu, Z.; Zhao, Z. Association of Transforming Growth Factor Β1 Gene Polymorphisms and Inflammatory Factor Levels with Susceptibility to Sepsis. Genet. Test. Mol. Biomark. 2021, 25, 187–198. [Google Scholar] [CrossRef]
- Molinari, L.; Heskia, F.; Peerapornratana, S.; Ronco, C.; Guzzi, L.; Toback, S.; Birch, R.; Beyhaghi, H.; Kwan, T.; Kampf, J.P.; et al. Limiting Acute Kidney Injury Progression in Sepsis: Study Protocol and Trial Simulation*. Crit. Care Med. 2021, 49, 1706–1716. [Google Scholar] [CrossRef]
- Fiorentino, M.; Xu, Z.; Smith, A.; Singbartl, K.; Palevsky, P.M.; Chawla, L.S.; Huang, D.T.; Yealy, D.M.; Angus, D.C.; Kellum, J.A.; et al. Serial Measurement of Cell-Cycle Arrest Biomarkers [TIMP-2] · [IGFBP7] and Risk for Progression to Death, Dialysis, or Severe Acute Kidney Injury in Patients with Septic Shock. Am. J. Respir. Crit. Care Med. 2020, 202, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Doukas, P.; Frese, J.P.; Eierhoff, T.; Hellfritsch, G.; Raude, B.; Jacobs, M.J.; Greiner, A.; Oberhuber, A.; Gombert, A. The NephroCheck Bedside System for Detecting Stage 3 Acute Kidney Injury after Open Thoracoabdominal Aortic Repair. Sci. Rep. 2023, 13, 11096. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Singer, M.; Spencer, J. Can Concurrent Abnormalities in Free Light Chains and Immunoglobulin Concentrations Identify a Target Population for Immunoglobulin Trials in sepsis? Crit. Care Med. 2017, 45, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Nalesso, F.; Cattarin, L.; Gobbi, L.; Fragasso, A.; Garzotto, F.; Calò, L.A. Evaluating Nephrocheck® as a Predictive Tool for Acute Kidney Injury. Int. J. Nephrol. Renov. Dis. 2020, 13, 85–96. [Google Scholar] [CrossRef] [Green Version]
Patient data | |
Number of patients | 43 |
Age (years) | 66 (59–76) * |
Gender (male/female) | 31/12 |
Septic focus | |
Gastrointestinal tract | 35 (81%) |
Lung | 6 (14%) |
Other | 2 (5%) |
Length of stay | |
Days in ICU | 18 (10–37) * |
Days in the hospital | 40 (20–62) * |
ICU Admission | 7 Days Following ICU Admission | 28 Days Following ICU Admission | |
---|---|---|---|
AchE (U/mg Hb) | 42 (37–48) | 41 (34–45) | 36 (28–41) |
CRP (mg/L) | 186 (134–309) | 140 (116–181) | 70 (63–147) |
WBCC (nL−1) | 12 (5–21) | 15 (11–22) | 16 (11–23) |
SOFA | 11 (10–14) | 8 (4–13) | 10 (5–14) |
APACHE II | 30 (28–36) | 22 (17–28) | 24 (16–28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zivkovic, A.R.; Schmidt, K.; Hofer, S.; Brenner, T.; Weigand, M.A.; Decker, S.O. Non-Neuronal Acetylcholinesterase Activity Shows Limited Utility for Early Detection of Sepsis. Biomedicines 2023, 11, 2111. https://doi.org/10.3390/biomedicines11082111
Zivkovic AR, Schmidt K, Hofer S, Brenner T, Weigand MA, Decker SO. Non-Neuronal Acetylcholinesterase Activity Shows Limited Utility for Early Detection of Sepsis. Biomedicines. 2023; 11(8):2111. https://doi.org/10.3390/biomedicines11082111
Chicago/Turabian StyleZivkovic, Aleksandar R., Karsten Schmidt, Stefan Hofer, Thorsten Brenner, Markus A. Weigand, and Sebastian O. Decker. 2023. "Non-Neuronal Acetylcholinesterase Activity Shows Limited Utility for Early Detection of Sepsis" Biomedicines 11, no. 8: 2111. https://doi.org/10.3390/biomedicines11082111
APA StyleZivkovic, A. R., Schmidt, K., Hofer, S., Brenner, T., Weigand, M. A., & Decker, S. O. (2023). Non-Neuronal Acetylcholinesterase Activity Shows Limited Utility for Early Detection of Sepsis. Biomedicines, 11(8), 2111. https://doi.org/10.3390/biomedicines11082111