Survival Benefit after Shifting from Upfront Surgery to Neoadjuvant Treatment in Borderline Resectable Pancreatic Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Database
2.2. Classification of Patients
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics and Survival Outcomes
3.2. Clinicopathological Outcomes of Resected Patients
3.3. Prognostic Factors Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viale, P.H. The American Cancer Society’s Facts & Figures: 2020 Edition. J. Adv. Pract. Oncol. 2020, 11, 135–136. [Google Scholar] [PubMed]
- Varadhachary, G.R. Preoperative therapies for resectable and borderline resectable pancreatic cancer. J. Gastrointest. Oncol. 2011, 2, 136–142. [Google Scholar] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef]
- Okusaka, T.; Ikeda, M.; Fukutomi, A.; Ioka, T.; Furuse, J.; Ohkawa, S.; Isayama, H.; Boku, N. Phase II study of FOLFIRINOX for chemotherapy-naive Japanese patients with metastatic pancreatic cancer. Cancer Sci. 2014, 105, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Satoi, S.; Yamamoto, T.; Yamaki, S.; Sakaguchi, T.; Sekimoto, M. Surgical indication for and desirable outcomes of conversion surgery in patients with initially unresectable pancreatic ductal adenocarcinoma. Ann. Gastroenterol. Surg. 2020, 4, 6–13. [Google Scholar] [CrossRef]
- Yoo, C.; Hwang, I.; Song, T.J.; Lee, S.S.; Jeong, J.H.; Park, D.H.; Hwang, D.W.; Song, K.B.; Lee, J.H.; Lee, W.; et al. FOLFIRINOX in borderline resectable and locally advanced unresectable pancreatic adenocarcinoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920953294. [Google Scholar] [CrossRef] [PubMed]
- Callery, M.P.; Chang, K.J.; Fishman, E.K.; Talamonti, M.S.; William Traverso, L.; Linehan, D.C. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: Expert consensus statement. Ann. Surg. Oncol. 2009, 16, 1727–1733. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Asbun, H.; Bain, A.; Behrman, S.W.; Benson, A.B., 3rd; Binder, E.; Cardin, D.B.; Cha, C.; et al. Pancreatic Adenocarcinoma, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 1028–1061. [Google Scholar] [CrossRef]
- Chawla, A.; Molina, G.; Pak, L.M.; Rosenthal, M.; Mancias, J.D.; Clancy, T.E.; Wolpin, B.M.; Wang, J. Neoadjuvant Therapy is Associated with Improved Survival in Borderline-Resectable Pancreatic Cancer. Ann. Surg. Oncol. 2020, 27, 1191–1200. [Google Scholar] [CrossRef]
- Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation with Gemcitabine Versus Upfront Surgery in Patients with Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef]
- Jung, H.S.; Kim, H.S.; Kang, J.S.; Kang, Y.H.; Sohn, H.J.; Byun, Y.; Han, Y.; Yun, W.G.; Cho, Y.J.; Lee, M.; et al. Oncologic Benefits of Neoadjuvant Treatment versus Upfront Surgery in Borderline Resectable Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 4360. [Google Scholar] [CrossRef]
