Refining Liver Biopsy in Hepatocellular Carcinoma: An In-Depth Exploration of Shifting Diagnostic and Therapeutic Applications
Abstract
:1. Introduction and Rationale
2. The Changing Role of Liver Biopsy in Hepatocellular Carcinoma
3. Past and Present: A Biopsy for a Positive Diagnosis in Clinical Practice
4. Percutaneous Liver Biopsy in Clinical Research: (Re)Defining the Standards
5. The Role of Histopathology in the Era of Precision Medicine—The Role of Diversity in Hepatocellular Carcinoma
6. Biopsy and Precision Medicine in HCC: The Link from Identified Target to Clinical Translation
7. Liver Biopsy and the Future of Prognosis and Therapy
8. Liquid Biopsy vs. Tissue Biopsy in Hepatocellular Carcinoma
8.1. Liquid Biopsy in HCC Diagnosis
8.2. Liquid Biopsy in HCC Prognosis
8.3. Liquid biopsy in HCC Treatment
9. So, When Should I Perform a Liver Biopsy? An Evidence-Guided Approach
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chernyak, V.; Fowler, K.J.; Kamaya, A.; Kielar, A.Z.; Elsayes, K.M.; Bashir, M.R.; Kono, Y.; Do, R.K.; Mitchell, D.G.; Singal, A.G.; et al. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in at-Risk Patients. Radiology 2018, 289, 816–830. [Google Scholar] [CrossRef]
- Elmohr, M.; Elsayes, K.M.; Chernyak, V. LI-RADS: Review and Updates. Clin. Liver Dis. 2021, 17, 108–112. [Google Scholar] [CrossRef]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.; Meyer, T.; Nault, J.C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2018, 29, iv238–iv255. [Google Scholar] [CrossRef]
- Bruix, J.; Reig, M.; Sherman, M. Evidence-Based Diagnosis, Staging, and Treatment of Patients with Hepatocellular Carcinoma. Gastroenterology 2016, 150, 835–853. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Vyas, M.; Zhang, X. Hepatocellular Carcinoma: Role of Pathology in the Era of Precision Medicine. Clin. Liver Dis. 2020, 24, 591–610. [Google Scholar] [CrossRef]
- Longerich, T.; Schirmacher, P. Emerging Role of the Pathologist in Precision Medicine for HCC. Dig. Dis. Sci. 2019, 64, 928–933. [Google Scholar] [CrossRef]
- Labgaa, I.; Villanueva, A.; Dormond, O.; Demartines, N.; Melloul, E. The Role of Liquid Biopsy in Hepatocellular Carcinoma Prognostication. Cancers 2021, 12, 220. [Google Scholar] [CrossRef]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the Diagnosis, Staging and Treatment of Patients with Metastatic Breast Cancer ☆. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef]
- Chen, V.L.; Sharma, P. Role of Biomarkers and Biopsy in Hepatocellular Carcinoma. Clin. Liver Dis. 2020, 24, 577–590. [Google Scholar] [CrossRef]
- Llovet, J.M.; Villanueva, A.; Marrero, J.A.; Schwartz, M.; Meyer, T.; Galle, P.R.; Lencioni, R.; Greten, T.F.; Kudo, M.; Mandrekar, S.J.; et al. Trial Design and Endpoints in Hepatocellular Carcinoma: AASLD Consensus Conference. Hepatology 2021, 73, 158–191. [Google Scholar] [CrossRef]
- Ally, A.; Balasundaram, M.; Carlsen, R.; Chuah, E.; Clarke, A.; Dhalla, N.; Holt, R.A.; Jones, S.J.M.; Lee, D.; Ma, Y.; et al. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017, 169, 1327–1341.e23. [Google Scholar] [CrossRef]
- Rebouissou, S.; Nault, J.C. Advances in Molecular Classification and Precision Oncology in Hepatocellular Carcinoma. J. Hepatol. 2020, 72, 215–229. [Google Scholar] [CrossRef]
