Sleep Traits Causally Affect the Brain Cortical Structure: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Methods and Materials
2.1. GWAS Summary Data for Cerebral Cortex Thickness and Surface Area
2.2. Genetic Variables Associated with Morningness, Long Sleep, Short Sleep, Ease of Getting Up, and Insomnia
2.3. Selection of Genetic Instruments
2.4. Ethics
2.5. Statistics
2.6. Mendelian Randomization Analysis
2.7. Sensitivity Analysis
3. Results
3.1. Association between Genetically Predicted Morningness and Cortical SA/TH
3.2. Association between Genetically Predicted Ease of Getting up and Cortical SA/TH
3.3. Association between Genetically Predicted Insomnia and Cortical SA/TH
3.4. Association between Genetically Predicted Long Sleep and Cortical SA/TH
3.5. Association between Genetically Predicted Short Sleep and Cortical SA/TH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Winer, J.R.; Deters, K.D.; Kennedy, G.; Jin, M.; Goldstein-Piekarski, A.; Poston, K.L.; Mormino, E.C. Association of Short and Long Sleep Duration With Amyloid-beta Burden and Cognition in Aging. JAMA Neurol. 2021, 78, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Spira, A.P.; Chen-Edinboro, L.P.; Wu, M.N.; Yaffe, K. Impact of sleep on the risk of cognitive decline and dementia. Curr. Opin. Psychiatry 2014, 27, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Di Meco, A.; Joshi, Y.B.; Pratico, D. Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer’s disease with plaques and tangles. Neurobiol. Aging 2014, 35, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Espie, C.A.; Emsley, R.; Kyle, S.D.; Gordon, C.; Drake, C.L.; Siriwardena, A.N.; Cape, J.; Ong, J.C.; Sheaves, B.; Foster, R.; et al. Effect of Digital Cognitive Behavioral Therapy for Insomnia on Health, Psychological Well-being, and Sleep-Related Quality of Life: A Randomized Clinical Trial. JAMA Psychiatry 2019, 76, 21–30. [Google Scholar] [CrossRef]
- Kocevska, D.; Barclay, N.L.; Bramer, W.M.; Gehrman, P.R.; Van Someren, E.J.W. Heritability of sleep duration and quality: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 59, 101448. [Google Scholar] [CrossRef]
- Grasby, K.L.; Jahanshad, N.; Painter, J.N.; Colodro-Conde, L.; Bralten, J.; Hibar, D.P.; Lind, P.A.; Pizzagalli, F.; Ching, C.R.K.; McMahon, M.A.B.; et al. The genetic architecture of the human cerebral cortex. Science 2020, 367, 6484. [Google Scholar] [CrossRef]
- Zhang, R.; Tomasi, D.; Manza, P.; Shokri-Kojori, E.; Demiral, S.B.; Feldman, D.E.; Kroll, D.S.; Biesecker, C.L.; McPherson, K.L.; Wang, G.J.; et al. Sleep disturbances are associated with cortical and subcortical atrophy in alcohol use disorder. Transl. Psychiatry 2021, 11, 428. [Google Scholar] [CrossRef]
- Liu, C.; Kong, X.Z.; Liu, X.; Zhou, R.; Wu, B. Long-term total sleep deprivation reduces thalamic gray matter volume in healthy men. Neuroreport 2014, 25, 320–323. [Google Scholar] [CrossRef]
- Baril, A.A.; Beiser, A.S.; DeCarli, C.; Himali, D.; Sanchez, E.; Cavuoto, M.; Redline, S.; Gottlieb, D.J.; Seshadri, S.; Pase, M.P.; et al. Self-reported sleepiness associates with greater brain and cortical volume and lower prevalence of ischemic covert brain infarcts in a community sample. Sleep 2022, 45, zsac185. [Google Scholar] [CrossRef]
- Lauriola, M.; Esposito, R.; Delli Pizzi, S.; de Zambotti, M.; Londrillo, F.; Kramer, J.H.; Rabinovici, G.D.; Tartaro, A. Sleep changes without medial temporal lobe or brain cortical changes in community-dwelling individuals with subjective cognitive decline. Alzheimers Dement. 2017, 13, 783–791. [Google Scholar] [CrossRef]
