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Abstract: Accurate pharmacokinetic–pharmacodynamic (PK-PD) models of biofilm treatment could
be used to guide formulation and administration strategies to better control bacterial lung infections.
To this end, we developed a detailed pharmacodynamic model of P. aeruginosa treatment with
the front-line antibiotics, tobramycin and colistin, and validated it on a detailed dataset of killing
dynamics. A compartmental model structure was developed in which the key features are the
diffusion of the drug through a boundary layer to the bacteria, concentration-dependent interactions
with bacteria, and the passage of the bacteria through successive transit states before death. The
number of transit states employed was greater for tobramycin, which is a ribosomal inhibitor, than
for colistin, which disrupts bacterial membranes. For both drugs, the experimentally observed delay
in the killing of bacteria following drug exposure was consistent with the sum of the diffusion time
and the time for passage through the transit states. For each drug, the PD model with a single set
of parameters described data across a ten-fold range of concentrations and for both continuous and
transient exposure protocols, as well as for combined drug treatments. The ability to predict drug
response over a range of administration protocols allows this PD model to be integrated with PK
descriptions to describe in vivo antibiotic response dynamics and to predict drug delivery strategies
for the improved control of bacterial lung infections.
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1. Introduction

Bacterial biofilms contain cells that adhere to each other to produce a colony of microor-
ganisms, which is additionally adherent to a surface that may be living or nonliving [1].
The cells within the biofilm secrete an extracellular polymeric substance (EPS) that encases
and protects this colony from host responses and potential drug treatments [2]. Biofilms
occur on a wide range of artificial and natural surfaces. Biofilm formation has been found
in a variety of anatomic settings including wounds, the ear, and lungs; it accounts for more
than 80% of human microbial infections [3].

In some cases, altered pathophysiology may provide a favorable setting for biofilm
formation, such as the altered mucus composition in patients with cystic fibrosis (CF).
Mucin, the glycoprotein responsible for viscoelastic properties of mucus, is overproduced,
and abnormal glycosylation patterns are observed within CF patients [4]. The mucus-filled
environment gives rise to a breeding ground of bacterial development. Chronic infection
via Pseudomonas aeruginosa, a Gram-negative bacterium notorious for its antibiotic resistance
due to biofilm formation, is common within 80% of CF patients [3]. Medical devices and
instruments may also be contaminated with P. aeruginosa; thus, hospital-acquired infections
are not uncommon [5]. Patients infected with P. aeruginosa are given antibiotic treatments,
such as tobramycin and colistin, that are only effective in high doses to treat biofilms. These
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high dosages, in turn, induce systemic toxicities [6], and their prolonged use can lead to
antibiotic resistance [7].

Pharmacokinetic–pharmacodynamic (PK-PD) models are frequently used as tools to
design dosing and administration protocols and as frameworks to interpret experimental
results in preclinical studies. For antibiotic treatments of infection, they are often imple-
mented using static parameters, such as minimum inhibitory concentration (MIC) for the
pharmacodynamics and maximum drug concentration (Cmax) or drug area under the curve
(AUC) for the pharmacokinetics [8]. The physical barriers posed and community nature
of a bacterial biofilm are such that it may be necessary to incorporate additional factors,
such as the dynamics of drug transport and the delayed, cooperative effects of drugs
on biofilm bacteria, in order to better describe drug response. The better experimental
quantification of the dynamics of biofilm response to various drug treatments and their
incorporation into pharmacodynamic (PD) models are crucial in understanding and incor-
porating the concentration-dependent and dynamic effects involved in overcoming biofilm
infections. For example, recent developments in the application of confocal laser scanning
microscopy with flow chambers has enabled the monitoring of the real-time killing of
bacterial biofilms [9–11].

In the present work, a rich dataset was used to validate a novel PD model for the killing
of P. aeruginosa in biofilms via tobramycin and colistin. The proposed model incorporates
three essential components: drug diffusion to the biofilm, nonlinear drug concentration
effects on cellular damage, and a passage through multiple transit states by which the cells
eventually become nonviable. This model was applied to various drug administration
experiments that reflect the dynamic nature of biofilm as well as the cellular mechanisms
involved in response to the drug. Specifically, the model was fit to experiments in which
P. aeruginosa biofilms received either transient or continuous exposure to one drug or a
combination of two drugs.

