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Abstract: Traumatic brain injury (TBI) is a leading cause of disability worldwide. Traumatic axonal
injury (TAI) is a subtype of TBI resulting from high-impact forces that cause shearing and/or stretch-
ing of the axonal fibers in white matter tracts. It is present in almost half of cases of severe TBI and
frequently associated with poor functional outcomes. Axonal injury results from axonotomy due to
mechanical forces and the activation of a biochemical cascade that induces the activation of proteases.
It occurs at a cellular level; hence, conventional imaging modalities often fail to display TAI lesions.
However, the advent of novel imaging modalities, such as functional magnetic resonance imaging
and fiber tractography, has significantly improved the detection and characteristics of TAI. Further-
more, the significance of several fluid and structural biomarkers has also been researched, while the
contribution of omics in the detection of novel biomarkers is currently under investigation. In the
present review, we discuss the role of imaging modalities and potential biomarkers in diagnosing,
classifying, and predicting the outcome in patients with TAI.
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1. Introduction

Traumatic brain injury (TBI) is a leading cause of disability and death, with approx-
imately 70 million people affected each year globally [1]. Traumatic axonal injury (TAI)
is a subtype of TBI resulting from high-impact shearing forces, usually rapid acceleration
and/or deceleration like those observed in motor vehicle collisions, that cause shearing
and/or stretching of axonal fibers in white matter tracts [1,2]. It is present in almost half of
the cases of severe TBI, with patients often exhibiting prolonged unconsciousness despite
the absence of extensive intracranial traumatic lesions [2]. Axonal injury is also related
to long-term neurobehavioral symptoms, mood disorders, and memory impairment, and
symptoms of upper motor injury may be present due to damage in the corticospinal
tracts [1,2].

Even though the previously utilized term, diffuse axonal injury (DAI), suggests
widespread axonal damage, this damage is of variable severity. The wide application
of novel imaging modalities has shown that milder axonal damage is present in patients
with concussion, with the level of axonal damage linked to long-term functional outcomes
and neurocognitive impairment [1–3]. Additionally, the spatial distribution of axonal
lesions is not homogenous, but there is a predilection for specific locations, usually the
white matter disjunction, the corpus callosum, and the brain stem [2,3]. Thus, in order
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to overcome these restrictions, there is a tendency to replace the term DAI with the term
TAI [3,4].

Although the first reports of widespread white matter injury were described around
50 years ago [5–7], the term “diffuse axonal injury” was identified as a distinct clinical and
pathological entity in 1981 by Adams and colleagues [8–11]. At the end of the 1990s, Adams
et al. proposed the currently utilized classification based on the observation that the clinical
severity of TAI correlates with some clusters of histopathological findings. In particular,
they identified three grades of injury: Grade 1, with predominant white matter injury in the
white matter of cerebral hemispheres; Grade 2, with a focal injury in the corpus callosum,
additionally to the findings of Grade 1; and Grade 3, with a focal lesion in the brainstem,
additionally to findings of Grade 2 [10].

The advent of novel histopathological and imaging diagnostic tools has increased our
understanding of the molecular and biochemical mechanisms of TAI. Following TBI, it is
clear that axonotomy does not result from primary mechanical shearing of axons during
trauma but is a consequence of a complex secondary biochemical cascade that has yet to
be fully elucidated [12]. Moreover, the introduction of functional MRI techniques, such
as diffusion tensor imaging, has led to drastic improvements in the detection of axonal
trauma in the living brain and its clinical correlations.

In the present narrative review, we summarize the current literature on the role of
imaging modalities as well as fluid and structural biomarkers in the diagnosis, management,
and outcome of patients with TAI.

2. Search Protocol

MEDLINE/PubMed, Scopus, and Google Scholar were the main databases utilized for
the research. Moreover, the relevant articles from the reference lists of selected publications
were included if relevant. The search algorithm in PubMed/MEDLINE included the
following: (Traumatic axonal injury or diffuse axonal injury) and (biomarkers or imaging).
A similar modified algorithm was utilized in the SCOPUS and Google Scholar databases.
The last research was performed on 15 May 2023.

3. Imaging

Currently, there are no established clinical and imaging criteria for diagnosing TAI.
In clinical practice, the diagnosis is established by means of co-evaluation of clinical and
imaging features. Loss of consciousness or a low Glasgow Coma Scale (GCS) score (under
or equal to eight) for more than six hours in a patient with head trauma, along with the
presence of multiple small white matter lesions in the grey–white matter disjunction are
characteristics that have been considered highly indicative of TAI [4,13]. However, this
definition has several limitations. First, the time limit of 6 h in differentiating concussion
from TAI originated from animal experiments around 30 years ago [4]. Moreover, CT
scan is the primary imaging modality performed in patients with TBI, which has a very
low sensitivity in detecting small white matter lesions [4,13,14]. Additionally, CT is not
sensitive to the detection of non-hemorrhagic (petechiae) TAI lesions, which account
for approximately 80–90% of all TAI. Furthermore, not all patients with axonal lesions,
especially those with focal rather than diffuse, present with low GCS score. Lastly, axonal
lesions can be observed in patients with mild or moderate TBI, such as in athletes in contact
sports (e.g., boxers) [4,14,15].

