ABCC1, ABCG2 and FOXP3: Predictive Biomarkers of Toxicity from Methotrexate Treatment in Patients Diagnosed with Moderate-to-Severe Psoriasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects
2.3. Sociodemographic and Clinical Variables
2.4. Sample Processing and Genotyping
2.4.1. DNA Isolation
2.4.2. Detection of Gene Polymorphisms
2.5. Toxicity Variables
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Influence of Clinical-Pathological Characteristics on Toxicity
3.2.1. Global Toxicity
3.2.2. Toxicity Subtypes
3.3. Influence of Genetic Polymorphisms on Toxicity
3.3.1. Genotype Distribution
3.3.2. Global Toxicity
3.3.3. Toxicity Subtypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nast, A.; Gisondi, P.; Ormerod, A.; Saiag, P.; Smith, C.; Spuls, P.; Arenberger, P.; Bachelez, H.; Barker, J.; Dauden, E.; et al. European S3-Guidelines on the systemic treatment of psoriasis vulgaris-Update 2015-Short version-EDF in cooperation with EADV and IPC. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 2277–2294. [Google Scholar] [CrossRef]
- Pezzolo, E.; Naldi, L. Epidemiology of major chronic inflammatory immune-related skin diseases in 2019. Expert Rev. Clin. Immunol. 2020, 16, 155–166. [Google Scholar] [CrossRef]
- Feldman, S.R. Psoriasis causes as much disability as other major medical diseases. J. Am. Acad. Dermatol. 2020, 82, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Henes, J.C.; Ziupa, E.; Eisfelder, M.; Adamczyk, A.; Knaudt, B.; Jacobs, F.; Lux, J.; Schanz, S.; Fierlbeck, G.; Spira, D.; et al. High prevalence of psoriatic arthritis in dermatological patients with psoriasis: A cross-sectional study. Rheumatol. Int. 2014, 34, 227–234. [Google Scholar] [CrossRef]
- Molina-Leyva, A.; Salvador-Rodriguez, L.; Martinez-Lopez, A.; Ruiz-Carrascosa, J.C.; Arias-Santiago, S. Association Between Psoriasis and Sexual and Erectile Dysfunction in Epidemiologic Studies: A Systematic Review. JAMA Dermatol. 2019, 155, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kimball, A.B.; Gladman, D.; Gelfand, J.M.; Gordon, K.; Horn, E.J.; Korman, N.J.; Korver, G.; Krueger, G.G.; Strober, B.E.; Lebwohl, M.G. National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J. Am. Acad. Dermatol. 2008, 58, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Blauvelt, A.; Chiricozzi, A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin. Rev. Allergy Immunol. 2018, 55, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Dattilo, G.; Imbalzano, E.; Casale, M.; Guarneri, C.; Borgia, F.; Mondello, S.; Laganà, P.; Romano, P.; Oreto, G.; Cannavò, S. Psoriasis and Cardiovascular Risk: Correlation Between Psoriasis and Cardiovascular Functional Indices. Angiology 2018, 69, 31–37. [Google Scholar] [CrossRef]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Harden, J.L.; Krueger, J.G.; Bowcock, A.M. The immunogenetics of Psoriasis: A comprehensive review. J. Autoimmun. 2015, 64, 66–73. [Google Scholar] [CrossRef]
- Boehncke, W.-H. Etiology and Pathogenesis of Psoriasis. Rheum. Dis. Clin. N. Am. 2015, 41, 665–675. [Google Scholar] [CrossRef] [PubMed]
- McCormick, T.S.; Ayala-Fontanez, N.; Soler, D.C. Current knowledge on psoriasis and autoimmune diseases. Psoriasis Targets Ther. 2016, 6, 7–32. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Ray, A.; Senapati, S.; Chatterjee, R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol. Immunol. 2015, 64, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Di Meglio, P.; Villanova, F.; Nestle, F.O. Psoriasis. Cold Spring Harb. Perspect. Med. 2014, 4, a015354. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tsai, T.-F. HLA-Cw6 and psoriasis. Br. J. Dermatol. 2018, 178, 854–862. [Google Scholar] [CrossRef]