- Brosch, K.; Stein, F.; Schmitt, S.; Pfarr, J.K.; Ringwald, K.G.; Thomas-Odenthal, F.; Meller, T.; Steinstrater, O.; Waltemate, L.; Lemke, H.; et al. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders. Mol. Psychiatry 2022, 27, 4234–4243. [Google Scholar] [CrossRef]
- Chen, X.; Kong, J.; Pan, J.; Huang, K.; Zhou, W.; Diao, X.; Cai, J.; Zheng, J.; Yang, X.; Xie, W.; et al. Kidney damage causally affects the brain cortical structure: A Mendelian randomization study. EBioMedicine 2021, 72, 103592. [Google Scholar] [CrossRef] [PubMed]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. JAMA 2017, 318, 1925–1926. [Google Scholar] [CrossRef] [PubMed]
- Desikan, R.S.; Segonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Jansen, P.R.; Watanabe, K.; Stringer, S.; Skene, N.; Bryois, J.; Hammerschlag, A.R.; de Leeuw, C.A.; Benjamins, J.S.; Munoz-Manchado, A.B.; Nagel, M.; et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 2019, 51, 394–403. [Google Scholar] [CrossRef]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G.; et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef]
- Staley, J.R.; Blackshaw, J.; Kamat, M.A.; Ellis, S.; Surendran, P.; Sun, B.B.; Paul, D.S.; Freitag, D.; Burgess, S.; Danesh, J.; et al. PhenoScanner: A database of human genotype-phenotype associations. Bioinformatics 2016, 32, 3207–3209. [Google Scholar] [CrossRef]
- Thompson, J.R.; Minelli, C.; Del Greco, M.F. Mendelian Randomization using Public Data from Genetic Consortia. Int. J. Biostat. 2016, 12, 20150074. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Qi, G.; Chatterjee, N. Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. Nat. Commun. 2019, 10, 1941. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Greco, M.F.; Minelli, C.; Sheehan, N.A.; Thompson, J.R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 2015, 34, 2926–2940. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Spiller, W.; Del Greco, M.F.; Sheehan, N.; Thompson, J.; Minelli, C.; Davey Smith, G. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int. J. Epidemiol. 2018, 47, 2100. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [Google Scholar] [CrossRef]
- Pierce, B.L.; Ahsan, H.; Vanderweele, T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2011, 40, 740–752. [Google Scholar] [CrossRef]
- Rakic, P. Specification of cerebral cortical areas. Science 1988, 241, 170–176. [Google Scholar] [CrossRef]
- Gomez, L.J.; Dooley, J.C.; Blumberg, M.S. Activity in developing prefrontal cortex is shaped by sleep and sensory experience. eLife. 2023, 12, e82103. [Google Scholar] [CrossRef]
- Krone, L.B.; Yamagata, T.; Blanco-Duque, C.; Guillaumin, M.C.C.; Kahn, M.C.; van der Vinne, V.; McKillop, L.E.; Tam, S.K.E.; Peirson, S.N.; Akerman, C.J.; et al. A role for the cortex in sleep-wake regulation. Nat. Neurosci. 2021, 24, 1210–1215. [Google Scholar] [CrossRef]
- Holth, J.K.; Fritschi, S.K.; Wang, C.; Pedersen, N.P.; Cirrito, J.R.; Mahan, T.E.; Finn, M.B.; Manis, M.; Geerling, J.C.; Fuller, P.M.; et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 2019, 363, 880–884. [Google Scholar] [CrossRef]