- van Dam, J.L.; Janssen, Q.P.; Besselink, M.G.; Homs, M.Y.V.; van Santvoort, H.C.; van Tienhoven, G.; de Wilde, R.F.; Wilmink, J.W.; van Eijck, C.H.J.; Groot Koerkamp, B. Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: A meta-analysis of randomised controlled trials. Eur. J. Cancer. 2022, 160, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; Vogel, J.A.; Besselink, M.G.; Busch, O.R.C.; Wilmink, J.W.; Daams, J.G.; van Eijck, C.H.J.; Groot Koerkamp, B.; Rasch, C.R.N.; van Tienhoven, G. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br. J. Surg. 2018, 105, 946–958. [Google Scholar] [PubMed]
- Isaji, S.; Mizuno, S.; Windsor, J.A.; Bassi, C.; Fernández-del Castillo, C.; Hackert, T.; Hayasaki, A.; Katz, M.H.; Kim, S.-W.; Kishiwada, M. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 2018, 18, 2–11. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; De Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Abu Hilal, M.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Wente, M.N.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; Traverso, L.W. Delayed gastric emptying (DGE) after pancreatic surgery: A suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007, 142, 761–768. [Google Scholar] [CrossRef]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH)–an international study group of pancreatic surgery (ISGPS) definition. Surgery 2007, 142, 20–25. [Google Scholar] [CrossRef]
- Tang, K.; Lu, W.; Qin, W.; Wu, Y. Neoadjuvant therapy for patients with borderline resectable pancreatic cancer: A systematic review and meta-analysis of response and resection percentages. Pancreatology 2016, 16, 28–37. [Google Scholar] [CrossRef]
- Janssen, Q.P.; Buettner, S.; Suker, M.; Beumer, B.R.; Addeo, P.; Bachellier, P.; Bahary, N.; Bekaii-Saab, T.; Bali, M.A.; Besselink, M.G.; et al. Neoadjuvant FOLFIRINOX in Patients with Borderline Resectable Pancreatic Cancer: A Systematic Review and Patient-Level Meta-Analysis. J. Natl. Cancer Inst. 2019, 111, 782–794. [Google Scholar] [CrossRef]
- Katz, M.H.; Fleming, J.B.; Bhosale, P.; Varadhachary, G.; Lee, J.E.; Wolff, R.; Wang, H.; Abbruzzese, J.; Pisters, P.W.; Vauthey, J.N.; et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 2012, 118, 5749–5756. [Google Scholar] [CrossRef] [PubMed]
- Ferrone, C.R.; Marchegiani, G.; Hong, T.S.; Ryan, D.P.; Deshpande, V.; McDonnell, E.I.; Sabbatino, F.; Santos, D.D.; Allen, J.N.; Blaszkowsky, L.S.; et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann. Surg. 2015, 261, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, V.A.; Mitra, A.; Gupta, V.; Ostwal, V.; Ramaswamy, A.; Engineer, R.; Sirohi, B.; Shetty, N.; Bal, M.; DeSouza, A.; et al. Neoadjuvant therapy in borderline resectable pancreatic cancer: Outcomes in the era of changing practices and evolving evidence. Surgery 2022, 171, 1388–1395. [Google Scholar] [CrossRef]