MRI is a far more sensitive imaging modality than CT scan for detecting small white
matter lesions, but it is infrequently available in the acute phase [3,16–18]. Despite the
progress that has been achieved in detecting TAI lesions, the only definitive way to confirm
the diagnosis is via brain biopsy or post-mortem histopathological evaluation [4]. Figure 1
presents the appearance of TAI lesions in different imaging modalities of one patient with
TAI (Figure 1).
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Figure 1. 17-Year-old male with traumatic axonal injury (unpublished data) (a) CT scan on admis-
sion shows hyperdense foci (microhaemorrhage) in the gray–white matter junction of the left frontal 
lobe (red arrow) and hypodensity of the splenium of the corpus callosum (yellow arrow). (b) MRI, 
three days later, axial T1WI shows a hyperintense lesion at the gray–white matter junction of the 
left frontal lobe compatible with subacute hemorrhage (red arrow) and hypointense lesions in the 
deep white matter of the right frontal lobe and the slpenium (yellow arrow). (c) MRI axial T2WI, 
and (d) FLAIR images show the left frontal lobe lesion with low signal (red arrow) and the lesions 
of the deep white matter of the right frontal lobe and the splenium with high signal intensity (yellow 
arrow). (e) MRI axial SWI sequence shows multiple low signal intensity lesions compatible with 
haemorrhage mainly located in the gray–white matter junction of fronto-occipital lobes and the right 
side of the splenium of corpus callosum (red arrow). (f) DWI image (g) and ADC parametric map 
reveal restricted diffusion within the splenium of the corpus callosum (red arrows), compatible with 
cytotoxic oedema. Key: CT, computed tomography; MRI, magnetic resonance imaging; WI, 
weighted imaging; SWI, susceptibility-weighted imaging; DWI, diffusion-weighted imaging. 

3.1. Current Modalities 
3.1.1. CT Scan 

An unenhanced CT scan is the imaging modality of choice for the initial evaluation 
of patients with TBI [4]. In the acute phase, the primary aim of the CT scan is to detect the 
presence of hemorrhagic lesions or contusions and evaluate the risk of brain herniation. 
CT scan findings and clinical presentation will determine the need for acute neurosurgical 
intervention [4,14,15,19–22]. Because patients with TAI usually present with LOC and low 
GCS on admission, they almost always undergo an unenhanced CT scan [4]. Due to local 
capillary damage, axonal lesions are usually not detectable on CT scans if they are not 
accompanied by significant hemorrhagic elements, usually seen as hyperdense small pe-
techiae. Hence, the hallmark of TAI on CT scans is the presence of diffuse bihemispheric 
petechiae lesions in the gray–white matter interface (Figure 1a). The CT will detect ap-
proximately 20% of these lesions as small hypointense (under 1–2 cm) areas. Since TAI 
lesions are usually underseen on CT, it has been suggested that their presence is related 
to extensive brain damage and poor outcome, but this has been recently questioned 
[14,19]. Despite the disadvantage of CT for being insensitive in detecting TAI lesions, these 

Figure 1. 17-Year-old male with traumatic axonal injury (unpublished data) (a) CT scan on admission
shows hyperdense foci (microhaemorrhage) in the gray–white matter junction of the left frontal
lobe (red arrow) and hypodensity of the splenium of the corpus callosum (yellow arrow). (b) MRI,
three days later, axial T1WI shows a hyperintense lesion at the gray–white matter junction of the
left frontal lobe compatible with subacute hemorrhage (red arrow) and hypointense lesions in the
deep white matter of the right frontal lobe and the slpenium (yellow arrow). (c) MRI axial T2WI,
and (d) FLAIR images show the left frontal lobe lesion with low signal (red arrow) and the lesions of
the deep white matter of the right frontal lobe and the splenium with high signal intensity (yellow
arrow). (e) MRI axial SWI sequence shows multiple low signal intensity lesions compatible with
haemorrhage mainly located in the gray–white matter junction of fronto-occipital lobes and the right
side of the splenium of corpus callosum (red arrow). (f) DWI image (g) and ADC parametric map
reveal restricted diffusion within the splenium of the corpus callosum (red arrows), compatible with
cytotoxic oedema. Key: CT, computed tomography; MRI, magnetic resonance imaging; WI, weighted
imaging; SWI, susceptibility-weighted imaging; DWI, diffusion-weighted imaging.