2. Materials and Methods
2.1. Experimental Dataset

A pharmacodynamic model, which captures the effects of drug concentration, drug
diffusion, and cell transit through several states, ultimately leading to cell death, was
developed to describe previously reported data regarding tobramycin and colistin treatment
of Pseudomonas aeruginosa (GFP-tagged strain PA14) biofilms cultured in a well-defined flow
cell at 30 ◦C in minimal medium with citrate (0.5 mM) at 3.3 mL/h [9]. In the experiments,
biofilm populations were established for 48 h under flow. Subsequently, the biofilms were
provided continuous or transient treatments of drugs using the flow cell system, and
data were collected continuously for up to 24 h. The transit time of the drug within the
tube was approximately 90 min, which was accounted for in our model by subtracting
1.5 h from the raw data. Propidium iodide (PI) dye was included in the flow solution to
stain the nonviable biomass, and the resulting fluorescence was recorded via automated
microscopy and normalized to the maximum fluorescence intensity recorded. As a result,
the experimentally reported quantity to which model predictions were compared was the
“Relative Biovolume”, representing the normalized values of dead biovolume. A negative
control of medium only and a positive control of 70% ethanol served as checks on the
fluorescence intensity data.

2.2. Mathematical Model

In the proposed pharmacodynamic model (Figure 1), exposure to drugs induces
healthy biofilm cells (B) to enter and progress through one or more transit states (D1, D2, . . .)
in which the cell membrane integrity is maintained (i.e., they do not stain with propidium
iodide) but the cells are no longer able to divide. Progression from the last transit state
produces dead cells (X), corresponding experimentally to the nonviable biovolume. Mass
balances were used to derive kinetic equations describing the populations of healthy biofilm
cells, the respective transit compartments, and dead cells. For tobramycin administration,
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the number of transit compartments was determined via optimization to be five, leading to
the following set of balance equations:

dB∗

dt
= B∗·

[
µ·(1 − B∗ − D∗
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Figure 1. Pharmacodynamic model structure for tobramycin. The pharmacodynamic model for
response to tobramycin (subscript ‘t’) tracks the transit of biofilm cells going from a viable (B) to
nonviable state (Xt) following administration of tobramycin at bulk concentration C0t. There is a flux,
J(D) of drug from the bulk to the biofilm cells, where the local concentration is Ct. For tobramycin,
there are five transit compartments (D1t, D2t, D3t, D4t, and D5t) mediating the cellular response to
drug. Growth is governed by a specific growth rate, µ; the coupled diffusion and pharmacodynamic
response are subject to parameters α, β, and γ; and the transit rate to subsequent compartments is
given by ktt.

Colistin administration followed the same model structure; however, there was only
one transit compartment as opposed to five.

In the above equations, the values for each compartment were normalized, as indicated
by the asterisks, to the maximum biovolume observed, in accordance with the experimental
data [9]. It is assumed that all of the cells start in the healthy biofilm state, from which they
can proliferate with a specific growth rate (µ) that is modified with a capacity constraint
term (Equation (1)). The rate of healthy cell entry into the transit rates is given in terms
of a rate constant, ks, and the bulk concentration, C0, raised to a cooperativity factor,
γ (Equation (2)). The rate constant is proportional to the diffusive flux (Appendix S1) and
can be expressed in terms of two model parameters, α and β, each of which is a grouping
of physical constants, to give:

ks = α

[
1 + 2

∞

∑
n=1

(−1)ne−n2βt

]
. (8)
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Biofilm cells affected by tobramycin eventually progress through five compartmental
transit states (Equations (2)–(6)), at a rate of kt per state, in which they become progres-
sively less viable than the previous state. In the final compartment (X∗), the biofilm
cells are nonviable (dead). It is this quantity that can be compared with the measured
nonviable biovolume.