- Franks, N.P.; Wisden, W. The inescapable drive to sleep: Overlapping mechanisms of sleep and sedation. Science 2021, 374, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, W.H.; Li, S.X.; He, Z.M.; Zhu, W.L.; Ji, Y.B.; Wang, Z.; Zhu, X.M.; Yuan, K.; Bao, Y.P.; et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol. Psychiatry 2021, 26, 6277–6292. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, M.; Jones, S.E.; Beaupre, L.M.; Hill, S.L.; Felsky, D.; Rivas, M.A.; Lim, A.S.P.; Ollila, H.M.; Tripathy, S.J. Association of accelerometer-derived sleep measures with lifetime psychiatric diagnoses: A cross-sectional study of 89,205 participants from the UK Biobank. PLoS Med. 2021, 18, e1003782. [Google Scholar] [CrossRef]
- Wen, K.; Zhao, Y.; Gong, Q.; Zhu, Z.; Li, Q.; Pan, N.; Fu, S.; Radua, J.; Vieta, E.; Kumar, P.; et al. Cortical thickness abnormalities in patients with first episode psychosis: A meta-analysis of psychoradiologic studies and replication in an independent sample. Psychoradiology 2021, 1, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Sun, T.; Ma, C.; Zhang, X.; Ji, Y.; Fu, X.; Ni, H. Alterations of Brain Networks in Alzheimer’s Disease and Mild Cognitive Impairment: A Resting State fMRI Study Based on a Population-specific Brain Template. Neuroscience 2021, 452, 192–207. [Google Scholar] [CrossRef]
- Lundstrom, B.N.; Ingvar, M.; Petersson, K.M. The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. Neuroimage 2005, 27, 824–834. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, X.; Fu, J.; Xu, J.; Liu, H.; Zhang, P.; Li, W.; Yu, C.; Ye, Z.; Qin, W. The morphometry of left cuneus mediating the genetic regulation on working memory. Hum. Brain Mapp. 2021, 42, 3470–3480. [Google Scholar] [CrossRef]
- Wu, B.S.; Zhang, Y.R.; Li, H.Q.; Kuo, K.; Chen, S.D.; Dong, Q.; Liu, Y.; Yu, J.T. Cortical structure and the risk for Alzheimer’s disease: A bidirectional Mendelian randomization study. Transl. Psychiatry 2021, 11, 476. [Google Scholar] [CrossRef]
- Palejwala, A.H.; O′Connor, K.P.; Pelargos, P.; Briggs, R.G.; Milton, C.K.; Conner, A.K.; Milligan, T.M.; O′Donoghue, D.L.; Glenn, C.A.; Sughrue, M.E. Anatomy and white matter connections of the lateral occipital cortex. Surg. Radiol. Anat. 2020, 42, 315–328. [Google Scholar] [CrossRef]
- Sasabayashi, D.; Takayanagi, Y.; Takahashi, T.; Nishiyama, S.; Mizukami, Y.; Katagiri, N.; Tsujino, N.; Nemoto, T.; Sakuma, A.; Katsura, M.; et al. Reduced cortical thickness of the paracentral lobule in at-risk mental state individuals with poor 1-year functional outcomes. Transl. Psychiatry 2021, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Canu, E.; Donzuso, G.; Stojkovic, T.; Basaia, S.; Stankovic, I.; Tomic, A.; Markovic, V.; Petrovic, I.; Stefanova, E.; et al. Tracking Cortical Changes throughout Cognitive Decline in Parkinson’s Disease. Mov. Disord. 2020, 35, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Miao, X.; Han, B.; Li, J. Cortical thickness of the left parahippocampal cortex links central hearing and cognitive performance in aging. Ann. N. Y. Acad. Sci. 2023, 1522, 117–125. [Google Scholar] [CrossRef]
- Baagil, H.; Hohenfeld, C.; Habel, U.; Eickhoff, S.B.; Gur, R.E.; Reetz, K.; Dogan, I. Neural correlates of impulse control behaviors in Parkinson’s disease: Analysis of multimodal imaging data. Neuroimage Clin. 2023, 37, 103315. [Google Scholar] [CrossRef]
- Tomic, A.; Agosta, F.; Sarasso, E.; Svetel, M.; Kresojevic, N.; Fontana, A.; Canu, E.; Petrovic, I.; Kostic, V.S.; Filippi, M. Brain Structural Changes in Focal Dystonia-What About Task Specificity? A Multimodal MRI Study. Mov. Disord. 2021, 36, 196–205. [Google Scholar] [CrossRef]