3.1. Current Modalities
3.1.1. CT Scan

An unenhanced CT scan is the imaging modality of choice for the initial evaluation of
patients with TBI [4]. In the acute phase, the primary aim of the CT scan is to detect the
presence of hemorrhagic lesions or contusions and evaluate the risk of brain herniation.
CT scan findings and clinical presentation will determine the need for acute neurosurgical
intervention [4,14,15,19–22]. Because patients with TAI usually present with LOC and
low GCS on admission, they almost always undergo an unenhanced CT scan [4]. Due to
local capillary damage, axonal lesions are usually not detectable on CT scans if they are
not accompanied by significant hemorrhagic elements, usually seen as hyperdense small
petechiae. Hence, the hallmark of TAI on CT scans is the presence of diffuse bihemispheric
petechiae lesions in the gray–white matter interface (Figure 1a). The CT will detect approxi-
mately 20% of these lesions as small hypointense (under 1–2 cm) areas. Since TAI lesions are
usually underseen on CT, it has been suggested that their presence is related to extensive
brain damage and poor outcome, but this has been recently questioned [14,19]. Despite
the disadvantage of CT for being insensitive in detecting TAI lesions, these findings can be
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indirectly used to diagnose TAI. In a recent systematic review of the literature, Figueira
et al. found that TAI lesions are usually accompanied by intraventricular or subarachnoid
hemorrhage. Specifically, the presence and the extent of intraventricular or subarachnoid
hemorrhage positively correlate with the existence and severity of TAI. At the same time,
the absence of these hemorrhagic lesions rules out significant axonal injury [19].

3.1.2. MRI Magnetic Resonance Imaging (MRI)

Conventional MRI is approximately two to three times more sensitive than CT in
detecting TAI lesions [13]. However, the sensitivity is lower for the detection of non-
hemorrhagic lesions. The signal is usually hyperintense in T2 and FLAIR sequences, while
the signal varies in T1 sequences; it is low when the lesion is non-hemorrhagic or high
when the lesion has hemorrhagic components (Figure 1b–d) [13,23]. The histopathological
grading proposed by Adams et al. [23] has also been utilized in the imaging classification of
these lesions. In 2017, Hamdeh et al. [13] proposed an extended classification of the typical
three-grade system based on the observation that TAI lesions in the substantia nigra and
the tegmentum were independent risk factors for poor outcome and hence represented a
distinct fourth grade. Except for the conventional MRI sequences, other MRI sequences
such as susceptibility-weighted imaging (SWI), diffusion-weighted imaging (DWI), and
diffusion tensor imaging (DTI) have substantially improved the diagnostic sensitivity of
MRI to detect TAI lesions [24].

3.2. Novel Techniques
3.2.1. Gradient Recalled Echo-T2* and Susceptibility Weighted Imaging Sequences (SWI)

When TAI lesions have hemorrhagic components, techniques that detect blood break-
down products, such as the conventional gradient recalled echo (GRE)-T2* and the ad-
vanced SWI (Figures 1e and 2), are preferred. The SWI enhances the contrast of GRE-T2*
sequences by combining T2*-magnitude and phase images [25]. Hence, the SWI can detect
smaller lesions. In a study of seven young patients with TAI, Tong et al. found that SWI
could detect ten times more hemorrhagic lesions than GRE-T2* (1038 vs. 162) [25]. In
a larger study including 40 young patients, it was found that the number and volume
of hemorrhagic lesions depicted in SWI significantly correlated with patients’ functional
outcomes [26]. However, these techniques can only distinguish TAI lesions in the sub-acute
or chronic phase [25] because they detect blood breakdown products and hence can mainly
support the diagnosis of TAI in cases of diagnostic doubt.

3.2.2. Diffusion-Weighted Imaging

In highly organized structures that contain macromolecules such as proteins or mem-
branes, free diffusion of the water molecules is restricted [18]. Diffusion MRI creates contrast
MRI images by detecting the degree of random motion of water molecules [18,27,28]. It
is a very sensitive technique in detecting brain lesions within the first 3 h after the inci-
dent, contrary to the conventional CT and MRI techniques which require at least 8–12 h
to visualize the infarct [29]. Ischemia generates cellular cytotoxic edema, contrasting with
the surrounding non-ischemic tissues. Similarly, after TAI, the shearing forces cause local
edema and disruption of the axonal architecture, thus resulting in alterations in diffusion
images (Figure 1f,g).

In a study of 19 patients with TAI, Huisman et al. found that DWI was more sensitive
in detecting TAI lesions than FLAIR and T2*. The majority of lesions had restricted diffusion.
Interestingly, the diagnostic ability of DWI was not limited to non-hemorrhagic lesions,
which reflect most TAI lesions [18]. The degree of water molecule diffusion is quantified by
using the apparent diffusion coefficient (ADC), and parametric maps assigning each voxel
to an ADC value can be created. Hergan et al. classified the TAI lesions based on their
DWI and ADC parametric map patterns [27]. They observed three types of TAI lesions:
type 1 lesions (DWI and ADC hyperintense) that reflect vasogenic edema, type 2 (DWI
hyperintense and ADC hypointense) that reflect cytotoxic edema, and type 3 hemorrhagic
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lesions with variable signal intensity depending on the stage of hemorrhage. However,
their distinct prognostic role remains uncertain.
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Figure 2. MRI of a 17-Year-old male with traumatic axonal injury, three days post traumatic brain injury
(unpublished data), axial plane, SWI sequence shows multiple “dark spots” suggestive of haemorrhagic
lesions mainly located in the gray–white matter junction of the right temporal, the fronto-occipital lobes
and the right side of the splenium of corpus callosum, the midbrain and the left basal ganglia (red arrow).
Key: MRI, magnetic resonance imaging; SWI, susceptibility weighted images.