The coupled set of ordinary differential Equations (1)–(7) was solved using an ode45
solver in MATLAB R2020b, where the initial relative density of the biofilm state was set
to 0.81 for the tobramycin treatment and 0.89 for the colistin treatment, and the rest of the
compartments started with no biovolume. For each drug (tobramycin and colistin), five
adjustable model parameters (µ, fc, kt, α, and β) were fit to the composite experimental
data [9] across varying respective concentrations and time courses of 24 h. An error function
was first created to evaluate the squared difference between the output of the model for
a given set of parameters and the given data at a specific timepoint. This function was
then minimized using the MATLAB implementation of the genetic algorithm (ga), which
produced the desired parameter values. The initial condition was essentially an extra
parameter within the model. To find these values for each respective drug, values ranging
between 0.70 and 0.95 were tested, and the errors from the data and model output were
compared. The initial concentration producing the least errors was then used.

3. Results

A detailed pharmacodynamic model was proposed to describe the dynamic response
of Pseudomonas aeruginosa to the antibiotics, tobramycin and colistin (Figure 1). In this model,
the drug first must diffuse through a boundary layer to get to the biofilm. When the drug
reaches the biofilm, the biofilm cells go through a progression of transit compartments, the
number of which is specific to and reflects the mechanism of action of the drug. Progression
through the transit compartments is irreversible; consequently, the cells ultimately die
after passing through them. The model was fit to continuous-time data for the killing
of P. aeruginosa in a flow-cell chamber [9]. The available dataset used to validate this
model consists of the amount of dead biofilm (relative biovolume) as a function of time
for several different drug concentrations for two different treatment protocols (tobramycin
and colistin).

The model was first tested on data for P. aeruginosa treated with tobramycin (TOB).
The mechanism of action for tobramycin involves binding to the 30S ribosomal unit,
thereby inhibiting protein synthesis, which gradually incapacitates the bacterium and
ultimately induces cell death [12]. This is a prolonged process, which was modeled using
five transit compartments, as described in Section 2. At the TOB 20 µg/mL concentration,
experimentally, there is a delay of approximately 5.5 h between drug exposure (with the
dead volume of the system already taken into account) and the emergence of nonviable
biovolume, which subsequently increases rapidly (Figure 2). This behavior is captured
by the model following a continuous treatment of TOB for 24 h. The time required for
the drug to diffuse to the biofilm is seen within the flat region of the graph, and as the
cells progress through the transit compartments, they are still viable until death in the
X* compartment. After the composite time for drug diffusion and cellular compartment
transit, there is a rapid increase in the number of dead cells observed experimentally
and predicted by the model. For the other studied concentrations of tobramycin, 5 and
50 µg/mL, the proposed model shows the same pattern of delay, progression through the
transit compartments, and increase in the dead biovolume population, all of which are
consistent with the experimental results [9].
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Figure 2. Dynamics of Pseudomonas aeruginosa killing in response to tobramycin at 20 µg/mL. The
left panel shows the model comparison of the dead cells, shown in red, with the experimental data,
shown in blue. The right panel shows the populations in each of the cellular compartments over the
same time course.

A useful pharmacodynamic model should be able to capture not only the dynamics,
but also the concentration (dose) dependence of response. To this end, the model’s pa-
rameters were fit to the ensemble data of 5, 20, and 50 µg/mL TOB exposure to produce
one set of fit parameters (Table 1). This single set of parameters successfully describes
the dynamics of cell killing for the concentration range of 5–50 µg/mL (Figure 3). The
dependence of the lag time before the onset of dead biovolume is consistent with the drug
diffusion aspect of the model. Delay due to diffusion is seen for all drug concentrations,
and it is amplified for lower concentrations. Because the diffusive flux of drug to the biofilm
cells is directly proportional to the concentration driving force, less delay and higher dead
biovolume concentrations are observed at shorter times for greater drug concentrations.
Consequently, TOB concentrations of 20 and 50 µg/mL yield shorter lag times as compared
to 5 µg/mL (Figure 3).