- Morizane, S.; Yamasaki, K.; Mühleisen, B.; Kotol, P.F.; Murakami, M.; Aoyama, Y.; Iwatsuki, K.; Hata, T.; Gallo, R.L. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J. Investig. Dermatol. 2012, 132, 135–143. [Google Scholar] [CrossRef]
- Roberson, E.D.; Bowcock, A.M. Psoriasis genetics: Breaking the barrier. Trends Genet. 2010, 26, 415–423. [Google Scholar] [CrossRef]
- Alwan, W.; Nestle, F.O. Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clin. Exp. Rheumatol. 2015, 33 (Suppl. S93), S2–S6. [Google Scholar]
- Atwan, A.; Piguet, V.; Finlay, A.; Francis, N.; Ingram, J. Dermatology Life Quality Index (DLQI) as a psoriasis referral triage tool. Br. J. Dermatol. 2017, 177, e136–e137. [Google Scholar] [CrossRef]
- Daudén, E.; Puig, L.; Ferrándiz, C.; Sánchez-Carazo, J.L.; Hernanz-Hermosa, J.M. Venereology SPGotSAoDa. Consensus document on the evaluation and treatment of moderate-to-severe psoriasis: Psoriasis Group of the Spanish Academy of Dermatology and Venereology. J. Eur. Acad. Dermatol. Venereol. 2016, 30 (Suppl. S2), 1–18. [Google Scholar] [CrossRef]
- Kechichian, E.; Ezzedine, K. Vitamin D and the Skin: An Update for Dermatologists. Am. J. Clin. Dermatol. 2018, 19, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Chiricozzi, A.; Pitocco, R.; Saraceno, R.; Nistico, S.P.; Giunta, A.; Chimenti, S. New topical treatments for psoriasis. Expert Opin. Pharmacother. 2014, 15, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Linares-Pineda, T.M.; Cañadas-Garre, M.; Sánchez-Pozo, A.; Calleja-Hernández, M. Gene polymorphisms as predictors of response to biological therapies in psoriasis patients. Pharmacol. Res. 2016, 113 Pt A, 71–80. [Google Scholar] [CrossRef]
- Sbidian, E.; Chaimani, A.; Garcia-Doval, I.; Doney, L.; Dressler, C.; Hua, C.; Hughes, C.; Naldi, L.; Afach, S.; Le Cleach, L.; et al. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis. Cochrane Database Syst Rev. 2017, 12, CD011535. [Google Scholar] [CrossRef] [PubMed]
- McClure, S.L.; Valentine, J.; Gordon, K.B. Comparative tolerability of systemic treatments for plaque-type psoriasis. Drug Saf. 2002, 25, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, P.; Ruscitti, P.; Carubbi, F.; Liakouli, V.; Giacomelli, R. Methotrexate: An old new drug in autoimmune disease. Expert Rev. Clin. Immunol. 2014, 10, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Boehncke, W.-H.; Martinez, D.A.; Solomon, J.A.; Gottlieb, A.B. Safety and efficacy of therapies for skin symptoms of psoriasis in patients with psoriatic arthritis: A systematic review. J. Rheumatol. 2014, 41, 2301–2305. [Google Scholar] [CrossRef]
- Chiaravalloti, A.J.; E Strober, B. The use of self-administered subcutaneous methotrexate for the treatment of psoriasis. J. Drugs Dermatol. 2014, 13, 929–931. [Google Scholar]
- Moreau, J.M.; Gouirand, V.; Rosenblum, M.D. T-Cell Adhesion in Healthy and Inflamed Skin. JID Innov. 2021, 1, 100014. [Google Scholar] [CrossRef]
- Shen, S.; O’brien, T.; Yap, L.M.; Prince, H.M.; McCormack, C.J. The use of methotrexate in dermatology: A review. Australas. J. Dermatol. 2011, 53, 1–18. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, J.; Lin, Y.; Shu, X.; Fan, H.; Tu, Z.; Zhou, Y.; Xiao, C. Polymorphisms and pharmacogenomics for the toxicity of methotrexate monotherapy in patients with rheumatoid arthritis: A systematic review and meta-analysis. Medicine 2017, 96, e6337. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.J.; Tsai, T.F. ABCB1 in dermatology: Roles in skin diseases and their treatment. J. Mol. Med. 2021, 99, 1527–1538. [Google Scholar] [CrossRef] [PubMed]