DWI is a promising method for diagnosing TAI and may allow fast detection of axonal
lesions in the acute phase of TBI. Moreover, DWI can be performed within a few minutes
and will not delay further management of trauma patients. Indeed, it is the only MRI
technique that can be used during the first hours following TAI [18]. Contrary to diffusion
tensor imaging (DTI), DWI has a lower duration and may be used in hemodynamically
stable TBI patients in cases where axonal lesions are suspected [18,27].

3.2.3. Diffusion Tensor Imaging (DTI) and Fiber Tractography

In white matter tracts, water diffusion is more restricted perpendicularly (radial diffu-
sion) than parallel (axial diffusion) to the long axis of the tract. This motion preference of
water molecules in a particular axis is called anisotropy and depends on several parameters,
such as cell size, composition, and axonal alignment. Hence, the degree of anisotropy
measured by DTI can offer important information regarding the microscopic composition
of the axons.
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Arfanakis et al. [30] performed DTI in five patients with mild TBI. They detected a focal
reduction in functional anisotropy (FA) in white matter tracts compared to the contralateral
hemisphere, which was not observed in controls. Similarly, Inglese et al. found that FA
was reduced in patients with mild TBI. This reduction was more significant in brain areas
vulnerable to TAI, such as the corpus callosum and the internal capsule [17]. These results
indicate that multifocal axonal injuries can be observed in the wide spectrum of TBI and
not only in severe TBI cases. DTI data can be used to create a three-dimensional colored
reconstruction of the fibers. The color of the fibers represents the water molecules’ preferred
motion direction, while the intensity of the color represents the degree of anisotropy. Several
studies support that DTI and fiber tractography can detect axonal injuries that are otherwise
not detectable in conventional MRI [31–34]. Even in the subacute stage, approximately
within two weeks from trauma, the amount of damage in the fiber tracts can correlate
with the patient’s long-term functional outcome [34]. Due to the unique ability to visualize
axonal anatomy, these techniques are very promising in detecting axonal injuries while
allowing for a more precise correlation between the site of the lesions and the neurocognitive
outcome [30,33].

Myelin water imaging is another novel technique that can detect quantificational
changes in the myelin’s water after TBI. The latter is performed by visualizing the short
transverse relaxation time component (ViSTa) technique [35,36]. This complex technique
refers to a multi-component T2 relaxation sequence in which the short T2 sequence repre-
sents the myelin water. In preliminary reports, post-mortem and animal studies have shown
that a significant degree of traumatic demyelination can be observed after TBI [35,36]. At
the same time, the inadequate remyelination of injured axons is linked with less favorable
functional outcomes. Preliminary data support that reducing myelin’s water fraction is a
potential imaging biomarker of injury severity and long-term functional outcome [35–37].

These techniques are usually performed within a few days following TBI since the
patients should be hemodynamically stable and the procedure lasts longer (30–60 min) [30–33].
The ViSTa technique is currently experimental and its efficacy in the diagnosis of TAI lesions
will need to be confirmed by future studies.

3.2.4. Magnetic Resonance Spectroscopy (MRS)

MRS is another advanced MRI technique that can detect neurochemical alterations in
the composition of axons. In particular, it can detect the levels of a brain-specific metabolite
and marker of preserved axonal integrity, N-acetyl aspartate (NAA). After TBI, NAA levels
are decreased, and subsequently, the ratio of NAA/creatine and NAA/choline is decreased,
while the ratio of choline/creatinine is increased [38,39]. In a study of 40 children with
TBI, Holshouser et al. observed these ratio alterations in children with normal MRI and
poor functional outcomes, detecting axonal injuries that were non-detectable in normal
MRI [38]. Hence, the MRS could be used as another imaging biomarker for the detection
of axonal injuries in children with suspicion of TAI with negative MRI, while recovery of
these ratios in the follow-up MRI may be associated with a more favorable outcome [3].
Similarly to DTI and fiber tractography, these techniques are performed when the patient
has been stabilized, usually in the days or weeks following trauma [38,39].

3.2.5. Positron Emission Tomography

Most patients with TAI will develop some form of cognitive dysfunction. Scheid et al.
suggested that all patients with TAI will have an impairment of at least one cognitive subfunc-
tion, with memory and executive dysfunction most frequently affected [40]. Several functional
imaging studies have noted that this neurocognitive decline is associated with focal neuronal
damage in specific brain locations. Nakashima et al. utilized 18-fluorodeoxyglucose–positron-
emission tomography (FDG-PET) to study brain metabolism in 12 patients with long-term
neurocognitive impairment following TAI compared to healthy controls. A significant re-
duction was noted in the cingulate gyrus, but the specific location of hypometabolism was
different in each patient [41]. This regional reduction in glucose metabolism compared to
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controls was also observed in another study with FDG-PET, where the reduction was again
prominent in the cingulate gyrus [42].