- Gawrieh, S.; Dakhoul, L.; Miller, E.; Scanga, A.; deLemos, A.; Kettler, C.; Burney, H.; Liu, H.; Abu-Sbeih, H.; Chalasani, N.; et al. Characteristics, Aetiologies and Trends of Hepatocellular Carcinoma in Patients without Cirrhosis: A United States Multicentre Study. Aliment. Pharmacol. Ther. 2019, 50, 809–821. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans Is Associated With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131.e1. [Google Scholar] [CrossRef]
- Neuberger, J.; Patel, J.; Caldwell, H.; Davies, S.; Hebditch, V.; Hollywood, C.; Hubscher, S.; Karkhanis, S.; Lester, W.; Roslund, N.; et al. Guidelines on the Use of Liver Biopsy in Clinical Practice from the British Society of Gastroenterology, the Royal College of Radiologists and the Royal College of Pathology. Gut 2020, 69, 1382–1403. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, S.Y.; Kang, H.J.; Kang, J.H.; Lee, S.S.; Shim, J.H.; Choi, S.H.; Shin, Y.M.; Byun, J.H. Diagnostic Performance of Ultrasonography-Guided Core-Needle Biopsy According to MRI LI-RADS Diagnostic Categories. Ultrasonography 2021, 40, 387–397. [Google Scholar] [CrossRef]
- Kang, J.H.; Choi, S.H.; Kim, S.Y.; Lee, S.J.; Shin, Y.M.; Won, H.J.; Kim, P.N. US LI-RADS Visualization Score: Diagnostic Outcome of Ultrasound-Guided Focal Hepatic Lesion Biopsy in Patients at Risk for Hepatocellular Carcinoma. Ultrasonography 2021, 40, 167–175. [Google Scholar] [CrossRef]
- Childs, A.; Zakeri, N.; Ma, Y.T.; O’Rourke, J.; Ross, P.; Hashem, E.; Hubner, R.A.; Hockenhull, K.; Iwuji, C.; Khan, S.; et al. Biopsy for Advanced Hepatocellular Carcinoma: Results of a Multicentre UK Audit. Br. J. Cancer 2021, 125, 1350–1355. [Google Scholar] [CrossRef]
- Fotiadis, N.; De Paepe, K.N.; Bonne, L.; Khan, N.; Riddell, A.; Turner, N.; Starling, N.; Gerlinger, M.; Rao, S.; Chau, I.; et al. Comparison of a Coaxial versus Non-Coaxial Liver Biopsy Technique in an Oncological Setting: Diagnostic Yield, Complications and Seeding Risk. Eur. Radiol. 2020, 30, 6702–6708. [Google Scholar] [CrossRef]
- Cartier, V.; Crouan, A.; Esvan, M.; Oberti, F.; Michalak, S.; Gallix, B.; Seror, O.; Paisant, A.; Vilgrain, V.; Aubé, C.; et al. Suspicious Liver Nodule in Chronic Liver Disease: Usefulness of a Second Biopsy. Diagn. Interv. Imaging 2018, 99, 493–499. [Google Scholar] [CrossRef]
- Huang, S.C.; Liang, J.D.; Hsu, S.J.; Hong, T.C.; Yang, H.C.; Kao, J.H. Direct Comparison of Biopsy Techniques for Hepatic Malignancies. Clin. Mol. Hepatol. 2021, 27, 305–312. [Google Scholar] [CrossRef]
- Francque, S.; De Pauw, F.; Van den Steen, G.; Van Marck, E.; Pelckmans, P.; Michielsen, P. Biopsy of Focal Liver Lesions: Guidelines, Comparison of Techniques and Cost-Analysis. Acta Gastroenterol. Belg. 2003, 66, 160–165. [Google Scholar]
- Silva, M.A.; Hegab, B.; Hyde, C.; Guo, B.; Buckels, J.A.C.; Mirza, D.F. Needle Track Seeding Following Biopsy of Liver Lesions in the Diagnosis of Hepatocellular Cancer: A Systematic Review and Meta-Analysis. Gut 2008, 57, 1592–1596. [Google Scholar] [CrossRef]
- Midia, M.; Devang, O.; Shuster, A.; Midia, R.; Muir, J. Predictors of Bleeding Complications Following Percutaneous Image-Guided Liver Biopsy: A Scoping Review. Diagn. Interv. Radiol. 2019, 25, 71–80. [Google Scholar] [CrossRef]