- De Lima Xavier, L.; Simonyan, K. Neural Representations of the Voice Tremor Spectrum. Mov. Disord. 2020, 35, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee for the Attention-Deficit/Hyperactivity Disorder; Autism Spectrum Disorder; Bipolar Disorder; Major Depressive Disorder; Obsessive-Compulsive Disorder; Schizophrenia ENIGMA Working Groups. Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders. JAMA Psychiatry 2021, 78, 47–63. [Google Scholar] [CrossRef]
- Snelleksz, M.; Rossell, S.L.; Gibbons, A.; Nithianantharajah, J.; Dean, B. Evidence that the frontal pole has a significant role in the pathophysiology of schizophrenia. Psychiatry Res. 2022, 317, 114850. [Google Scholar] [CrossRef]
- Cheng, W.; Frei, O.; van der Meer, D.; Wang, Y.; O′Connell, K.S.; Chu, Y.; Bahrami, S.; Shadrin, A.A.; Alnaes, D.; Hindley, G.F.L.; et al. Genetic Association Between Schizophrenia and Cortical Brain Surface Area and Thickness. JAMA Psychiatry 2021, 78, 1020–1030. [Google Scholar] [CrossRef]
- McLachlan, E.; Bousfield, J.; Howard, R.; Reeves, S. Reduced parahippocampal volume and psychosis symptoms in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2018, 33, 389–395. [Google Scholar] [CrossRef]
- Villa, L.M.; Colic, L.; Kim, J.A.; Sankar, A.; Goldman, D.A.; Lessing, B.; Pittman, B.; Alexopoulos, G.S.; van Dyck, C.H.; Blumberg, H.P. Aging of the brain in bipolar disorder: Illness- and onset-related effects in cortical thickness and subcortical gray matter volume. J. Affect. Dis. 2023, 323, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Stalnaker, T.A.; Cooch, N.K.; Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 2015, 18, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Rudebeck, P.H.; Rich, E.L. Orbitofrontal cortex. Curr. Biol. 2018, 28, R1083–R1088. [Google Scholar] [CrossRef]
- Velásquez, E.; Martins-de-Souza, D.; Velásquez, I.; Carneiro, G.R.A.; Schmitt, A.; Falkai, P.; Domont, G.B.; Nogueira, F.C.S. Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients. J. Proteome Res. 2019, 18, 4240–4253. [Google Scholar] [CrossRef] [PubMed]
- Jackowski, A.P.; de Araújo Filho, G.M.; de Almeida, A.G.; de Araújo, C.M.; Reis, M.; Nery, F.; Batista, I.R.; Silva, I.; Lacerda, A.L.T. The involvement of the orbitofrontal cortex in psychiatric disorders: An update of neuroimaging findings. Rev. Bras. Psiquiatria 2012, 34, 207–212. [Google Scholar] [CrossRef]
- McLaren, M.E.; Szymkowicz, S.M.; O’Shea, A.; Woods, A.J.; Anton, S.D.; Dotson, V.M. Dimensions of depressive symptoms and cingulate volumes in older adults. Transl. Psychiatry 2016, 6, e788. [Google Scholar] [CrossRef]
- Narr, K.L.; Toga, A.W.; Szeszko, P.; Thompson, P.M.; Woods, R.P.; Robinson, D.; Sevy, S.; Wang, Y.; Schrock, K.; Bilder, R.M. Cortical Thinning in Cingulate and Occipital Cortices in First Episode Schizophrenia. Biol. Psychiatry. 2005, 58, 32–40. [Google Scholar] [CrossRef]
- Wei, G.X.; Ge, L.; Chen, L.Z.; Cao, B.; Zhang, X. Structural abnormalities of cingulate cortex in patients with first-episode drug-naïve schizophrenia comorbid with depressive symptoms. Hum. Brain Mapp. 2020, 42, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, K.; Li, S.; Li, S.; Jin, J.; Jin, F.; Qin, W.; Han, W.; Liu, Z.; Yin, T.; et al. Hodotopical researchonneural pathway of Chinese language in posterior inferior frontal gyrus. Zhonghua Yi Xue Za Zhi 2016, 96, 1364–1367. [Google Scholar]
- Cohen-Adad, J.; Benner, T.; Greve, D.; Kinkel, R.P.; Radding, A.; Fischl, B.; Rosen, B.R.; Mainero, C. In vivo evidence of disseminated subpial T2* signal changes in multiple sclerosis at 7 T: A surface-based analysis. Neuroimage 2011, 57, 55–62. [Google Scholar] [CrossRef]