Flumazenil is a well-known antidote for benzodiazepine poisoning that acts as an antag-
onist of GABA receptors. Kawai et al. utilized the radiotracer flumazenil (11C-flumazenil)
and studied its presence in neurons with PET scans in patients with diffuse TBI-associated
neurocognitive deficits vs. normal controls. They observed a reduced uptake in the cingulate
gyrus, medial frontal cortex, and thalamus, indicating that focal axonal injury in these locations
could be the reason behind neurocognitive impairment [43]. However, in another FDG-PET
study in rat models with diffuse axonal study, Li et al. observed that hypometabolism in the
rat hippocampus in the acute phase of trauma was linked with long-term learning dysfunc-
tion [44]. Finally, in a PET imaging study in patients with repeated sport-related contusions,
which are vulnerable to axonal injuries, Maklund et al. noted an increased aggregation of tau
protein via the [18F] THK5317 tracer in the corpus callosum compared to normal controls [45].

In summary, the above studies have shown that neurocognitive impairment in patients
with TAI is linked with lesions in parts of the limbic system [41–45]. The limbic system is a
group of brain structures, including the cingulate gyrus, amygdala, thalamus, and frontal
cortex, that are highly implicated in neurocognition as well as behavioral and emotional
responses [41–43]. Hence, since lesions in these anatomic structures are found in patients
with TAI or other types of TBI, they could possibly explain the neurocognitive impairment
observed in patients with DAI. PET is a promising technique that may allow an in-depth
study of the long-term neurocognitive consequences of TBI and correlate them with specific
anatomic brain regions that have been injured [42–45]. However, it is not currently used in
the acute and sub-acute phases of TBI, and is mainly an experimental procedure.

3.3. Summary of Novel Imaging Techniques

Even though MRI remains the cornerstone of TAI imaging diagnosis, the introduction of
more axonal-specific imaging techniques is expected to add useful diagnostic information in
cases where the clinical diagnosis and imaging of TAI is challenging [4,13,15]. Each technique
has its advantages for different trauma phases and types of TAI lesions (e.g., hemorrhagic or
non-hemorrhagic) [25]. DWI is the only technique that is useful and available to be performed
within the first few hours following trauma [18]. DTI, fiber tractography, and MRS are
typically performed within the first few days following TBI, typically in addition to the
conventional MRI, while (GRE)-T2* and SWI are useful in the first few weeks following TAI in
cases of hemorrhagic lesions to detect the blood breakdown products in areas of grey–white
matter disjunction [3,4,18]. Most of the abovementioned MRI sequences and techniques
are already widely used in other fields of neuroimaging, i.e., fiber tractography and MRS
in neuro-oncology, and, hence, they can be easily utilized to explore their full potential in
neurotrauma diagnosis.

4. Biofluid Biomarkers of TAI
4.1. Introduction

In the past two decades, there has been increasing interest in developing the role
of potential biomarkers in predicting the presence of specific brain lesions and the short-
and long-term outcomes of patients with TBI. A wide range of brain biomarkers has been
reported in the literature, including neuronal or axonal (e.g., neuron-specific enolase, UCH-
L1, Tau, Neurofilament), astroglial (S100β, GFAP), and other less brain-specific biomarkers
such as D-dimers, creatine phosphokinase, and neutrophil to lymphocyte ratios [46–48].
Regarding their use in TAI, only a limited number of studies are available, and even fewer
in pediatric TAI. A summary of the human studies focusing on the role of TBI serum
biomarkers in patients with TAI is presented in Table 1 [49,50].

Following TAI, axonal injury can be caused primarily via direct (mechanical) axono-
tomy due to the impact of shearing forces, but the damage that occurs is mainly secondary
due to the activation of intracellular proteases that cause degradation of the axonal micro-
molecules. Specifically, oxidative stress increases the influx of Ca+2 and induces a protease
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(calpain)-mediated cleavage of axonal molecules such as neurofilaments, spectrin, Tau,
beta-APP, and myelin-based proteins (MBP) [12,49–52].

4.2. Fluid and Structural Biomarkers for TAI
NFL (Axonal Biomarker)

Neurofilaments are heteropolymers that contain three different chains: a heavy chain
(NfH), a medium chain (NfM), and a light chain (NFL). The neurofilament light chain (NFL)
is an intermediate cellular filament, part of the axonal cytoskeleton involved in axonal
stability, axonal transport, and determination of axon diameter. In patients with axonal
injury, the NFL can be directly (mechanically) or secondarily damaged via TBI-induced
phosphorylation that alters axonal stability and is released into the surrounding tissues,
CSF, and blood [51,53,54]. It has been found that following TBI, the NFL is increased up
to 500-fold in CSF at 1 h post injury and up to 40.000 at 6 h post injury. Hence, the CSF
concentrations of NFL have been proposed as a potential biomarker to assess the severity
of TAI. However, the measurement of NFL concentrations in CSF is an invasive procedure
that can potentially risk brain herniation in patients with TBI [54]. In the blood, this increase
is less significant, partially due to the blood–brain barrier (BBB) that impairs the transfer of
macromolecules [54].