- Giorgio, A.; Tarantino, L.; de Stefano, G.; Francica, G.; Esposito, F.; Perrotta, A.; Aloisio, V.; Farella, N.; Mariniello, N.; Coppola, C.; et al. Complications after Interventional Sonography of Focal Liver Lesions: A 22-Year Single-Center Experience. J. Ultrasound Med. 2003, 22, 195–205. [Google Scholar] [CrossRef]
- Renzulli, M.; Pecorelli, A.; Brandi, N.; Brocchi, S.; Tovoli, F.; Granito, A.; Carrafiello, G.; Ierardi, A.M.; Golfieri, R. The Feasibility of Liver Biopsy for Undefined Nodules in Patients under Surveillance for Hepatocellular Carcinoma: Is Biopsy Really a Useful Tool? J. Clin. Med. 2022, 11, 4399. [Google Scholar] [CrossRef]
- Sparchez, Z.; Mocan, T.; Craciun, R.; Sparchez, M.; Nolsøe, C. Contrast Enhancement for Ultrasound-Guided Interventions: When to Use It and What to Expect? Ultrasonography 2022, 41, 263–278. [Google Scholar] [CrossRef]
- Centonze, L.; De Carlis, R.; Vella, I.; Carbonaro, L.; Incarbone, N.; Palmieri, L.; Sgrazzutti, C.; Ficarelli, A.; Valsecchi, M.G.; Dello Iacono, U.; et al. From LI-RADS Classification to HCC Pathology: A Retrospective Single-Institution Analysis of Clinico-Pathological Features Affecting Oncological Outcomes after Curative Surgery. Diagnostics 2022 2022, 12, 160. [Google Scholar] [CrossRef]
- Lewis, S.; Hectors, S.; Taouli, B. Radiomics of Hepatocellular Carcinoma. Abdom. Radiol. 2021, 46, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Weinfurtner, K.; Cho, J.; Ackerman, D.; Chen, J.X.; Woodard, A.; Li, W.; Ostrowski, D.; Soulen, M.C.; Dagli, M.; Shamimi-Noori, S.; et al. Variability in Biopsy Quality Informs Translational Research Applications in Hepatocellular Carcinoma. Sci. Rep. 2021, 11, 22763. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.J.; Yoon, S.; Ryoo, B.Y.; Kim, S.W.; Choi, S.H.; Lee, S.M.; Chae, E.J.; Park, Y.; Jang, S.J.; et al. Feasibility, Safety, and Adequacy of Research Biopsies for Cancer Clinical Trials at an Academic Medical Center. PLoS ONE 2019, 14, e0221065. [Google Scholar] [CrossRef] [PubMed]
- Lew, M.; Hissong, E.M.; Westerhoff, M.A.; Lamps, L.W. Optimizing Small Liver Biopsy Specimens: A Combined Cytopathology and Surgical Pathology Perspective. J. Am. Soc. Cytopathol. 2020, 9, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Pritzker, K.P.H.; Nieminen, H.J. Needle Biopsy Adequacy in the Era of Precision Medicine and Value-Based Health Care. Arch. Pathol. Lab. Med. 2019, 143, 1399–1415. [Google Scholar] [CrossRef]
- Rastogi, A. Changing Role of Histopathology in the Diagnosis and Management of Hepatocellular Carcinoma. World J. Gastroenterol. 2018, 24, 4000–4013. [Google Scholar] [CrossRef]
- Ziol, M.; Poté, N.; Amaddeo, G.; Laurent, A.; Nault, J.C.; Oberti, F.; Costentin, C.; Michalak, S.; Bouattour, M.; Francoz, C.; et al. Macrotrabecular-Massive Hepatocellular Carcinoma: A Distinctive Histological Subtype with Clinical Relevance. Hepatology 2018, 68, 103–112. [Google Scholar] [CrossRef]
- Calderaro, J.; Couchy, G.; Imbeaud, S.; Amaddeo, G.; Letouzé, E.; Blanc, J.F.; Laurent, C.; Hajji, Y.; Azoulay, D.; Bioulac-Sage, P.; et al. Histological Subtypes of Hepatocellular Carcinoma Are Related to Gene Mutations and Molecular Tumour Classification. J. Hepatol. 2017, 67, 727–738. [Google Scholar] [CrossRef]
