Evaluation of Five Mammalian Models for Human Disease Research Using Genomic and Bioinformatic Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Protein Coding Sequences
2.2. Identification of Similarities between Human CDSs and Other Mammalian Sequences
2.3. Comparison of Conserved CDS and the Identification of SNPs and Their Associated Diseases
2.4. Construction of a Phylogenetic Tree
3. Results
3.1. Identification of Conserved CDSs with Human Sequences
3.2. Mapping Human Disease-Relevant SNPs in Other Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hickman, D.L.; Johnson, J.; Vemulapalli, T.H.; Crisler, J.R.; Shepherd, R. Commonly used animal models. In Principles of Animal Research for Graduate and Undergraduate Students; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Vandamme, T. Use of Rodents as Models of Human Diseases. J. Pharm. Bioallied Sci. 2014, 6, 2–9. [Google Scholar] [CrossRef]
- Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.G.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of Cytochrome P450 (CYP) Genes from the Mouse and Human Genomes, Including Nomenclature Recommendations for Genes, Pseudogenes and Alternative-Splice Variants. Pharmacogenetics 2004, 14, 1–18. [Google Scholar]
- Junhee, S.; Warren, H.S.; Alex, G.C.; Michael, N.M.; Henry, V.B.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L.; et al. Genomic Responses in Mouse Models Poorly Mimic Human Inflammatory Diseases. Proc. Natl. Acad. Sci. USA 2013, 110, 3507–3512. [Google Scholar] [CrossRef]
- Bailey, K.L.; Cartwright, S.B.; Patel, N.S.; Remmers, N.; Lazenby, A.J.; Hollingsworth, M.A.; Carlson, M.A. Porcine Pancreatic Ductal Epithelial Cells Transformed with KRASG12D and SV40T Are Tumorigenic. Sci. Rep. 2021, 11, 13436. [Google Scholar] [CrossRef]
- Bailey, K.L.; Carlson, M.A. Porcine Models of Pancreatic Cancer. Front. Oncol. 2019, 9, 144. [Google Scholar]
- Mondal, P.; Bailey, K.L.; Cartwright, S.B.; Band, V.; Carlson, M.A. Large Animal Models of Breast Cancer. Front. Oncol. 2022, 12, 788038. [Google Scholar]
- Mondal, P.; Patel, N.S.; Bailey, K.; Aravind, S.; Cartwright, S.B.; Hollingsworth, M.A.; Lazenby, A.J.; Carlson, M.A. Induction of Pancreatic Neoplasia in the KRAS/TP53 Oncopig. Dis. Model. Mech. 2023, 16, dmm.049699. [Google Scholar] [CrossRef]
- Wernersson, R.; Schierup, M.H.; Jørgensen, F.G.; Gorodkin, J.; Panitz, F.; Stærfeldt, H.H.; Christensen, O.F.; Mailund, T.; Hornshøj, H.; Klein, A.; et al. Pigs in Sequence Space: A 0.66X Coverage Pig Genome Survey Based on Shotgun Sequencing. BMC Genom. 2005, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.J.; et al. Analyses of Pig Genomes Provide Insight into Porcine Demography and Evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Schook, L.B.; Collares, T.V.; Darfour-Oduro, K.A.; De, A.K.; Rund, L.A.; Schachtschneider, K.M.; Seixas, F.K. Unraveling the Swine Genome: Implications for Human Health. Annu. Rev. Anim. Biosci. 2015, 3, 219–244. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Fujiwara, K.; Saitou, M.; Tsukiyama, T. Non-Human Primates as a Model for Human Development. Stem Cell Rep. 2021, 16, 1093–1103. [Google Scholar]