- Schorn, S.; Demir, I.E.; Reyes, C.M.; Saricaoglu, C.; Samm, N.; Schirren, R.; Tieftrunk, E.; Hartmann, D.; Friess, H.; Ceyhan, G.O. The impact of neoadjuvant therapy on the histopathological features of pancreatic ductal adenocarcinoma—A systematic review and meta-analysis. Cancer Treat. Rev. 2017, 55, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Uemura, K.; Sudo, T.; Hashimoto, Y.; Kondo, N.; Nakagawa, N.; Takahashi, S.; Sueda, T. Survival impact of neoadjuvant gemcitabine plus S-1 chemotherapy for patients with borderline resectable pancreatic carcinoma with arterial contact. Cancer Chemother. Pharmacol. 2017, 79, 37–47. [Google Scholar] [CrossRef]
- Kayahara, M.; Nakagawara, H.; Kitagawa, H.; Ohta, T. The nature of neural invasion by pancreatic cancer. Pancreas 2007, 35, 218–223. [Google Scholar] [CrossRef]
- Crippa, S.; Pergolini, I.; Javed, A.A.; Honselmann, K.C.; Weiss, M.J.; Di Salvo, F.; Burkhart, R.; Zamboni, G.; Belfiori, G.; Ferrone, C.R.; et al. Implications of Perineural Invasion on Disease Recurrence and Survival After Pancreatectomy for Pancreatic Head Ductal Adenocarcinoma. Ann. Surg. 2022, 276, 378–385. [Google Scholar] [CrossRef]
- Felsenstein, M.; Lindhammer, F.; Feist, M.; Hillebrandt, K.H.; Timmermann, L.; Benzing, C.; Globke, B.; Zocholl, D.; Hu, M.; Fehrenbach, U.; et al. Perineural Invasion in Pancreatic Ductal Adenocarcinoma (PDAC): A Saboteur of Curative Intended Therapies? J. Clin. Med. 2022, 11, 2367. [Google Scholar] [CrossRef]
- Chatterjee, D.; Rashid, A.; Wang, H.; Katz, M.H.; Wolff, R.A.; Varadhachary, G.R.; Pisters, P.W.; Gomez, H.F.; Abbruzzese, J.L.; Fleming, J.B.; et al. Tumor invasion of muscular vessels predicts poor prognosis in patients with pancreatic ductal adenocarcinoma who have received neoadjuvant therapy and pancreaticoduodenectomy. Am. J. Surg. Pathol. 2012, 36, 552–559. [Google Scholar] [CrossRef]
- Epstein, J.D.; Kozak, G.; Fong, Z.V.; He, J.; Javed, A.A.; Joneja, U.; Jiang, W.; Ferrone, C.R.; Lillemoe, K.D.; Cameron, J.L.; et al. Microscopic lymphovascular invasion is an independent predictor of survival in resected pancreatic ductal adenocarcinoma. J. Surg. Oncol. 2017, 116, 658–664. [Google Scholar] [CrossRef]
- Crippa, S.; Partelli, S.; Zamboni, G.; Barugola, G.; Capelli, P.; Inama, M.; Bassi, C.; Pederzoli, P.; Falconi, M. Poorly differentiated resectable pancreatic cancer: Is upfront resection worthwhile? Surgery 2012, 152, S112–S119. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Yamamoto, Y.; Sugiura, T.; Okamura, Y.; Ito, T.; Ashida, R.; Ohgi, K.; Sasaki, K.; Uesaka, K. Histological Differentiation Is a Pivotal Prognostic Factor Associated with the Pattern of Recurrence Following Resection of Pancreatic Adenocarcinoma. Pancreas 2021, 50, e57–e59. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Fang, J.; Tong, C.; Chen, M.; Zhang, B.; Juengpanich, S.; Wang, Y.; Cai, X. Survival benefits of neoadjuvant chemo(radio)therapy versus surgery first in patients with resectable or borderline resectable pancreatic cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Parsonson, A.O.; Connolly, E.; Lee, M.; Hruby, G.; Sandroussi, C.; Merrett, N.; Samra, J.; Mittal, A.; Tse, R.; Grimison, P. Real world outcomes of neoadjuvant chemotherapy and radiotherapy for borderline resectable pancreatic cancer: A multicentre observational study. ANZ J. Surg. 2021, 91, 2447–2452. [Google Scholar] [CrossRef] [PubMed]