Table 1. Pharmacodynamic model parameters.

Parameter Description Units TOB Value CST Value

µB Growth rate of biofilm population h−1 0.0321 0.0001
α Rate constant for drug effect on biofilm (µg/mL)γ−1 h−1 0.0002 0.0082
β Normalized drug diffusivity h−1 0.2088 0.3986
γ Cooperativity in drug effect on biofilm 3.5330 4.4313
kt Intercompartmental transit rate of drug h−1 0.5424 1.8924

A key application of a pharmacodynamic model is its use to predict the response to
varying drug administration protocols. Experimental data are available for the response of
P. aeruginosa to transient exposure to TOB, where the drug is administered for the first four
hours and then turned off for the remaining twenty hours. The pharmacodynamic model
predicts that drug effects will continue to be observed after the removal of a drug from
the bulk, due to the continued flux of the remaining drug through the boundary layer and
the continued progression of cells through the transit compartments. As a result, a sharp
increase in dead cell biovolume is predicted by the model and observed experimentally
during the period from 5 to 20 h after initial exposure, i.e., after the drug is turned off
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(Figure 4). At the higher concentrations of 20 and 50 µg/mL, regrowth is observed in the
experimental model about 12 h after the drug administration ceases. Only at the lowest
TOB concentration of 5 µg/mL is there a reduction in killing in the transient exposure
experiment as compared to continuous exposure. This behavior is explained by the model
as being due to an insufficient amount of drug having diffused into the boundary layer
during the four hours of drug exposure (Figure 4).
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Figure 4. Transient exposure of biofilms to tobramycin. The same set of parameters for the continuous
data was used to simulate the treatment of biofilms using tobramycin transiently for four hours at
the same drug concentrations of 5, 20, and 50 µg/mL. The experimental data are shown in blue, and
the model is shown in red.
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Experimental data on the treatment of P. aeruginosa in the same flow system are
available for colistin, whose mechanism of action provides a contrast to that of tobramycin.
Colistin is a lipopeptide which binds to phospholipids found on the membrane of the cells
and replaces cations [13]. This induces cell rupture and leakage of the inner contents of the
cell, leading to death. Because this drug has a more rapid mode of killing than tobramycin,
the pharmacodynamic model was modified to contain only one transit compartment
(Figure 5A), such that the progression of cells from the exposure to the drug to cell death
is more rapid than for tobramycin. Analogously to tobramycin, we fit data for multiple
concentrations of colistin (CST) into one set of parameters and used these to model various
concentrations of CST administered continuously over a period of twelve hours.
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10 µg/mL. The model fit uses parameters determined by fitting to the ensemble of colistin continuous
response data.

As seen with TOB, a delay is observed in the response to CST due to the time required
for diffusion through the boundary layer (Figure 5B). However, the delay is shorter due
to the existence of only one transit compartment and more rapid transit throughout. As
with TOB, a single set of parameters accurately describes the ensemble of data over the
tested concentration range (Figure 6). These same parameters were used when applying
the model to a transient exposure to CST, where the drug was administered for the first
four hours and shut off for the remaining time (Figure 7). The same trend is seen as in the
continuous treatment, where at higher concentrations, the diffusive flux of CST is greater,
therefore resulting in less delay and the rapid onset of cell killing. Additionally, at these
high concentrations of colistin, all of the biofilm cells are observed to become nonviable at
earlier time points in comparison to TOB, again largely due to drug-treated cells spending
less time in transit compartments.

