Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Data Collection and Labelling
2.3. Data Preprocessing
2.4. Model Architecture
2.5. Experiment Setup
- LassoCV [25]: Linear regression method with an L1-norm penalty. It trains the weights to be close to zero, thereby identifying the most important features in the model and finding a generalized model;
- LR + RF [26]: Combination of LR and RF into an ensemble algorithm using a stacking approach. LR refers to linear regression, and RF stands for random forest regressor.
3. Results
3.1. Prediction 1 Year from the Baseline
3.2. Prediction 2 Years from the Baseline
3.3. Prediction 3 Years from the Baseline
3.4. Comparison with Existing Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshida, T.; Ohno-Matsui, K.; Yasuzumi, K.; Kojima, A.; Shimada, N.; Futagami, S.; Tokoro, T.; Mochizuki, M. Myopic choroidal neovascularization: A 10-year follow-up. Ophthalmology 2003, 110, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Ohno-Matsui, K.; Ikuno, Y.; Lai, T.Y.Y.; Gemmy Cheung, C.M. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia. Prog. Retin. Eye Res. 2018, 63, 92–106. [Google Scholar] [CrossRef] [PubMed]
- El Matri, L.; Chebil, A.; Kort, F. Current and emerging treatment options for myopic choroidal neovascularization. Clin. Ophthalmol. 2015, 9, 733–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.Y.; Wu, P.Y.; Sheu, S.J. Optical coherence tomography biomarkers for myopic choroidal neovascularization treated with anti-vascular endothelial growth factor. Kaohsiung J. Med. Sci. 2023, 39, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Yu, H.G. Outcomes of Antivascular Endothelial Growth Factor Treatment for Foveal Serous Retinal Detachment Associated with Inferior Staphyloma. Korean J. Ophthalmol. 2019, 33, 228–237. [Google Scholar] [CrossRef]
- Calvo-Gonzalez, C.; Reche-Frutos, J.; Donate, J.; Fernandez-Perez, C.; Garcia-Feijoo, J. Intravitreal ranibizumab for myopic choroidal neovascularization: Factors predictive of visual outcome and need for retreatment. Am. J. Ophthalmol. 2011, 151, 529–534. [Google Scholar] [CrossRef]
- Wang, H.Y.; Tao, M.Z.; Wang, X.X.; Li, M.H.; Zhang, Z.F.; Sun, D.J.; Zhu, J.T.; Wang, Y.S. Baseline characteristics of myopic choroidal neovascularization in patients above 50 years old and prognostic factors after intravitreal conbercept treatment. Sci. Rep. 2021, 11, 7337. [Google Scholar] [CrossRef]
- Guichard, M.M.; Peters, G.; Tuerksever, C.; Pruente, C.; Hatz, K. Outcome Predictors of SD-OCT-Driven Intravitreal Ranibizumab in Choroidal Neovascularization due to Myopia. Ophthalmologica 2020, 243, 154–162. [Google Scholar] [CrossRef]
- Hsu, C.R.; Lai, T.T.; Hsieh, Y.T.; Ho, T.C.; Yang, C.M.; Yang, C.H. Baseline predictors for good visual gains after anti-vascular endothelial growth factor therapy for myopic choroidal neovascularization. Sci. Rep. 2022, 12, 6800. [Google Scholar] [CrossRef]
- Li, Y.; Foo, L.L.; Wong, C.W.; Li, J.; Hoang, Q.V.; Schmetterer, L.; Ting, D.S.W.; Ang, M. Pathologic myopia: Advances in imaging and the potential role of artificial intelligence. Br. J. Ophthalmol. 2023, 107, 600–606. [Google Scholar] [CrossRef]