Ljungqvist et al. studied nine adult patients with TAI and found that their serum NFL
concentration was raised 40-fold compared to controls. Except for the NFL, the neurofilament
heavy chain (NFH), especially the calpain-resistant, phosphorylated NFH, has also been found
to be significantly correlated with patient outcome and the presence of imaging findings [53].
In particular, phosphorylation of NFH in the lysine–serine–proline repeats (KSP), a repeated
sequence of about seven amino acids in the sequence lysine–serine–proline that are highly
specific for axonal detection because they are not detected in dendritic and pericaryal NFH.
Hence, its concentration is expected to increase in cases of diffuse axonal injury [51]. The
levels of pNFH were found to be positively correlated (p = 0.004) with the presence of TAI
findings in the initial CT of children with TBI [53].

In the coming years, neurofilaments, due to their physiological role as part of the
axonal skeleton, are expected to be one of the most studied biomarkers for TAI.

4.3. Tau (Axonal Biomarker)

Tau is a microtubule-associated protein involved in the stability of axonal microtubules.
Following axonal injury, the Tau protein is cleaved by calpain proteases, resulting in the
cleaved microtubule-associated (c-Tau) form that can be measured in the serum. At the same
time, the TBI induces hyperphosphorylation of Tau (p-Tau), resulting in the aggregation
of microtubules that form insoluble tangles [55–57]. Tomita et al. found that the blood
concentration of total Tau was higher in TBI patients with TAI vs. non-TAI, with 74.1% and
69.2% sensitivity and specificity, respectively. However, Tau levels did not correlate with
the patient’s outcome in a significant manner (p = 0.19) [58]. Except for TAI, total Tau levels
rapidly increase in the blood and CSF of athletes performing contact sports (e.g., boxers)
that have experienced some degree of axonal injury. Hence, the increased Tau levels in
these patients could be partially attributed to axonal injury [3,59,60]. In an experimental
study with rats that sustained high-impact spinal cord compression or complete transaction
of white matter tracts of the spinal cord, the total Tau levels significantly increased 550-fold
in the CSF at the first post-injury day compared to naive rats, while the levels of p-tau
were elevated 7-fold. Finally, a significant increase in the serum levels of total tau (1.2-fold)
and p-tau (7-fold) compared to naive rats was noted [61]. Total Tau and pTau levels have
also been suggested as a potential biomarker for the diagnosis and progress of several
neurodegenerative diseases, including Alzheimer’s disease. However, the measurement of
Tau/p-Tau levels in biological samples is a challenging procedure, mainly because Tau/p-Tau
concentrations are very low, and their detection along with the study of their kinetics requires
novel methods such as with the use of digital ELISA [61].
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Tau is a protein that plays a significant role in axonal stability; hence, it is a promising
biomarker for detecting axonal injuries. Despite the moderate sensitivity and specificity
observed in some studies, the development of ultrasensitive detectors that allow its mea-
surement and kinetics in very low concentrations is a favorable factor for the conduction of
future studies regarding its role as a potential biomarker for axonal injury.

4.4. S100β (Glial Biomarker) and NSE (Neuronal Biomarker)

S100β is an astroglial molecule with currently unclear physiological significance that
is significantly elevated following TBI. S100β is a sensitive molecule that is used to rule
out significant brain injury, and it has been included in the Scandinavian guidelines for
determining the need to undergo a CT scan in patients with mild TBI [62,63]. NSE is
a glycolytic enzyme found in increased concentrations in neurons and has been widely
studied as a potential biomarker of TBI.

In a study of 28 patients with TAI, both S100β and NSE significantly correlated with
long-term outcome, measured on the Glasgow Outcome scale. The levels of S100β reached
a maximum level after 6 h, while the levels of NSE remained stable within the first three
days [64]. In another study, Abbasi et al. found that in patients with suspected TAI in
a CT scan, the mean levels of S100β were significantly higher (632.18 ± 516.1 ng/dL)
compared to those with normal CT scan or other intracranial traumatic findings, namely
bone fractures and intracranial hemorrhage [65].

However, these biomarkers are not axonal-specific and are expressed from cells outside
the CNS [3]. Hence, only limited studies exist regarding their use in TAI, while their increase
could correlate with other extra-cranial or brain injuries.

Table 1. Summary of human studies focusing on the role of TBI serum biomarkers in patients with
traumatic axonal injury. n/s, not specified. ELISA, enzyme-linked immunosorbent assay. SIMOA,
single molecular assay, TAI, traumatic axonal injury.