- Audard, V.; Grimber, G.; Elie, C.; Radenen, B.; Audebourg, A.; Letourmeur, F.; Soubrane, O.; Vacher-Lavenu, M.C.; Perret, C.; Cavard, C.; et al. Cholestasis Is a Marker for Hepatocellular Carcinomas Displaying Beta-Catenin Mutations. J. Pathol. 2007, 212, 345–352. [Google Scholar] [CrossRef]
- Salomao, M.; Yu, W.M.; Brown, R.S.; Emond, J.C.; Lefkowitch, J.H. Steatohepatitic Hepatocellular Carcinoma (SH-HCC): A Distinctive Histological Variant of HCC in Hepatitis C Virus-Related Cirrhosis with Associated NAFLD/NASH. Am. J. Surg. Pathol. 2010, 34, 1630–1636. [Google Scholar] [CrossRef]
- Chan, A.W.H.; Tong, J.H.M.; Pan, Y.; Chan, S.L.; Wong, G.L.H.; Wong, V.W.S.; Lai, P.B.S.; To, K.F. Lymphoepithelioma-like Hepatocellular Carcinoma: An Uncommon Variant of Hepatocellular Carcinoma with Favorable Outcome. Am. J. Surg. Pathol. 2015, 39, 304–312. [Google Scholar] [CrossRef]
- Seok, J.Y.; Na, D.C.; Woo, H.G.; Roncalli, M.; Kwon, S.M.; Yoo, J.E.; Ahn, E.Y.; Kim, G.I.; Choi, J.S.; Kim, Y.B.; et al. A Fibrous Stromal Component in Hepatocellular Carcinoma Reveals a Cholangiocarcinoma-like Gene Expression Trait and Epithelial-Mesenchymal Transition. Hepatology 2012, 55, 1776–1786. [Google Scholar] [CrossRef]
- Moeini, A.; Sia, D.; Zhang, Z.; Camprecios, G.; Stueck, A.; Dong, H.; Montal, R.; Torrens, L.; Martinez-Quetglas, I.; Fiel, M.I.; et al. Mixed Hepatocellular Cholangiocarcinoma Tumors: Cholangiolocellular Carcinoma Is a Distinct Molecular Entity. J. Hepatol. 2017, 66, 952–961. [Google Scholar] [CrossRef]
- Nakanishi, C.; Sato, K.; Ito, Y.; Abe, T.; Akada, T.; Muto, R.; Sakashita, K.; Konno, T.; Kato, H.; Satomi, S. Combined Hepatocellular Carcinoma and Neuroendocrine Carcinoma with Sarcomatous Change of the Liver after Transarterial Chemoembolization. Hepatol. Res. 2012, 42, 1141–1145. [Google Scholar] [CrossRef]
- Wood, L.D.; Heaphy, C.M.; Daniel, H.D.J.; Naini, B.V.; Lassman, C.R.; Arroyo, M.R.; Kamel, I.R.; Cosgrove, D.P.; Boitnott, J.K.; Meeker, A.K.; et al. Chromophobe Hepatocellular Carcinoma with Abrupt Anaplasia: A Proposal for a New Subtype of Hepatocellular Carcinoma with Unique Morphological and Molecular Features. Mod. Pathol. 2013, 26, 1586–1593. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.; Karapetyan, L.; Kirkwood, J.M. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 2023, 15, 1106. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Pinyol, R.; Kelley, R.K.; El-Khoueiry, A.; Reeves, H.L.; Wang, X.W.; Gores, G.J.; Villanueva, A. Molecular Pathogenesis and Systemic Therapies for Hepatocellular Carcinoma. Nat. Cancer 2022, 3, 386–401. [Google Scholar] [CrossRef]
- Schapira, M.; Calabrese, M.F.; Bullock, A.N.; Crews, C.M. Targeted Protein Degradation: Expanding the Toolbox. Nat. Rev. Drug Discov. 2019, 18, 949–963. [Google Scholar] [CrossRef]
- Martinez-Quetglas, I.; Pinyol, R.; Dauch, D.; Torrecilla, S.; Tovar, V.; Moeini, A.; Alsinet, C.; Portela, A.; Rodriguez-Carunchio, L.; Solé, M.; et al. IGF2 Is Up-Regulated by Epigenetic Mechanisms in Hepatocellular Carcinomas and Is an Actionable Oncogene Product in Experimental Models. Gastroenterology 2016, 151, 1192–1205. [Google Scholar] [CrossRef] [PubMed]