- Park, S.J.; Ko, T.; Park, C.K.; Kim, Y.C.; Choi, I.Y. Deep Learning Model Based on 3D Optical Coherence Tomography Images for the Automated Detection of Pathologic Myopia. Diagnostics 2022, 12, 742. [Google Scholar] [CrossRef]
- Li, Y.; Feng, W.; Zhao, X.; Liu, B.; Zhang, Y.; Chi, W.; Lu, M.; Lin, J.; Wei, Y.; Li, J.; et al. Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images. Br. J. Ophthalmol. 2022, 106, 633–639. [Google Scholar] [CrossRef]
- Choi, K.J.; Choi, J.E.; Roh, H.C.; Eun, J.S.; Kim, J.M.; Shin, Y.K.; Kang, M.C.; Chung, J.K.; Lee, C.; Lee, D.; et al. Deep learning models for screening of high myopia using optical coherence tomography. Sci. Rep. 2021, 11, 21663. [Google Scholar] [CrossRef]
- Han, J.; Choi, S.; Park, J.I.; Hwang, J.S.; Han, J.M.; Ko, J.; Yoon, J.; Hwang, D.D. Detecting Macular Disease Based on Optical Coherence Tomography Using a Deep Convolutional Network. J. Clin. Med. 2023, 12, 1005. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M.J. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kawczynski, M.G.; Bengtsson, T.; Dai, J.; Hopkins, J.J.; Gao, S.S.; Willis, J.R. Development of Deep Learning Models to Predict Best-Corrected Visual Acuity from Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2020, 9, 51. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part IV 14. pp. 630–645. [Google Scholar]
- Rohm, M.; Tresp, V.; Muller, M.; Kern, C.; Manakov, I.; Weiss, M.; Sim, D.A.; Priglinger, S.; Keane, P.A.; Kortuem, K. Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related Macular Degeneration. Ophthalmology 2018, 125, 1028–1036. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Lin, Z.; Wang, J.; Huang, C.; Wei, M.; Zhai, W.; Li, J. Prediction of Visual Acuity after anti-VEGF Therapy in Diabetic Macular Edema by Machine Learning. J. Diabetes Res. 2022, 2022, 5779210. [Google Scholar] [CrossRef]
- Inoda, S.; Takahashi, H.; Arai, Y.; Tampo, H.; Matsui, Y.; Kawashima, H.; Yanagi, Y. An AI model to estimate visual acuity based solely on cross-sectional OCT imaging of various diseases. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.J.; Faes, L.; Wagner, S.K.; Moraes, G.; Chopra, R.; Patel, P.J.; Balaskas, K.; Keenan, T.D.L.; Bachmann, L.M.; Keane, P.A. Predicting Incremental and Future Visual Change in Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmol. Retina 2021, 5, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Aslam, T.M.; Zaki, H.R.; Mahmood, S.; Ali, Z.C.; Ahmad, N.A.; Thorell, M.R.; Balaskas, K. Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration. Am. J. Ophthalmol. 2018, 185, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt-Erfurth, U.; Bogunovic, H.; Sadeghipour, A.; Schlegl, T.; Langs, G.; Gerendas, B.S.; Osborne, A.; Waldstein, S.M. Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmol. Retina 2018, 2, 24–30. [Google Scholar] [CrossRef]
Horizontal/Vertical Cut Images | Volume Scan Images | |||||
---|---|---|---|---|---|---|
After 1 Year | After 2 Years | After 3 Years | After 1 Year | After 2 Years | After 3 Years | |
Images, n | 8444 | 5302 | 3290 | 107,975 | 67,850 | 42,375 |
Patients, n | 279 | 192 | 142 | 279 | 192 | 142 |
Data | |
---|---|
After 1 year | - VA and SD-OCT images at baseline and next visit - The number of injections in 1 year - Age and sex |
After 2 years | - VA and SD-OCT images at baseline and after 1 year - The number of injections in 1 year and 2 years - Age and sex |