- Sane, R.; Wu, S.-P.; Zhang, R.; Gallo, J.M. The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the Brain. Drug Metab. Dispos. 2014, 42, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Cabaleiro, T.; Daudén, E.; Ochoa, D.; Román, M.; Abad-Santos, F. Pharmacogenetics of topical and systemic treatment of psoriasis. Pharmacogenomics 2013, 14, 1623–1634. [Google Scholar] [CrossRef] [PubMed]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Reolid, A.; Saiz-Rodríguez, M.; Abad-Santos, F.; Daudén, E. Pharmacogenetics and Pharmacogenomics in Moderate-to-Severe Psoriasis. Am. J. Clin. Dermatol. 2017, 19, 209–222. [Google Scholar] [CrossRef]
- Warren, R.B.; Mrowietz, U.; von Kiedrowski, R.; Niesmann, J.; Wilsmann-Theis, D.; Ghoreschi, K.; Zschocke, I.; Falk, T.M.; Blödorn-Schlicht, N.; Reich, K. An intensified dosing schedule of subcutaneous methotrexate in patients with moderate to severe plaque-type psoriasis (METOP): A 52 week, multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 528–537. [Google Scholar] [CrossRef]
- Balak, D.M.W.; Gerdes, S.; Parodi, A.; Salgado-Boquete, L. Long-term Safety of Oral Systemic Therapies for Psoriasis: A Comprehensive Review of the Literature. Dermatol. Ther. 2020, 10, 589–613. [Google Scholar] [CrossRef]
- Lanse, S.B.; Arnold, G.L.; Gowans, J.D.C.; Kaplan, M.M. Low incidence of hepatotoxicity associated with long-term, low-dose oral methotrexate in treatment of refractory psoriasis, psoriatic arthritis, and rheumatoid arthritis. An acceptable risk/benefit ratio. Dig. Dis. Sci. 1985, 30, 104–109. [Google Scholar] [CrossRef]
- Kaushik, S.B.; Lebwohl, M.G. Review of safety and efficacy of approved systemic psoriasis therapies. Int. J. Dermatol. 2019, 58, 649–658. [Google Scholar] [CrossRef]
- Haustein, U.-F.; Rytter, M. Methotrexate in psoriasis: 26 years’ experience with low-dose long-term treatment. J. Eur. Acad. Dermatol. Venereol. 2000, 14, 382–388. [Google Scholar] [CrossRef]
- Geller, S.; Xu, H.; Lebwohl, M.; Nardone, B.; Lacouture, M.E.; Kheterpal, M. Malignancy Risk and Recurrence with Psoriasis and its Treatments: A Concise Update. Am. J. Clin. Dermatol. 2018, 19, 363–375. [Google Scholar] [CrossRef]
- West, J.; Ogston, S.; Foerster, J. Safety and Efficacy of Methotrexate in Psoriasis: A Meta-Analysis of Published Trials. PLoS ONE 2016, 11, e0153740. [Google Scholar] [CrossRef]
- Ajmani, S.; Singh, Y.P.; Prasad, S.; Chowdhury, A.; Aggarwal, A.; Lawrence, A.; Misra, R.; Mishra, R.; Agarwal, V. Methotrexate-induced pancytopenia: A case series of 46 patients. Int. J. Rheum. Dis. 2017, 20, 846–851. [Google Scholar] [CrossRef]
- Farhangian, M.E.; Feldman, S.R. Immunogenicity of biologic treatments for psoriasis: Therapeutic consequences and the potential value of concomitant methotrexate. Am. J. Clin. Dermatol. 2015, 16, 285–294. [Google Scholar] [CrossRef]
- Kalow, W.; Tang, B.K.; Endrenyi, L. Hypothesis: Comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 1998, 8, 283–289. [Google Scholar]