- Pinyol, R.; Torrecilla, S.; Wang, H.; Montironi, C.; Piqué-Gili, M.; Torres-Martin, M.; Wei-Qiang, L.; Willoughby, C.E.; Ramadori, P.; Andreu-Oller, C.; et al. Molecular Characterisation of Hepatocellular Carcinoma in Patients with Non-Alcoholic Steatohepatitis; European Association for the Study of the Liver: Marburg, Germany, 2021; Volume 75, ISBN 0000100013. [Google Scholar]
- Liu, Y.; Tao, S.; Liao, L.; Li, Y.; Li, H.; Li, Z.; Lin, L.; Wan, X.; Yang, X.; Chen, L. TRIM25 Promotes the Cell Survival and Growth of Hepatocellular Carcinoma through Targeting Keap1-Nrf2 Pathway. Nat. Commun. 2020, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, H.; Zhang, L.; Zhu, A.; Bernards, R.; Qin, W.; Wang, C. Evolving Therapeutic Landscape of Advanced Hepatocellular Carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiang, Y.; Li, B.; Cui, Y.; Li, D. Single-Cell Spatial Analysis of Tumor and Immune Microenvironment on Whole-Slide Image Reveals Hepatocellular Carcinoma Subtypes. Cancers 2020, 12, 3562. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, B.; Topatana, W.; Cao, J.; Zhu, H.; Juengpanich, S.; Mao, Q.; Yu, H.; Cai, X. Classi Fi Cation and Mutation Prediction Based on Histopathology H & E Images in Liver Cancer Using Deep Learning. NPJ Precis. Oncol. 2020, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Geiss, G.K.; Bumgarner, R.E.; Birditt, B.; Dahl, T.; Dowidar, N.; Dunaway, D.L.; Fell, H.P.; Ferree, S.; George, R.D.; Grogan, T.; et al. Direct Multiplexed Measurement of Gene Expression with Color-Coded Probe Pairs. Nat. Biotechnol. 2008, 26, 317–325. [Google Scholar] [CrossRef]
- Beaufrère, A.; Caruso, S.; Calderaro, J.; Poté, N.; Bijot, J.C.; Couchy, G.; Cauchy, F.; Vilgrain, V.; Zucman-Rossi, J.; Paradis, V. Gene Expression Signature as a Surrogate Marker of Microvascular Invasion on Routine Hepatocellular Carcinoma Biopsies. J. Hepatol. 2022, 76, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Klein, C.; Caruso, S.; Maille, P.; Laleh, N.G.; Sommacale, D.; Laurent, A.; Amaddeo, G.; Gentien, D.; Rapinat, A.; et al. Artificial Intelligence Predicts Immune and Inflammatory Gene Signatures Directly from Hepatocellular Carcinoma Histology. J. Hepatol. 2022, 77, 116–127. [Google Scholar] [CrossRef]
- Chen, D.; Liu, J.; Zang, L.; Xiao, T.; Zhang, X.; Li, Z.; Zhu, H.; Gao, W.; Yu, X. Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients. Int. J. Biol. Sci. 2022, 18, 360–373. [Google Scholar] [CrossRef]
- Sangro, B.; Melero, I.; Wadhawan, S.; Finn, R.S.; Abou-Alfa, G.K.; Cheng, A.L.; Yau, T.; Furuse, J.; Park, J.W.; Boyd, Z.; et al. Association of Inflammatory Biomarkers with Clinical Outcomes in Nivolumab-Treated Patients with Advanced Hepatocellular Carcinoma. J. Hepatol. 2020, 73, 1460–1469. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, D.Y. Artificial Intelligence and Computational Pathology. Lab. Investig. 2021, 101, 412–422. [Google Scholar] [CrossRef]