Since TOB and CST have different mechanisms of action, they might produce additive
or synergistic effects when used in combination. If there are no strong synergies or antago-
nisms, the original model may be able to predict outcomes of combined treatments using
only the parameters determined earlier for each respective drug. The model proposed for
this mechanism involves a combination of both treatments running in parallel (Figure 8A).
It proved necessary to add a path by which the biofilm cells could initially be affected
by TOB or CST, and the cells in transit due to (slower-acting) TOB exposure could be
killed directly by (faster-acting) CST. It is assumed that cells in a transit compartment due
to TOB were equally likely as naïve cells to be affected by CST; thus, this path does not
introduce any additional fitting parameters into the model. Because of the more rapid
killing mechanism of CST, the response to CST dominates the experimentally observed and
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model behaviors (Figure 8B), where the biofilm cell death occurs at earlier times, even with
lower concentrations of CST.
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with two drugs. Transit compartments resulting from exposure to tobramycin and colistin are
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each respective drug were used to predict outcomes of combination treatments. (B) Combination
treatments were tested using various dose combinations of tobramycin and colistin over the course
of 24 h. The mathematical model is shown in red, and the experimental data are shown in blue.

4. Discussion

Bacterial biofilms are a significant problem in human infections because they form
communities that both pose physical barriers to drug transport and allow metabolic adap-
tations that can alter the pharmacology of antibiotic treatment [14,15]. An improved
understanding of the response of biofilm-associated bacteria to antibiotic treatment is
needed to optimize the administration route and timing of existing drugs and to focus
efforts on novel antibiotic development. Experimental datasets wherein the response of
a biofilm to treatment is monitored continuously over time provide a signature of the
pharmacologic response. The development of a mathematical model that captures this
response serves as a complementary tool that enables the interpretation of these data in
terms of physicochemical mechanisms.

Conventional pharmacologic expressions based on receptor theory are used to de-
scribe the pharmacodynamics (PD) of bacterial response to antibiotics [16–18]. These in
turn are incorporated into pharmacokinetic–pharmacodynamic (PK-PD) models, which
are an important tool in understanding the dose and time dependence of outcomes in
preclinical studies and serve as the basis for early-phase clinical dose and administration
scheduling [19,20]. Traditionally, the dynamics in PK-PD models of anti-infectives are
dictated by the distribution of the drug, and the concentration dependence is reflected
in the pharmacodynamic expression. The simplest such expression, which is commonly
employed in practice, treats the encounter between the drug and target cell as a first-order
reaction resulting in instantaneous cell killing [21]. This approach does not capture impor-
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tant trends observed in preclinical and human infections, including a delay between drug
exposure and drug effect and more complex dose–response relationships.

More elaborate mathematical models have been proposed to describe the growth and
treatment of biofilms, taking into account physical effects such as the diffusion of substrate
for growth and the diffusion of antibiotic for killing within the biofilm, the interfacial
detachment of biofilm-associated cells, advection, and chemotaxis [22–26]. Furthermore,
additional cellular states that reflect heterogeneity of response, e.g., persister states [27], or
transitional states due to cell damage [28], have been incorporated. These models promote
our quantitative understanding of the role that these physical and cell physiologic effects
can play in the growth and antibiotic treatment of biofilms. However, the incorporation
of mechanisms that depend on both space and time involves partial differential equation-
based continuous or agent-based simulation models that do not incorporate readily into
PK-PD models [29,30]. We sought to develop a model with sufficient mechanistic detail so
as to describe the dynamics of the biofilm response while still being tractable for eventual
incorporation into a PK-PD framework.

Recent experiments that monitor biofilm response dynamically demonstrate that there
is a delay between the onset of drug exposure and cell killing and that the magnitude of the
delay depends on the particular drug being used [9,21]. Thus, while diffusion can play a
role in the temporal response, cell physiology and the therapeutic mechanism of action are
also evidently important. Based on these observations, we developed a pharmacodynamic
model whose response has two critical aspects: the diffusion of a drug through a boundary
layer to the cells, and a cell physiological response in which a cascade of events is initiated
whose number and rates can be modified depending on the mechanism of action of the drug.
Specifically, we introduced “transit compartments” to account for cell states that are affected
by drugs: nonproliferative, but not yet dead (Figure 1). Incorporating these elements, the
model has five adjustable parameters with distinct mechanistic interpretations.