- Yan, G.; Zhang, G.; Fang, X.; Zhang, Y.; Li, C.; Ling, F.; Cooper, D.N.; Li, Q.; Li, Y.; Van Gool, A.J.; et al. Genome Sequencing and Comparison of Two Nonhuman Primate Animal Models, the Cynomolgus and Chinese Rhesus Macaques. Nat. Biotechnol. 2011, 29, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, M.; Ebina, T. Common Marmoset as a Model Primate for Study of the Motor Control System. Curr. Opin. Neurobiol. 2020, 64, 103–110. [Google Scholar]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Ridwan Amode, M.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R Package for the Visualization of Intersecting Sets and Their Properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Ouyang, Y.; Yao, W. ShinyCircos: An R/Shiny Application for Interactive Creation of Circos Plot. Bioinformatics 2018, 34, 1229–1231. [Google Scholar] [CrossRef] [Green Version]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Page, A.J.; Taylor, B.; Delaney, A.J.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-Sites: Rapid Efficient Extraction of SNPs from Multi-FASTA Alignments. Microb. Genom. 2016, 2, e000056. [Google Scholar] [CrossRef] [Green Version]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A Web Server for Functional Annotation of Human Genome Sequence Variation (2020 Update). Nucleic Acids Res. 2020, 48, W185–W192. [Google Scholar] [CrossRef]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gel, B.; Serra, E. KaryoploteR: An R/Bioconductor Package to Plot Customizable Genomes Displaying Arbitrary Data. Bioinformatics 2017, 33, 3088–3090. [Google Scholar] [CrossRef] [Green Version]
- Rice, P.; Longden, L.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Harding, J.D. Nonhuman Primates and Translational Research: Progress, Opportunities, and Challenges. ILAR J. 2017, 58, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Jensen, F.E.; Greely, H.T.; Okano, H.; Treue, S.; Roberts, A.C.; Fox, J.G.; Caddick, S.; Poo, M.M.; Newsome, W.T.; et al. Opportunities and Limitations of Genetically Modified Nonhuman Primate Models for Neuroscience Research. Proc. Natl. Acad. Sci. USA 2020, 117, 24022–24031. [Google Scholar]
- Miller, C.T.; Freiwald, W.A.; Leopold, D.A.; Mitchell, J.F.; Silva, A.C.; Wang, X. Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron 2016, 90, 219–233. [Google Scholar]
- Pomberger, T.; Risueno-Segovia, C.; Gultekin, Y.B.; Dohmen, D.; Hage, S.R. Cognitive Control of Complex Motor Behavior in Marmoset Monkeys. Nat. Commun. 2019, 10, 3796. [Google Scholar] [CrossRef] [Green Version]
- Ludlage, E.; Mansfield, K. Clinical Care and Diseases of the Common Marmoset (Callithrix Jacchus). Comp. Med. 2003, 53, 369–382. [Google Scholar]
- David, J.M.; Dick, E.J.; Hubbard, G.B. Spontaneous Pathology of the Common Marmoset (Callithrix Jacchus) and Tamarins (Saguinus Oedipus, Saguinus Mystax). J. Med. Primatol. 2009, 38, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Chiou, K.L.; Montague, M.J.; Goldman, E.A.; Watowich, M.M.; Sams, S.N.; Song, J.; Horvath, J.E.; Sterner, K.N.; Ruiz-Lambides, A.V.; Martínez, M.I.; et al. Rhesus Macaques as a Tractable Physiological Model of Human Ageing: Rhesus Macaque Model of Human Ageing. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190612. [Google Scholar] [CrossRef]
- Siwy, J.; Zoja, C.; Klein, J.; Benigni, A.; Mullen, W.; Mayer, B.; Mischak, H.; Jankowski, J.; Stevens, R.; Vlahou, A.; et al. Evaluation of the Zucker Diabetic Fatty (ZDF) Rat as a Model for Human Disease Based on Urinary Peptidomic Profiles. PLoS ONE 2012, 7, e51334. [Google Scholar] [CrossRef]
- Kennedy, A.J.; Ellacott, K.L.J.; King, V.L.; Hasty, A.H. Mouse Models of the Metabolic Syndrome. DMM Dis. Models Mech. 2010, 3, 156–166. [Google Scholar]
- Hutter, C.; Zenklusen, J.C. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell 2018, 173, 283–285. [Google Scholar] [CrossRef]
- Berthelsen, M.F.; Riedel, M.; Cai, H.; Skaarup, S.H.; Alstrup, A.K.O.; Dagnæs-Hansen, F.; Luo, Y.; Jensen, U.B.; Hager, H.; Liu, Y.; et al. The Crispr/Cas9 Minipig—A Transgenic Minipig to Produce Specific Mutations in Designated Tissues. Cancers 2021, 13, 3024. [Google Scholar] [CrossRef]
Comparison | Identified BLAST Hits * | Average Percentage Identity | Range of Percent Identity | Average Percentage Identity for Conserved CDS |