- Mocan, T.; Simão, A.L.; Castro, R.E.; Rodrigues, C.M.P.; Słomka, A.; Wang, B.; Strassburg, C.; Wöhler, A.; Willms, A.G.; Kornek, M. Liquid Biopsies in Hepatocellular Carcinoma: Are We Winning? J. Clin. Med. 2020, 9, 1541. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.K.; Mocan, T.; Sänger, H.; Lukacs-Kornek, V.; Kornek, M. Extracellular Vesicles in Liver Diseases: Diagnostic, Prognostic, and Therapeutic Application. Semin. Liver Dis. 2019, 39, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Słomka, A.; Mocan, T.; Wang, B.; Nenu, I.; Urban, S.K.; Gonzales-Carmona, M.; Schmidt-Wolf, I.G.H.; Lukacs-Kornek, V.; Strassburg, C.P.; Spârchez, Z.; et al. Cancers EVs as Potential New Therapeutic Tool/Target in Gastrointestinal Cancer and HCC. Cancers 2020, 12, 3019. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Hassan Murad, M.; Marrero, J.A. AASLD Guidelines for the Treatment of Hepatocellular Carcinoma. Hepatology 2017, 67, 358–380. [Google Scholar] [CrossRef]
- Sparchez, Z.; Mocan, T. Contemporary Role of Liver Biopsy in Hepatocellular Carcinoma. World J. Hepatol. 2018, 10, 452–461. [Google Scholar] [CrossRef]
- Julich-Haertel, H.; Urban, S.K.; Krawczyk, M.; Willms, A.; Jankowski, K.; Patkowski, W.; Kruk, B.; Krasnodębski, M.; Ligocka, J.; Schwab, R.; et al. Cancer-Associated Circulating Large Extracellular Vesicles in Cholangiocarcinoma and Hepatocellular Carcinoma. J. Hepatol. 2017, 67, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.K.; Sänger, H.; Krawczyk, M.; Julich-Haertel, H.; Willms, A.; Ligocka, J.; Azkargorta, M.; Mocan, T.; Kahlert, C.; Kruk, B.; et al. Synergistic Effects of Extracellular Vesicle Phenotyping and AFP in Hepatobiliary Cancer Differentiation. Liver Int. 2020, 40, 3103–3116. [Google Scholar] [CrossRef]
- Buczak, K.; Ori, A.; Kirkpatrick, J.M.; Holzer, K.; Dauch, D.; Roessler, S.; Endris, V.; Lasitschka, F.; Parca, L.; Schmidt, A.; et al. Spatial Tissue Proteomics Quantifies Inter- and Intratumor Heterogeneity in Hepatocellular Carcinoma (HCC). Mol. Cell. Proteom. 2018, 17, 810–825. [Google Scholar] [CrossRef]
- Labgaa, I.; Villacorta-Martin, C.; D’avola, D.; Craig, A.J.; Von Felden, J.; Martins-Filho, S.N.; Sia, D.; Stueck, A.; Ward, S.C.; Fiel, M.I.; et al. A Pilot Study of Ultra-Deep Targeted Sequencing of Plasma DNA Identifies Driver Mutations in Hepatocellular Carcinoma. Oncogene 2018, 37, 3740–3752. [Google Scholar] [CrossRef]
- Ono, A.; Fujimoto, A.; Yamamoto, Y.; Akamatsu, S.; Hiraga, N.; Imamura, M.; Kawaoka, T.; Tsuge, M.; Abe, H.; Hayes, C.N.; et al. Circulating Tumor DNA Analysis for Liver Cancers and Its Usefulness as a Liquid Biopsy. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 516–534. [Google Scholar] [CrossRef]
- Liao, W.; Yang, H.; Xu, H.; Wang, Y.; Ge, P.; Ren, J.; Xu, W.; Lu, X.; Sang, X.; Zhong, S.; et al. Noninvasive Detection of Tumor-Associated Mutations from Circulating Cell-Free DNA in Hepatocellular Carcinoma Patients by Targeted Deep Sequencing. Oncotarget 2016, 7, 40481–40490. [Google Scholar] [CrossRef]
- Hann, H.-W.; Jain, S.; Park, G.; Steffen, J.D.; Song, W.; Su, Y.-H. Detection of Urine DNA Markers for Monitoring Recurrent Hepatocellular Carcinoma. Hepatoma Res. 2017, 3, 105. [Google Scholar] [CrossRef]
- Jiao, J.; Watt, G.P.; Stevenson, H.L.; Calderone, T.L.; Fisher-Hoch, S.P.; Ye, Y.; Wu, X.; Vierling, J.M.; Beretta, L. Telomerase Reverse Transcriptase Mutations in Plasma DNA in Patients with Hepatocellular Carcinoma or Cirrhosis: Prevalence and Risk Factors. Hepatol. Commun. 2018, 2, 718–731. [Google Scholar] [CrossRef]