- Gervasini, G. Polymorphisms in methotrexate pathways: What is clinically relevant, what is not, and what is promising. Curr. Drug Metab. 2009, 10, 547–566. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Mei, L.; He, C.; Chen, H.; Cai, X.; Liu, Y.; Tian, R.; Tian, Q.; Song, J.; Jiang, L.; et al. Extrusion pump ABCC1 was first linked with nonsyndromic hearing loss in humans by stepwise genetic analysis. Anesthesia Analg. 2019, 21, 2744–2754. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.Y.; Huang, Q.; Yang, Y.; Zhang, J.T.; Zhong, M.Z.; Zhou, H.H.; Liu, Z.Q. Characterization and analyses of multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphisms in Chinese population. Pharmacogenet. Genom. 2009, 19, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.B.; Smith, R.L.; Campalani, E.; Eyre, S.; Smith, C.H.; Barker, J.N.; Worthington, J.; Griffiths, C.E. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J. Investig. Dermatol. 2008, 128, 1925–1929. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, L.R.; Woodman, R.J.; Shanahan, E.M.; Wiese, M.D.; Mangoni, A.A. Genetic polymorphism of the methotrexate transporter ABCG2, blood pressure and markers of arterial function in patients with rheumatoid arthritis: Repeated cross-sectional study. Pharmgenomics Pers. Med. 2018, 11, 205–210. [Google Scholar] [CrossRef]
- Li, B.; Samanta, A.; Song, X.; Iacono, K.T.; Bembas, K.; Tao, R.; Basu, S.; Riley, J.L.; Hancock, W.W.; Shen, Y.; et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. USA 2007, 104, 4571–4576. [Google Scholar] [CrossRef] [PubMed]
- Ricciardelli, I.; Lindley, K.J.; Londei, M.; Quaratino, S. Anti tumour necrosis-α therapy increases the number of FOXP3+regulatory T cells in children affected by Crohn’s disease. Immunology 2008, 125, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Gaballah, M.; Elsohafy, M.A.; Elghzaly, A.A.; Abdelsalam, H.M. Assessment of the Possible Role of FOXP3 Gene (rs3761548) Polymorphism in Psoriasis Vulgaris Susceptibility and Pathogenesis: Egyptian Study. Indian Dermatol. Online J. 2019, 10, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.-H.; Shen, Z.; Xing, X.-J.; Yin, R.; Wu, Y.-Z.; You, Y.; Guo, H.; Chen, L.; Hao, F.; Bai, Y. An association study of single nucleotide polymorphisms of the FOXP3 intron-1 and the risk of Psoriasis vulgari. Indian J. Biochem. Biophys. 2012, 49, 21–35. [Google Scholar]
- Elston, D.M. American Academy of Dermatology and National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis. J. Am. Acad. Dermatol. 2021, 84, 257–258. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. Faculty Opinions recommendation of PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Human Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Tao, D.; Wang, H.; Xia, F.; Ma, W. Pancytopenia Due to Possible Drug–Drug Interactions Between Low-Dose Methotrexate and Proton Pump Inhibitors. Drug Health Patient Saf. 2022, 14, 75–78. [Google Scholar] [CrossRef]
- Zuber, M.; Harikrishna; Vidhyashree; Chhabra, M.; Venkataraman, R.; Kumar, S.; Rashid, M. Methotrexate related cutaneous adverse drug reactions: A systematic literature review. J. Basic Clin. Physiol. Pharmacol. 2021, 33, 549–565. [Google Scholar] [CrossRef]
- Grželj, J.; Mlinarič-Raščan, I.; Marko, P.B.; Marovt, M.; Gmeiner, T.; Šmid, A. Polymorphisms in GNMT and DNMT3b are associated with methotrexate treatment outcome in plaque psoriasis. Biomed. Pharmacother. 2021, 138, 111456. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Sousa, H.; Monteiro, J.; Azevedo, R.; Medeiros, R.; Seabra, V. Genetic polymorphisms in low-dose methotrexate transporters: Current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics 2014, 15, 1611–1635. [Google Scholar] [CrossRef] [PubMed]