Variables | Upfront Surgery (n = 55) | Surgery after NAT (n = 68) | Only Chemotherapy (n = 42) | p |
---|---|---|---|---|
Age, year, mean ± SD | 63 ± 10 | 61 ± 10 | 64 ± 8 | 0.254 |
Sex, n (%) | 0.214 | |||
Male | 27 (49.1) | 40 (58.8) | 28 (66.7) | |
Female | 28 (50.9) | 28 (41.2) | 14 (33.3) | |
Tumor location, n (%) | 0.157 | |||
Head | 39 (70.9) | 48 (70.6) | 36 (85.7) | |
Body/tail | 20 (29.1) | 20 (29.4) | 6 (14.3) | |
Tumor size, mm (%) | 0.126 | |||
≤25 | 14 (25.5) | 15 (22.1) | 6 (14.3) | |
>25–30 | 13 (23.6) | 6 (8.8) | 10 (23.8) | |
>30–35 | 15 (27.3) | 19 (27.9) | 14 (33.3) | |
>35 | 13 (23.6) | 28 (41.2) | 12 (28.6) | |
Vessel involvement, n (%) | 0.27 | |||
Venous | 40 (72.7) | 41 (60.3) | 30 (71.4) | |
Arterial | 10 (18.2) | 13 (19.1) | 4 (9.5) | |
Both | 5 (9.1) | 14 (20.6) | 8 (19) | |
Serum CA19-9, U/mL, n (%) | 0.263 | |||
<500 | 42 (76.4) | 50 (73.5) | 26 (61.9) | |
≥500 | 13 (23.6) | 18 (26.5) | 16 (38.1) |
Variables | 2013–2015 (n = 63) | 2017–2019 (n = 102) | p |
---|---|---|---|
Age, year, mean ± SD | 63 ± 10 | 62 ± 9 | 0.576 |
Sex, n (%) | 0.087 | ||
Male | 31 (49.2) | 64 (62.7) | |
Female | 32 (50.8) | 38 (37.3) | |
Tumor location, n (%) | |||
Head | 44 (69.8) | 79 (77.5) | 0.276 |
Body/tail | 19 (30.2) | 23 (22.5) | |
Tumor size, mm (%) | 0.189 | ||
≤25 | 15 (23.8) | 20 (19.6) | |
>25–30 | 15 (23.8) | 14 (13.7) | |
>30–35 | 18 (28.6) | 30 (29.4) | |
>35 | 15 (23.8) | 38 (37.3) | |
Vessel involvement, n (%) | 0.079 | ||
Venous | 43 (68.3) | 68 (66.7) | |
Arterial | 14 (22.2) | 13 (12.7) | |
Both | 6 (9.5) | 21 (20.6) | |
Serum CA19-9, U/mL, n (%) | 0.161 | ||
<500 | 49 (77.8) | 69 (67.6) | |
≥500 | 14 (22.2) | 33 (32.4) | |
Treatment type | <0.001 | ||
Upfront surgery | 55 (87.3) | 0 | |
Neoadjuvant treatment | 8 (12.7) | 102 (100) | |
Chemotherapy | 0 | 100 | |
Chemo-radiotherapy | 6 | 2 | |
Radiotherapy | 2 | 0 |
Variables | Upfront Surgery (n = 55) | Surgery after NAT (n = 68) | p |
---|---|---|---|
Length of stay, day, median | 10 (9–12) | 10 (9–14) | 0.914 |
Any Complications, n (%) | 31 (56.4) | 33 (48.5) | 0.387 |
Higher than grade III complication, n (%) | 11 (20) | 11 (16.2) | 0.582 |
POPF, n (%) | 6 (10.9) | 4 (5.9) | 0.340 |
DGE, n (%) | 3 (5.5) | 5 (7.4) | 0.730 |
PPH, n (%) | 3 (5.5) | 6 (8.8) | 0.730 |
Tumor size, mm, mean ± SD | 35 ± 11 | 23 ± 14 | <0.001 |
Vascular resection, n (%) | 0.013 | ||
No | 20 (36.4) | 40 (58.8) | |
Yes | 35 (63.6) | 28 (41.2) | |
T stage, n (%) | <0.001 | ||
0 | 0 | 5 (7.4) | |
1 | 5 (5.5) | 24 (35.3) | |
2 | 36 (65.5) | 33 (48.5) | |
3 | 16 (29.1) | 4 (5.9) | |
4 | 0 | 2 (2.9) | |
N stage, n (%) | <0.001 | ||
0 | 11 (20.0) | 47 (69.1) | |
1 | 26 (47.3) | 14 (20.6) | |
2 | 18 (32.7) | 7 (10.3) | |
Margin status, n (%) | <0.001 | ||
R0 | 29 (52.7) | 54 (79.4) | |
R1/R2 | 26 (47.3) | 14 (20.6) | |
Tumor differentiation, n (%) | 0.071 | ||
Well differentiated | 2 (3.6) | 1 (1.6) | |
Moderately differentiated | 33 (60.0) | 50 (79.4) | |