- Oversoe, S.K.; Clement, M.S.; Pedersen, M.H.; Weber, B.; Aagaard, N.K.; Villadsen, G.E.; Grønbæk, H.; Hamilton-Dutoit, S.J.; Sorensen, B.S.; Kelsen, J. TERT Promoter Mutated Circulating Tumor DNA as a Biomarker for Prognosis in Hepatocellular Carcinoma. Scand. J. Gastroenterol. 2020, 55, 1433–1440. [Google Scholar] [CrossRef]
- von Felden, J.; Craig, A.J.; Garcia-Lezana, T.; Labgaa, I.; Haber, P.K.; D’Avola, D.; Asgharpour, A.; Dieterich, D.; Bonaccorso, A.; Torres-Martin, M.; et al. Mutations in Circulating Tumor DNA Predict Primary Resistance to Systemic Therapies in Advanced Hepatocellular Carcinoma. Oncogene 2021, 40, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, L.; Zhang, X.; Sun, B.; Yang, Y.; Ge, N.; Liu, H.; Yang, X.; Chen, L.; Qian, H.; et al. PERK/PAkt Phenotyping in Circulating Tumor Cells as a Biomarker for Sorafenib Efficacy in Patients with Advanced Hepatocellular Carcinoma. Oncotarget 2016, 7, 2646–2659. [Google Scholar] [CrossRef]
- Parikh, A.R.; Leshchiner, I.; Elagina, L.; Goyal, L.; Levovitz, C.; Siravegna, G.; Livitz, D.; Rhrissorrakrai, K.; Martin, E.E.; Van Seventer, E.E.; et al. Liquid versus Tissue Biopsy for Detecting Acquired Resistance and Tumor Heterogeneity in Gastrointestinal Cancers. Nat. Med. 2019, 25, 1415–1421. [Google Scholar] [CrossRef]
- Pelizzaro, F.; Cardin, R.; Penzo, B.; Pinto, E.; Vitale, A.; Cillo, U.; Russo, F.P.; Farinati, F. Liquid Biopsy in Hepatocellular Carcinoma: Where Are We Now? Cancers 2021, 13, 2274. [Google Scholar] [CrossRef]
Regimen | Targeted Pathway |
---|---|
First line | |
Atezolizumab + Bevacizumab | Anti-PD-L1—immune checkpoint inhibitionVEGF—angiogenesis |
Sorafenib | Kinase inhibitors: VEGFR, PDGFR, BRAF |
Levatinib | Kinase inhibitors: VEGFR, PDGFR, FGFR, KIT, RET |
Second line | |
Regorafenib | Kinase inhibitors: VEGFR, PDGFR, BRAF |
Cabozatinib | Kinase inhibitors: VEGFR, MET, RET |
Ramucirumab | VEGFR2 |
Pembrolizumab | Anti-PD-L1—immune checkpoint inhibition |
Nivolumab + Iplimumab | Anti-PD-L1—immune checkpoint inhibitionAnti-CTLA-4—immune checkpoint inhibition |
Molecular Pathway | Gene Alteration | Prevalence (%) | Targetable Status | Translation Potential |
---|---|---|---|---|
Telomere maintenance | TERT | >50% | In testing | Good |
Wnt/β-catenin signaling | CTNNB1 | 10–33% | In testing | Good |
VEGF pathway | VEGFA | 5–10% | Targetable | Good |
FGF signaling | FGF19 | 5–10% | Targetable | Promising |
Ras/PI3K/mTOR | PIK3CA | <5% | Targetable | Promising |
KRAS | <5% | Targetable | Promising | |
PDGFRA | <5% | Targetable | Promising | |
EGFR | <5% | Targetable | Promising | |
Cell cycle regulation | TP53 | 10–33% | In testing | Good |
MYC | 10–33% | No data | No evidence | |
CCND1 | 5–10% | In testing | Moderate | |
TGFβ signaling | ACVR2A | <5% | In testing | Moderate |
IGF signaling | IGF2R | <5% | In testing | Moderate |
Oxidative stress | NFE2L2 | <5% | In testing | Moderate |
KEAP1 | <5% | In testing | Moderate |
Trial Identifier (NCT) | Type | Drugs | Target |
---|---|---|---|
NCT03298451 | Checkpoint inhibitor combination | Durvalumab Tremelimumab | PD-L1 CTLA4 |
NCT04039607 | Checkpoint inhibitor combination | Nivolumab Iplimumab | PD-L1 CTLA4 |
NCT03755791 | Checkpoint inhibitor Targeted therapy | Pembrolizumab Levatinib | PD-L1 VEGFR, PDGFR, FGFR, KIT, RET |
NCT03764293 | Checkpoint inhibitor Targeted therapy | Camrelizumab Apatinib | PD1 VEGFR2 |