- Bruins, F.M.; Van Acht, M.R.; Bronckers, I.M.; Groenewoud, H.M.; De Jong, E.M.; Seyger, M.M. Real-world Methotrexate Use in a Prospective Cohort of Paediatric Patients with Plaque Psoriasis: Effectiveness, Adverse Events and Folic Acid Regimen. Acta Dermato-Venereologica 2022, 102, adv00745. [Google Scholar] [CrossRef] [PubMed]
- Voron’ko, O.E.; Baskaev, K.K.; Sobolev, V.V.; Denisova, E.V.; Korsunskaya, I.M. Genetic Markers of Therapeutic Efficacy of Methotrexate in Patients with Psoriasis. Bull. Exp. Biol. Med. 2022, 172, 460–463. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, Y.; Han, L.; Huang, Q.; Zhang, Z.; Fang, X.; Zheng, Z.; Yawalkar, N.; Chang, Y.; Zhang, Q.; et al. Safety and Efficacy of Methotrexate for Chinese Adults with Psoriasis With and Without Psoriatic Arthritis. JAMA Dermatol. 2019, 155, 327–334. [Google Scholar] [CrossRef]
- Ćalasan, M.B.; Bosch, O.F.v.D.; Creemers, M.C.; Custers, M.; Heurkens, A.H.; van Woerkom, J.M.; Wulffraat, N.M. Prevalence of methotrexate intolerance in rheumatoid arthritis and psoriatic arthritis. Thromb. Haemost. 2013, 15, R217. [Google Scholar] [CrossRef]
- Attwa, E.M.; Elkot, R.A.; Abdelshafey, A.S.; Hafez, A.R. Subcutaneous methotrexate versus oral form for the treatment and prophylaxis of chronic plaque psoriasis. Dermatol. Ther. 2019, 32, e13051. [Google Scholar] [CrossRef]
- Fráňová, J.; Fingerhutová, Š.; Kobrová, K.; Srp, R.; Němcová, D.; Hoza, J.; Uher, M.; Saifridová, M.; Linková, L.; Doležalová, P.; et al. Methotrexate efficacy, but not its intolerance, is asso-ciated with the dose and route of administration. Pediatric Rheumatol. 2016, 14, 1–11. [Google Scholar] [CrossRef]
- Amital, H.; Arnson, Y.; Chodick, G.; Shalev, V. Hepatotoxicity rates do not differ in patients with rheumatoid arthritis and psoriasis treated with methotrexate. Rheumatology 2009, 48, 1107–1110. [Google Scholar] [CrossRef]
- Jansen, G.; de Rotte, M.; de Jonge, R. Smoking and Methotrexate Inefficacy in Rheumatoid Arthritis: What About Underlying Molecular Mechanisms? J. Rheumatol. 2021, 48, 1495–1497. [Google Scholar] [CrossRef]
- Romero, M.Z.; Martínez, F.; Montoro, M.M.; Ramírez, C.; Hernández, M.C.; Pete, N.; Martín, A.; Morales, A.; Tortosa, M.R. Association of genetic poly-morphisms on methotrexate toxicity in patients with rheumatoid arthritis. Arch. Med. Sci. 2020, 16, e97360. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Z.; Tao, L.; Han, L.; Huang, Q.; Fang, X.; Yang, K.; Huang, G.; Zheng, Z.; Yawalkar, N.; et al. MTHFR Gene Polymorphism Association with Psoriatic Arthritis Risk and the Efficacy and Hepatotoxicity of Methotrexate in Psoriasis. Front. Med. 2022, 9, 869912. [Google Scholar] [CrossRef] [PubMed]
- Jeiziner, C.; Allemann, S.S.; E Hersberger, K.; Schwabedissen, H.E.M.z. Is Pharmacogenetic Panel Testing Applicable to Low-Dose Methotrexate in Rheumatoid Arthritis?—A Case Report. Pharmacogenomics Pers. Med. 2022, 15, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Takano, M.; Yumoto, R.; Murakami, T. Expression and function of efflux drug transporters in the intestine. Pharmacol. Ther. 2006, 109, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Vlaming, M.L.; Pala, Z.; van Esch, A.; Wagenaar, E.; de Waart, D.R.; van de Wetering, K.; van der Kruijssen, C.M.; Oude Elferink, R.P.; van Tellingen, O.; Schinkel, A.H. Functionally overlapping roles of ABCG2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin. Cancer Res. 2009, 15, 3084–3093. [Google Scholar] [CrossRef] [PubMed]