---|---|---|---|---|
Human vs. rhesus macaque | 17,638 | 96.82 | 100–71.74 | 97.53 |
Human vs. marmoset | 17,787 | 94.65 | 100–71.63 | 95.76 |
Human vs. pig | 14,992 | 89.37 | 100–70.81 | 90.38 |
Human vs. mouse | 13,806 | 86.65 | 100–70.11 | 87.19 |
Human vs. rat | 13,222 | 86.53 | 100–68.93 | 87.04 |
Human Chromosomes | Total CDS | Conserved CDS | Rhesus Macaque * | Marmoset * | Pig * | Mouse * | Rat * |
---|---|---|---|---|---|---|---|
Chr1 | 2049 | 1088 | 1 | 7, 18, 19 | 6, 4, 9, 10, 14, 2, 7 | 4, 3, 1, 8 | 5, 2, 13,19, 14, 10, 17, 4 |
Chr2 | 1244 | 750 | 12, 13 | 6, 14 | 15, 3 | 1, 2, 6, 17, 12, 11 | 9, 6, 3, 4, 14, 13, 20, 18 |
Chr3 | 1075 | 645 | 2 | 15, 17 | 13 | 9, 16, 3, 6, 14 | 8, 11, 2, 4, 16, 15 |
Chr4 | 752 | 390 | 5 | 3 | 8, 15, 14 | 5, 3, 8 | 14, 2, 16, 19, 4 |
Chr5 | 883 | 502 | 6 | 2 | 2, 16 | 13, 18, 11, 15 | 2, 18, 10, 17, 1, 9 |
Chr6 | 1045 | 574 | 4 | 4 | 7, 1 | 17, 10, 13, 9, 4, 1 | 20, 1, 17, 9, 8, 5 |
Chr7 | 919 | 470 | 3 | 8,2 | 18, 9, 3 | 5, 6, 12, 11, 13 | 4, 12, 6, 14, 17 |
Chr8 | 684 | 372 | 8 | 16, 13 | 4, 14, 17, 15 | 15, 8, 14, 4, 1, 3 | 7, 5, 16, 15, 2, 11 |
Chr9 | 779 | 402 | 15 | 1 | 1, 10, 14 3 | 4, 2, 19, 13 | 5, 3, 1, 17 |
Chr10 | 1309 | 619 | 9 | 12, 7 | 14, 10 | 19, 14, 2, 10, 7, 18, 6, 13 | 1, 17, 20, 16, 15, 4 |
Chr11 | 727 | 432 | 14 | 11 | 2, 9 | 7, 9, 19, 2 | 1, 8, 3 |
Chr12 | 1033 | 582 | 11 | 9 | 5, 14 | 10, 5, 6, 15 | 7, 12, 4 |
Chr13 | 321 | 182 | 17 | 1, 5 | 11 | 14, 8, 5, 3 | 15, 16, 12, 2, 9 |
Chr14 | 610 | 360 | 7 | 10 | 7, 1 | 12, 14 | 6, 15 |
Chr15 | 596 | 371 | 7 | 10, 6 | 1, 7 | 9, 2, 7 | 8, 3, 1 |
Chr16 | 851 | 378 | 20 | 12, 20 | 6, 3 | 8, 7, 16, 17, 11 | 19, 1, 10 |
Chr17 | 1182 | 637 | 16 | 5 | 12 | 11 | 10 |
Chr18 | 269 | 157 | 18 | 13 | 1, 6 | 18, 17, 1 | 18, 9, 3 |
Chr19 | 546 | 282 | 19 | 22 | 6, 2 | 7, 8, 10, 17, 9 | 1, 7, 16, 8, 19, 9, 12 |
Chr20 | 1469 | 457 | 10 | 5 | 17 | 2 | 3 |
Chr21 | 234 | 76 | 3 | 21 | 13 | 16, 10, 17 | 11, 20 |
Chr22 | 444 | 202 | 10 | 1 | 5, 14 | 15, 11, 16, 5, 10 | 7, 14, 11, 12, 20 |
ChrX | 853 | 381 | X | X | X | X | X |
ChrY | 46 | 7 | Y | Y, X | Y, X | Y, X | Y, X |
Organisms | Total SNPs in 10,316 CDSs with RS Number | SNPs Associated with Disease | No. of Genes with SNPs | No. of Identified Diseases | Species-Specific Diseases * |
---|---|---|---|---|---|
Human vs. rhesus macaque | 577,417 | 13,790 | 1873 | 2376 | 53 (42) |
Human vs. marmoset | 516,545 | 12,090 | 1777 | 2283 | 24 (20) |
Human vs. pig | 395,787 | 9376 | 1597 | 2093 | 23 (18) |
Human vs. mouse | 264,070 | 5923 | 1336 | 1709 | 7 (5) |
Human vs. rat | 256,017 | 5975 | 1331 | 1712 | 8 (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagadesan, S.; Mondal, P.; Carlson, M.A.; Guda, C. Evaluation of Five Mammalian Models for Human Disease Research Using Genomic and Bioinformatic Approaches. Biomedicines 2023, 11, 2197. https://doi.org/10.3390/biomedicines11082197
Jagadesan S, Mondal P, Carlson MA, Guda C. Evaluation of Five Mammalian Models for Human Disease Research Using Genomic and Bioinformatic Approaches. Biomedicines. 2023; 11(8):2197. https://doi.org/10.3390/biomedicines11082197
Chicago/Turabian StyleJagadesan, Sankarasubramanian, Pinaki Mondal, Mark A. Carlson, and Chittibabu Guda. 2023. "Evaluation of Five Mammalian Models for Human Disease Research Using Genomic and Bioinformatic Approaches" Biomedicines 11, no. 8: 2197. https://doi.org/10.3390/biomedicines11082197
APA StyleJagadesan, S., Mondal, P., Carlson, M. A., & Guda, C. (2023). Evaluation of Five Mammalian Models for Human Disease Research Using Genomic and Bioinformatic Approaches. Biomedicines, 11(8), 2197. https://doi.org/10.3390/biomedicines11082197