Author Year Biomarker Number of
Patients

Increase in
TAI Patients

Control
Group

Method
Utilized Sensitivity Specificity Cut Off

Ljungqvist et al.
[54] 2017 Neurofilament

light chain 9 40-fold Healthy
adults SIMOA n/s n/s n/s

Tomita et al.
[58] 2019 Total Tau 40 20-fold

TBI patients
with non-TAI

lesions
ELISA 74.1% 69.2% 1.5 pg/mL

Abbasi et al.
[65] 2014 S100 beta 98 15-fold

TBI patients
with non-TAI

lesions
ELISA n/s n/s n/s

Chabok et al.
[64] 2012 S100 beta 28 Increased

(n/s)

TAI patients
with good
outcome

ELISA 88% 100% 49.3 ng/L

Chabok et al.
[64] 2012 Neuron specific

enolase 28 Increased
(n/s)

TAI patients
with good
outcome

ELISA n/s n/s n/s

4.5. Spectrin (Axonal Biomarker)

Spectrin is a cytoskeletal protein that is part of the plasmatic membrane critical for
maintaining membrane stability and cell shape. Although the role of spectrin in the plas-
matic membrane of red blood cells is well described, its exact contribution to the axonal
skeleton’s stability and organization is unclear [66–68]. Following TAI, the calpain and cas-
pase three activation results in the proteolytic cleavage of spectrin into spectrin breakdown
products (SBDP). The role of SBDP as a potential biomarker in mild TBI in humans has
been previously investigated [69]. Regarding its prognostic role in TAI, Siman et al. [70]
found that the serum levels of SNTF, a cleavage of αII-spectrin1-1176, could accurately
predict long-term brain dysfunction in patients with long post-concussion syndrome, an
entity strongly related to axonal injury. Indeed, it has been found that post-concussion
syndrome is an entity with clinical, imaging, and histopathological correlation with axonal
injury, with many authors reporting that concussion syndrome is in the milder spectrum of
TAI [71]. In a recent post-mortem histopathological study, the immunochemistry pattern of
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spectrin with beta-amyloid precursor protein (β-APP) was found to be a surrogate marker
of axonal injury [72]. Specifically, spectrin and β-APP are both stained in patients with TAI,
while in ischemic brain axonal injury, only β-APP is stained.

Future clinical studies should be performed that include larger patient numbers to explore
the role of spectrin as a biomarker in the acute and the sub-acute phase of axonal injuries.

4.6. Amyloid Precursor Protein

Amyloid precursor protein (APP) is another membrane protein that is expressed in
the cell surface of neurons. Regarding its physiological role, APP is involved in forming
synapses and neuronal transport. Following axonal injury, the accumulation of APP
in the post-injury-formed axonal bulbs is considered an immunochemistry hallmark of
TAI [72,73]. In the axonal bulbs, the APP co-accumulates with enzymes involved in its
enzymatic cleavage [74]. The amyloid beta-peptide (Aβ) is derived from the proteolytic
cleavage of APP via presenilin. The accumulation of Aβ plaques is a well-known surrogate
marker of Alzheimer’s disease, but its role in the pathogenesis of TAI is less well-defined.
Interestingly, it has been suggested that patients with repetitive brain injuries are at high
risk for the development of Alzheimer’s dementia [75].

Currently, studies focusing solely on Aβ following TAI are lacking. In more general
reports on Aβ levels after TBI, the levels of Aβ rapidly increased in ventricular CSF in
patients with TBI, up to 1173% of Aβ (1-42) in the first week, while the plasma levels
remained unchanged [76,77].

An ultrasensitive digital ELISA technique, the so-called Single Molecule Arrays
(SIMOA), has been utilized to measure plasma and CSF concentrations of Aβ42 and deter-
mine their prognostic significance in patients with severe TBI [78]. It was found that CSF
levels of Aβ42 were decreased compared to controls, probably indicating Aβ42 amyloid
deposition, while plasma levels were elavated shortly after the injury. By contrast, Hossain
et al. found that plasma Aβ 40/42 was not significantly different between patients with
findings on the CT vs. no findings, as well in patients with different outcomes [79]. Hence,
there is no consensus on the kinetics of Aβ42, and more studies should be performed that
will consider the potential role of BBB in the permeability of Aβ.

Similar to Tau/p-Tau, difficulties in measuring and detecting the kinetics of amyloid
products are expected to be overcome with the development of more sensitive methods
that will allow in-depth analysis and determination of whether or not these biomarkers
will be of value in axonal injuries and TBI. Ultrasensitive digital ELISA techniques are an
optimal tool for the measurement and the study of kinetics of amyloid peptides. Hence, it
is expected that future studies on advanced ELISA or other novel techniques with more
patients included will help to clarify the prognostic role of amyloid peptides.

4.7. micro RNA (miRNA)

miRNAs are non-coded, small-sized (approximately 20 nucleotides), hairpin-like
structures involved in the silencing of messenger RNA (mRNA) at a post-transcriptional
level, thus downregulating protein synthesis. miRNAs are coded in the nucleus, and when
exported in the cytoplasm, they bind micro RNA-induced silencing complex (miRISC).
Next, the miRISC complex is bound on the 3′ end of the targeted mRNA and induces its
degradation [80–82].