The parameter µB represents the specific growth rate of the biofilm. As little cell
growth is observed during the time course of the experiments being modeled, its value
is low, and no finer detail needs to be incorporated. The inclusion of drug diffusion
results in two lumped parameters, α and β (Equation (6) and Supplementary Information
Appendix S1). The β parameter is the value of πD

H2 , where D is the diffusion coefficient,
and H is the thickness of the diffusion layer, which is a combination of the hydrodynamic
layer resulting from the experimental setup in a flow cell, as well as the physical barrier
imposed by the biofilm itself. The lumped parameter β results from the scaling of the
diffusion problem and is the inverse of the characteristic time for diffusion. Using the
biofilm thickness of ~20 µm, the fit values of β would correspond to diffusion coefficients
(1.3–5.2 × 10−5 mm2/h). These values are several orders of magnitude lower than those
for typical drugs in water [31], suggesting that the diffusivity of the drugs is reduced
in the biofilm and/or there is also a mass transfer boundary layer [32]. For this reason,
β was retained as a fit, rather than fixed, parameter. Since the boundary layer thickness
should be the same for both drugs, the slightly higher value fit for CST than for TOB can be
interpreted as a higher effective diffusion coefficient for the former compound. Although
CST has a higher molecular weight than TOB, it has biosurfactant properties that may allow
it to diffuse (penetrate) more rapidly in the biofilm barrier [33].

The α value is a lumping of kC D
H , which includes the aforementioned parameters that

describe diffusive flux, as well as a rate constant, kC, to denote the rate at which biofilm cells
are affected by the drug and enter into a transit compartment to begin its death cascade.
The γ value is a purely pharmacodynamic parameter representing cooperativity in terms of
the drug binding to and poisoning of the biofilm cells. The last parameter, kt, corresponds
to the intercompartmental transit rate of the drug. This is not typically found in other
PD models that are designed to capture data at one time point; however, it is critical in
capturing the overall dynamic behavior of the drug and its effect on biofilm killing.

In order to better understand the influence of model structure and parameter values
on the model output, several analyses were performed. First, each component of the model
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was removed in turn and the model re-fit to the experimental data (Figure 9), with the
exception of the cell killing component (α parameter), which would give a trivial result.
The removal of either the diffusion term or the transit compartment terms significantly
reduced the ability of the model to capture the dynamics of the biofilm response across
the three different concentration levels of TOB. Likewise, removing cooperativity from the
model (i.e., constraining the cooperativity parameter, γ, to a value of one) prevented an
accurate reflection of the concentration dependence. The removal of bacterial growth, µ,
did not have a major effect on the model output. However, when neglecting this parameter
in the optimization program, the error between the model and data was increased by 60%
in comparison to incorporating growth rate (Table 2). As a result, the growth rate was
retained in the model.
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Table 2. Impact of removing model components on total error.

Parameter Full Model Without µB Without β Without γ Without kt

µB 0.0321 - 0.5372 0.0289 0.0000
α 0.0002 0.0012 0.0072 0.0094 0.0351
β 0.2088 0.0815 - 0.2480 0.0200
γ 3.5330 3.2862 1.0705 - 3.4315
kt 0.5424 0.4370 0.4228 0.8053 -

Error 0.0561 0.0971 0.4337 0.7883 1.6449

The effect of these five parameters on the model output can be further understood
through a parametric sensitivity analysis in which each parameter’s value is varied while
holding all others constant (Figure 10). It is evident that variation in the value of kt has the
greatest impact on the model overall. Conceptually, this is expected as the intercompart-
mental transit rate dictates progress through the “death cascade” as well as the cellular
response dynamics to the drug. The value of β dictates the delay due to diffusion between
drug administration and cellular effects. It couples with kt and has a strong influence on
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the output. The pharmacologic rate constant, α, has a modest effect on the output, while
the cooperativity, γ, exerts a stronger influence.
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Figure 10. Parametric sensitivity analysis. The TOB 20 µg/mL continuous data were used as the
base case. The time course of dead biovolume (X*) production was compared for values of each
parameter, varied one at a time. The black line represents the output when the parameter is at its best
fit value (Table 1), the red and pink lines show the effect of higher values, and the green and blue
lines illustrate the effect of lower values of each parameter.