NCT04344158 | Checkpoint inhibitor Targeted therapy | AK105 Apatinib | PD1 FGFR, VEGFR, PDGFR, KIT |
NCT03755791 | Checkpoint inhibitor Targeted therapy | Atezolizumab Cabozantinib | PD-L1 VEGFR, MET, RET |
NCT05904886 | Checkpoint inhibitor Checkpoint inhibitor Targeted therapy | Atezolizumab Tiragolumab Bevacizumab | PDL-1 TIGIT VEGF |
Scenario | Tissue Biopsy | Liquid Biopsy |
---|---|---|
Diagnosis | In most cases, when clinically necessary | Small HCC (1–2 cm); Poorly visible or invisible HCC nodules; Ascites; Impaired coagulation |
Prognosis | At the time of diagnosis | After the initial tissue biopsy—tumoral temporal heterogeneity; Large HCC—tumoral spatial heterogeneity; Detection of minimal residual disease after loco-regional therapies; Detection of recurrence after curative treatment; An alternative to tissue biopsy when multiple or subsequent biopsies are necessary |
Treatment | Initial choice of systemic therapy | Initial choice of systemic therapy; During systemic treatment, screen for possible acquired drug resistance; In vitro testing of CTCs for systemic therapies before treatment |
Established Advantages | Caveats | Solutions |
---|---|---|
High diagnostic yield in clinical practice | Disputable diagnostic yield in a research scenario | Increased use of contrast-enhanced guidance; Increased number of cores per biopsy; Improve material selection (needles, core vs. fine needle aspiration); Improve the pathologist–interventional radiologist feedback loop |
In-depth characterization of the hepatocellular carcinoma phenotype and molecular profiling facilitate a personalized approach | Might not account for intra-tumoral heterogeneity and post-therapeutic alteration; Lack of extensive evidence that in-depth characterization leads to improved outcomes | Concomitant use of liquid biopsy (as a benchmark); Follow-up using liquid biopsy |
Widespread availability | Lack of standardization; | Developing technique-specific protocols and standards of quality; |
Procedural complications (seeding, bleeding) | Method selection; Improved recognition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spârchez, Z.; Crăciun, R.; Nenu, I.; Mocan, L.P.; Spârchez, M.; Mocan, T. Refining Liver Biopsy in Hepatocellular Carcinoma: An In-Depth Exploration of Shifting Diagnostic and Therapeutic Applications. Biomedicines 2023, 11, 2324. https://doi.org/10.3390/biomedicines11082324
Spârchez Z, Crăciun R, Nenu I, Mocan LP, Spârchez M, Mocan T. Refining Liver Biopsy in Hepatocellular Carcinoma: An In-Depth Exploration of Shifting Diagnostic and Therapeutic Applications. Biomedicines. 2023; 11(8):2324. https://doi.org/10.3390/biomedicines11082324
Chicago/Turabian StyleSpârchez, Zeno, Rareș Crăciun, Iuliana Nenu, Lavinia Patricia Mocan, Mihaela Spârchez, and Tudor Mocan. 2023. "Refining Liver Biopsy in Hepatocellular Carcinoma: An In-Depth Exploration of Shifting Diagnostic and Therapeutic Applications" Biomedicines 11, no. 8: 2324. https://doi.org/10.3390/biomedicines11082324
APA StyleSpârchez, Z., Crăciun, R., Nenu, I., Mocan, L. P., Spârchez, M., & Mocan, T. (2023). Refining Liver Biopsy in Hepatocellular Carcinoma: An In-Depth Exploration of Shifting Diagnostic and Therapeutic Applications. Biomedicines, 11(8), 2324. https://doi.org/10.3390/biomedicines11082324