After 3 years | - VA and SD-OCT images at baseline and after 1 and 2 year(s) - The number of injections in 1, 2, and 3 years - Age and sex |
H/V Cut | Volume Scan Image | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
OCT at baseline | 0.50346 | −0.00979 | 0.47105 | 0.01619 |
VA at baseline | 0.19883 | 0.84251 | 0.19626 | 0.84937 |
OV(B) a | 0.19448 | 0.84931 | 0.19354 | 0.85352 |
OV(B) + sex + age | 0.22167 | 0.80785 | 0.20682 | 0.82959 |
OV(B) + Inject(1) b | 0.20599 | 0.83096 | 0.20234 | 0.83989 |
OV(B) + OV(N) c | 0.15446 | 0.90496 | 0.15069 | 0.91120 |
OV(B) + OV(N) + Inject(1) | 0.16023 | 0.89772 | 0.15662 | 0.90407 |
H/V Cut | Volume Scan Image | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
OCT at baseline | 0.72555 | −0.03815 | 0.71943 | 0.04066 |
VA at baseline | 0.37775 | 0.71859 | 0.37080 | 0.72102 |
OV(B) a | 0.37366 | 0.72886 | 0.33639 | 0.75303 |
OV(B) + sex + age | 0.44571 | 0.64150 | 0.41487 | 0.69102 |
OV(B) + Inject(1) b | 0.43218 | 0.66193 | 0.42637 | 0.67138 |
OV(B) + OV(1) c | 0.37321 | 0.72532 | 0.33949 | 0.80934 |
OV(B) + OV(1) + Inject(1) | 0.30815 | 0.81273 | 0.27233 | 0.87732 |
OV(B) + OV(1) + Inject(1) + Inject(2) d | 0.28549 | 0.83927 | 0.25370 | 0.89353 |
H/V Cut | Volume Scan Image | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
OCT at baseline | 0.71571 | −0.06554 | 0.69769 | 0.02714 |
VA at baseline | 0.44776 | 0.57128 | 0.44478 | 0.57310 |
OV(B) a | 0.45006 | 0.57866 | 0.43333 | 0.60151 |
OV(B) + sex + age | 0.46143 | 0.55710 | 0.45674 | 0.55581 |
OV(B) + Inject(1) b | 0.47352 | 0.53359 | 0.46282 | 0.54390 |
OV(B) + OV(1) c | 0.39429 | 0.67661 | 0.35941 | 0.72495 |
OV(B) + OV(1) + Inject(1) | 0.36825 | 0.71792 | 0.33943 | 0.75469 |
OV(B) + OV(1) + OV(2) d | 0.32497 | 0.78032 | 0.27473 | 0.83928 |
OV(B) + OV(1) + OV(2) Inject(1) + Inject(2) e | 0.30425 | 0.80744 | 0.24435 | 0.87287 |
OV(B) + OV(1) + OV(2) Inject(1) + Inject(2) + Inject(3) f | 0.29614 | 0.81758 | 0.22661 | 0.89066 |
RMSE | R2 | ||
---|---|---|---|
O(B) a | ResNet-50 v2 [23] | 0.55545 | −0.12990 |
V(B) b + Inject(1) c | LassoCV [25] | 0.23657 | 0.79503 |
LR + RF [26] | 0.25328 | 0.76507 | |
OV(B) d + Inject(1) | Ours | 0.20234 | 0.83989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Han, J.; Park, J.I.; Hwang, J.S.; Han, J.M.; Yoon, J.; Choi, S.; Hwang, G.; Hwang, D.D.-J. Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images. Biomedicines 2023, 11, 2238. https://doi.org/10.3390/biomedicines11082238
Yang M, Han J, Park JI, Hwang JS, Han JM, Yoon J, Choi S, Hwang G, Hwang DD-J. Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images. Biomedicines. 2023; 11(8):2238. https://doi.org/10.3390/biomedicines11082238
Chicago/Turabian StyleYang, Migyeong, Jinyoung Han, Ji In Park, Joon Seo Hwang, Jeong Mo Han, Jeewoo Yoon, Seong Choi, Gyudeok Hwang, and Daniel Duck-Jin Hwang. 2023. "Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images" Biomedicines 11, no. 8: 2238. https://doi.org/10.3390/biomedicines11082238
APA StyleYang, M., Han, J., Park, J. I., Hwang, J. S., Han, J. M., Yoon, J., Choi, S., Hwang, G., & Hwang, D. D. -J. (2023). Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images. Biomedicines, 11(8), 2238. https://doi.org/10.3390/biomedicines11082238