Poorly differentiated | 20 (36.4) | 12 (19.0) | |
Perineural invasion, n (%) | <0.001 | ||
No | 0 | 21 (30.9) | |
Yes | 55 (100) | 47 (69.1) | |
Lymphovascular invasion, n (%) | <0.001 | ||
No | 17 (30.9) | 44 (64.7) | |
Yes | 38 (69.1) | 24 (35.3) |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Variables | Hazard Ratio (95% CI) | p | Hazard Ratio (95% CI) | p |
Age, years | ||||
<65 | Ref. | |||
≥65 | 1.237 (0.802–1.907) | 0.336 | ||
Sex | ||||
Male | Ref. | |||
Female | 0.815 (0.531–1.249) | 0.348 | ||
Tumor location | ||||
Head | Ref. | |||
Body/Tail | 1.231 (0.776–1.952) | 0.378 | ||
CA19-9 normalization | ||||
No | Ref. | Ref. | ||
Yes | 0.543 (0.345–0.854) | 0.008 | 1.467 (0.916–2.349) | 0.111 |
Tumor size, mm | 1.036 (1.021–1.051) | <0.001 | 1.039 (1.019–1.059) | <0.001 |
Vascular resection | ||||
No | Ref. | Ref. | ||
Yes | 1.678 (1.087–2.589) | 0.019 | 1.125 (0.705–1.796) | 0.621 |
Margin status | ||||
Negative | Ref. | Ref. | ||
Positive | 1.855 (1.202–2.862) | 0.005 | 0.840 (0.515–1.371) | 0.486 |
Lymph node status | ||||
Negative | Ref. | Ref. | ||
Positive | 2.360 (1.509–3.691) | <0.001 | 1.277 (0.703–2.320) | 0.423 |
Tumor differentiation | ||||
Poorly differentiated | Ref. | <0.001 | Ref. | <0.001 |
Moderate differentiated | 0.397 (0.094–1.671) | 0.208 | 0.304 (0.070–1.310) | 0.110 |
Well differentiated | 0.354 (0.223–0.561) | <0.001 | 0.258 (0.154–0.434) | <0.001 |
Neoadjuvant treatment | ||||
No | Ref. | Ref. | ||
Yes | 0.306 (0.197–0.474) | <0.001 | 0.454 (0.248–0.830) | 0.01 |
Perineural invasion | ||||
No | Ref. | Ref. | ||
Yes | 1.872 (0.993–3.529) | 0.052 | 2.303 (1.014–5.231) | 0.046 |
Lymphovascular invasion | ||||
No | Ref. | Ref. | ||
Yes | 1.831 (1.191–2.814) | 0.006 | 1.153 (0.651–2.044) | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.J.; Lim, S.Y.; Jeong, H.; Yoon, S.J.; Kim, H.; Shin, S.H.; Heo, J.S.; Han, I.W. Survival Benefit after Shifting from Upfront Surgery to Neoadjuvant Treatment in Borderline Resectable Pancreatic Cancer. Biomedicines 2023, 11, 2302. https://doi.org/10.3390/biomedicines11082302
Jeon HJ, Lim SY, Jeong H, Yoon SJ, Kim H, Shin SH, Heo JS, Han IW. Survival Benefit after Shifting from Upfront Surgery to Neoadjuvant Treatment in Borderline Resectable Pancreatic Cancer. Biomedicines. 2023; 11(8):2302. https://doi.org/10.3390/biomedicines11082302
Chicago/Turabian StyleJeon, Hyun Jeong, Soo Yeun Lim, HyeJeong Jeong, So Jeong Yoon, Hongbeom Kim, Sang Hyun Shin, Jin Seok Heo, and In Woong Han. 2023. "Survival Benefit after Shifting from Upfront Surgery to Neoadjuvant Treatment in Borderline Resectable Pancreatic Cancer" Biomedicines 11, no. 8: 2302. https://doi.org/10.3390/biomedicines11082302
APA StyleJeon, H. J., Lim, S. Y., Jeong, H., Yoon, S. J., Kim, H., Shin, S. H., Heo, J. S., & Han, I. W. (2023). Survival Benefit after Shifting from Upfront Surgery to Neoadjuvant Treatment in Borderline Resectable Pancreatic Cancer. Biomedicines, 11(8), 2302. https://doi.org/10.3390/biomedicines11082302