Around 70% of miRNAs in the human body are expressed in the nervous system.
miRNAs are involved in multiple CNS functions, including the formation of brain synapses,
regeneration, and apoptosis [82]. Following TBI, a significant alteration in the expression
levels of different miRNAs has been observed, probably reflecting an attempt by the CNS to
restore homeostasis. A few miRNAs pass the blood–brain barrier (BBB) and enter the blood
circulation as circulatory miRNAs. Thus, several authors suggest that circulatory miRNA
can potentially be a diagnostic or prognostic biomarker in different diseases, including
cancer, degenerative diseases, and trauma [72,82–84]. Regarding their role in TAI, Pinchi
et al. found that the expression of three miRNAs (miR21, miR16, miR92) was significantly



Biomedicines 2023, 11, 2312 11 of 16

altered, approximately three times higher, in the brain of patients that died from axonal
injury compared to controls, indicating that miRNAs could serve as potential biomarkers
of post-mortem diagnosis of brain injury. However, in their study, the role of circulatory
miRNA in the grading of living individuals with traumatic axonal injury was not studied.

Thus, more research should be performed to clarify the exact role of miRNA in the
diagnosis and grading of patients with TAI [72].

4.8. Proteomics

An alternative “proteomics” approach to identify novel TBI biomarkers has been
attempted in recent years. Despite the complexity of proteomic techniques, it is probably
an ideal approach to identify biomarkers with strong prognostic significance compared to
the “blind” investigation of single molecules as potential biomarkers [85,85–88].

Isobaric tags for relative and absolute quantitation (iTRAQ) is an isobaric labeling
method coupled with liquid chromatography and tandem mass spectroscopy (iTRAQ cou-
pled LC-MS/MS) utilized in quantitative proteomics that allows simultaneous comparison
of protein profiles from different biological sources [89]. The advantage of this method is
that it can detect alterations in the number of specific molecules between different samples,
such as among patients with TBI and controls. At the same time, this detection can be
enhanced by bioinformatic tools. Hence, it is a potent proteomic technique for identifying
potential biomarkers [89,90].

Liang et al. used this technique to identify alterations in the expression of molecules in
the corpus callosum of rats with TAI. They utilized tissue samples from rat corpus collosum at
seven different time points following injury (1, 3, 6,12, 24, 48, and 72 h). Their analysis revealed
that among 514 molecules with a significant expression difference, only 14 were present 72 h
post injury. Next, they performed bioinformatic analysis to elucidate which of these molecules
interfere in the pathogenesis of TAI. They found that peripherin, a cytoskeleton structure,
and calsenilin, a calcium ion regulatory protein, may be involved in the pathogenesis or
pathophysiology of TAI and can serve as potential biomarkers [91]. According to their bioin-
formatic analysis, these molecules could be involved in secondary axotomy: calsenilin with
calcium-mediated caspase activation and peripherin with the consequent axonal instability. In
a similar study in rats with TAI, using brain tissue samples from rats at different time points
post injury in the first 7 days, Zhang et al. identified ten differentially expressed proteins,
of which four (citrate synthase, synaptosomal-associated protein 25 (Snap25), microtubule-
associated protein 1B (MAP1B), and Rho-associated protein kinase 2 (Rock2)) were further
validated and expressed by Western Blot and immunochemistry [92]. Finally, in another
iTRAQ study in rats, the same authors analyzed plasma biomarkers with TAI at the same
time points post injury, and they identified 58 differentially expressed proteins, of which two,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hemopexin (Hpx), were found to
be involved in the pathogenesis of TAI [93].

Despite the lack of clinical studies in humans with TAI, the increased availability of
omics will probably allow the conduction of studies in humans with axonal injuries in the
near future and provide interesting results.

5. Conclusions

The introduction of advanced MRI sequences, such as DTI and the ViSTa technique,
are expected to further improve the diagnosis, accurate grading, and outcome prediction in
patients with TAI. These techniques allow a more detailed description of the distribution
and extent of axonal pathology. This will probably permit a more extended grading of TAI
lesions and a more precise correlation with acute and chronic neurocognitive consequences
that are frequently evidenced in these patients. However, most studies have included a
small number of patients with TAI, and hence the results from novel imaging techniques
should be further validated. At the same time, currently, there are no large series to explore
the role of well-known TBI biomarkers that are not specific for axonal damage, such as
GFAP and UCH-L1. However, the advent of novel laboratory techniques, like iTRAQ,
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that utilize an omics approach and allow a “global” approach for the detection of ideal
biomarkers, may overcome the disadvantages of the conventional methods. Moreover, the
combination of imaging and biofluid biomarkers regarding their prognostic role in TAI has
not been studied in-depth, and future research should be performed to analyze whether
such a combination could have a prognostic significance.

The majority of imaging biomarkers can be further analyzed in many hospitals and
institutions since contemporary software can frequently support these novel techniques and
is already utilized in neurooncology, stroke neuroimaging, and other fields of neurological
research. Hence, it may be possible to conduct neuroimaging studies on patients with TAI
in future studies and explore the spectrum of their diagnostic and prognostic potentials.

Still, despite significant progress in detection and diagnosis, the prognosis of patients
with severe TAI remains poor. Moreover, the current therapeutic alternatives are limited
and are focused on the prevention of secondary injuries such as brain hypoxia, intracranial
hypertension, and development of hematoma, similar to the management principles of focal
TBI. The advent of newer technologies providing further insights into the pathophysiology
of secondary injury may lead to the development of novel interventions that will prevent
or limit the acute and long-term consequences of axonal damage.
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