The number of transit compartments can be considered as an additional model pa-
rameter. We varied the number systematically, refitting the model each time to determine
the value most consistent with the experimental data (Figure 11). For CST treatment, it
was found that one compartment produces the most accurate model, whereas for TOB, five
compartments provides the best fit. For either TOB or CST treatment, as the number of
compartments increases, kt increases in order to mimic the effect of one transit compartment
(Tables S1 and S2).

The proposed model fit with a single set of parameters for each respective drug was
able to reproduce the response to drug concentrations that vary over an order of magnitude
in both continuous and transient combined exposure (Figures 3, 4, 6 and 7). It is challenging
for a model to capture both concentration (dose) and time effects. The ability of the present
model to do so with a single set of fit parameters is promising. Furthermore, the effect
of combined treatment was captured accurately using parameters for individual drug
treatments (Figure 8B).

Areas where agreement was less robust point to limitations in the model and/or in
the experimental dataset. For instance, in the transient exposure experiments (Figure 4),
a reduction in biovolume (adherent, dead cells) occurred around 20 h after treatment
onset. This represents detachment, which has been incorporated into some biophysical
models of biofilm growth [34]. However, it was not considered in the present work, as
the physical location of dead cells (adherent versus detached) is not of great interest in
pharmacologic applications. In addition, the model somewhat underpredicts the extent
of cell death throughout the transient experiment. This underprediction is because the
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model parameters were fit based on the continuous treatment experiments (Figure 3), and
the rate of cell killing was more rapid during transient exposure, a result that most likely
reflects experimental variation rather than a physical or pharmacologic effect. Another
limitation is that, because experimental data were collected for only 24 h, pharmacologic
effects occurring at longer times might not be captured accurately in the model. This would
include effects such as regrowth of the biofilm and the development of drug resistance, both
of which tend to evolve over longer periods of time. It should be noted that the experimental
data were obtained on mature biofilms (grown for 48 h before treatment), which almost
completely covered the surface of the flow cell substrate [9]. Under these conditions, it is
expected that the biofilm growth rate is low, and it is likely that heterogeneities in biofilm
structure would be less important than in a developing biofilm. These differences are of
interest in the development of pharmacodynamic indices for PK-PD models [35,36].
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Figure 11. Optimal number of transit compartments. The TOB 20 µg/mL and CST 10 µg/mL
continuous data were used to determine the ideal number of compartments for the model. On the
left graph, the model with three compartments gave the least error between the model and data for
tobramycin. The graph on the right shows the model with a differing number of compartments for
colistin, and as shown, only one compartment produced the least error between the model and data.
The parameter values for each compartment can be found in the tables below.

5. Conclusions

In summary, we have shown that a pharmacodynamic model which integrates the
diffusion of a drug from the bulk to the cells, drug–cell interactions, and a series of transit
compartments for affected cells is able to accurately describe the dynamics of Pseudomonas
aeruginosa’s response to tobramycin, colistin, and their combinations. The model was fit to
an ensemble of data covering multiple drug concentrations to obtain one set of fit parame-
ters for each drug. Among these, the specific growth rate proved inconsequential during the
time course of the experiments studied, but each of the other four parameters exerted a dis-
tinct influence on the model output and contributed to its ability to capture experimentally
observed dynamics. Overall, the model is robust enough to show the general behaviors
of TOB, CST, and the combination of the two drugs at various concentrations. The model
allows the interpretation of the slower-acting TOB as resulting from a mechanism involving
multiple cellular steps (“transit states”) and suggests that more sustained treatment is
necessary to eradicate biofilms with this drug. This pharmacodynamic model can be paired
with a pharmacokinetic description in vivo to predict a drug’s effect on an infection. This
could be of potential interest in tissues such as lung where both systemic and regional (e.g.,
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pulmonary) delivery are possible [37]. Our model can be useful in simulating effects of
different strategies in drug administration and scheduling to promote the better eradication
of challenging biofilm infections.
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transit compartment number on error: colistin.
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