- Inhof, O.; Zsido, A.N.; Perlaki, G.; Orsi, G.; Labadi, B.; Kovacs, N.; Szente, A.; Doczi, T.; Janszky, J.; Darnai, G. Internet addiction associated with right pars opercularis in females. J. Behav. Addict. 2019, 8, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Curley, L.B.; Newman, E.; Thompson, W.K.; Brown, T.T.; Hagler, D.J.; Akshoomoff, N.; Reuter, C.; Dale, A.M.; Jernigan, T.L. Cortical morphology of the pars opercularis and its relationship to motor-inhibitory performance in a longitudinal, developing cohort. Brain Struct. Funct. 2017, 223, 211–220. [Google Scholar] [CrossRef]
- Suh, S.; Cho, N.; Zhang, J. Sex Differences in Insomnia: From Epidemiology and Etiology to Intervention. Curr. Psychiatry Rep. 2018, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhalder, K.; Regen, W.; Baglioni, C.; Klöppel, S.; Abdulkadir, A.; Hennig, J.; Nissen, C.; Riemann, D.; Feige, B. Insomnia does not appear to be associated with substantial structural brain changes. Sleep 2013, 36, 731–737. [Google Scholar] [CrossRef] [PubMed]
Exposure | Outcome | IVW-Derived p Value | Beta (95% Confidence Intervals) | Cochran’s Q-Derived p Value | MR-Egger Intercept Derived p Value |
---|---|---|---|---|---|
Morningness | SA of cuneus | 0.004 | 32.63 (10.35, 54.90) | 0.14 | 0.69 |
TH of frontal pole | 0.025 | −0.04 (−0.07, −0.005) | 0.76 | 0.70 | |
SA of inferior parietal | 0.036 | −77.69 (−150.50, −4.89) | 0.11 | 0.86 | |
SA of lateral occipital | 0.005 | 89.00 (26.66, 151.34) | 0.083 | 0.70 | |
Ease of getting up | SA of lateral orbitofrontal | 0.038 | 57.65 (3.26, 112.04) | 0.22 | 0.62 |
Insomnia | TH of parahippocampal | 0.037 | 0.002 (0.0001, 0.003) | 0.66 | 0.36 |
Long sleep | SA of isthmus cingulate | 0.011 | 274.93 (63.03, 486.84) | 0.60 | 0.90 |
SA of parsopercularis | 0.017 | 409.03 (73.42, 744.64) | 0.59 | 0.79 | |
Short sleep | TH of frontal pole | 0.019 | −0.18(−0.33, −0.03) | 0.61 | 0.22 |
SA of inferior parietal | 0.025 | −329.55 (−618.55, −40.55) | 0.59 | 0.25 | |
SA of lateral occipital | 0.007 | 394.37 (107.89, 680.85) | 0.34 | 0.73 | |
SA of middle temporal | 0.036 | 200.17 (12.97, 387.37) | 0.71 | 0.38 | |
TH of middle temporal | 0.002 | 0.12 (0.05, 0.20) | 0.31 | 0.76 | |
TH of paracentral | 0.006 | −0.11 (−0.19, −0.03) | 0.69 | 0.84 | |
TH of parahippocampal | 0.006 | −0.25 (−0.42, −0.07) | 0.81 | 0.81 | |
TH of superior temporal | 0.013 | 0.09 (0.02, 0.16) | 0.42 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lyu, S.; Xiao, W.; Yi, S.; Liu, P.; Liu, J. Sleep Traits Causally Affect the Brain Cortical Structure: A Mendelian Randomization Study. Biomedicines 2023, 11, 2296. https://doi.org/10.3390/biomedicines11082296
Chen Y, Lyu S, Xiao W, Yi S, Liu P, Liu J. Sleep Traits Causally Affect the Brain Cortical Structure: A Mendelian Randomization Study. Biomedicines. 2023; 11(8):2296. https://doi.org/10.3390/biomedicines11082296
Chicago/Turabian StyleChen, Yanjing, Shiyi Lyu, Wang Xiao, Sijie Yi, Ping Liu, and Jun Liu. 2023. "Sleep Traits Causally Affect the Brain Cortical Structure: A Mendelian Randomization Study" Biomedicines 11, no. 8: 2296. https://doi.org/10.3390/biomedicines11082296
APA StyleChen, Y., Lyu, S., Xiao, W., Yi, S., Liu, P., & Liu, J. (2023). Sleep Traits Causally Affect the Brain Cortical Structure: A Mendelian Randomization Study. Biomedicines, 11(8), 2296. https://doi.org/10.3390/biomedicines11082296