- Vlaming, M.L.; van Esch, A.; van de Steeg, E.; Pala, Z.; Wagenaar, E.; van Tellingen, O.; Schinkel, A.H. Impact of abcc2 [multidrug re-sistance-associated protein (MRP) 2], abcc3 (MRP3), and ABCG2 (breast cancer resistance protein) on the oral pharmacokinetics of methotrexate and its main metabolite 7-hydroxymethotrexate. Drug Metab. Dispos. 2011, 39, 1338–1344. [Google Scholar] [CrossRef]
- Vlaming, M.L.; van Esch, A.; Pala, Z.; Wagenaar, E.; van de Wetering, K.; van Tellingen, O.; Schinkel, A.H. Abcc2 (Mrp2), Abcc3 (Mrp3), and ABCG2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol. Cancer Ther. 2009, 8, 3350–3359. [Google Scholar] [CrossRef]
- Lui, G.; Treluyer, J.M.; Fresneau, B.; Piperno-Neumann, S.; Gaspar, N.; Corradini, N.; Gentet, J.C.; Marec Berard, P.; Laurence, V.; Schneider, P.; et al. A Pharmacokinetic and Pharmacogenetic Analysis of Osteosarcoma Patients Treated With High-Dose Methotrexate: Data From the OS2006/Sarcoma-09 Trial. J. Clin. Pharmacol. 2018, 58, 1541–1549. [Google Scholar] [CrossRef]
- Hegyi, M.; Arany, A.; Semsei, A.F.; Csordas, K.; Eipel, O.; Gezsi, A.; Kutszegi, N.; Csoka, M.; Muller, J.; Erdelyi, D.J.; et al. Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Oncotarget 2017, 8, 9388–9398. [Google Scholar] [CrossRef]
- Indhumathi, S.; Rajappa, M.; Chandrashekar, L.; Ananthanarayanan, P.H.; Thappa, D.M.; Negi, V.S. Pharmacogenetic markers to predict the clinical response to methotrexate in south Indian Tamil patients with psoriasis. Eur. J. Clin. Pharmacol. 2017, 73, 965–971. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Q.; Qiu, X.; Jiao, Z.; Zhang, M.; Zhong, M. FOXP3 rs3761548 polymorphism is associated with tacrolimus-induced acute nephrotoxicity in renal transplant patients. Eur. J. Clin. Pharmacol. 2017, 73, 39–47. [Google Scholar] [CrossRef]
- Saxena, D.; Misra, M.; Parveen, F.; Phadke, S.; Agrawal, S. The transcription factor Forkhead Box P3 gene variants affect idiopathic recurrent pregnancy loss. Placenta 2015, 36, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Gandolfo, M.T.; Jang, H.R.; Bagnasco, S.M.; Ko, G.-J.; Agreda, P.; Satpute, S.R.; Crow, M.T.; King, L.S.; Rabb, H. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 2009, 76, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Jang, J.; Choi, J.-H.; Kang, M.-S.; Woo, Y.-J.; Seong, Y.-R.; Choi, C.-B.; Lee, H.-S.; Bae, S.-C.; Bae, Y.-S. DC-Based Immunotherapy Combined with Low-Dose Methotrexate Effective in the Treatment of Advanced CIA in Mice. J. Immunol. Res. 2015, 2015, 834085. [Google Scholar] [CrossRef] [PubMed]
- Guggino, G.; Giardina, A.; Ferrante, A.; Giardina, G.; Schinocca, C.; Sireci, G.; Dieli, F.; Ciccia, F.; Triolo, G. The in vitro addition of methotrexate and/or methylprednisolone determines peripheral reduction in Th17 and expansion of conventional Treg and of IL-10 producing Th17 lymphocytes in patients with early rheumatoid arthritis. Rheumatol. Int. 2014, 35, 171–175. [Google Scholar] [CrossRef]
- Stamp, L.K.; Chapman, P.T.; O’Donnell, J.L.; Zhang, M.; James, J.; Frampton, C.; Barclay, M.L.; Kennedy, M.A.; Roberts, R.L. Polymorphisms within the folate pathway predict folate concentrations but are not associated with disease activity in rheumatoid arthritis patients on methotrexate. Pharmacogenetics Genom. 2010, 20, 367–376. [Google Scholar] [CrossRef]
- D’cruz, L.G.; McEleney, K.G.; Tan, K.B.C.; Shukla, P.; Gardiner, P.V.; Connolly, P.; Conway, C.; Cobice, D.; Gibson, D.S. Clinical and Laboratory Associations with Methotrexate Metabolism Gene Polymorphisms in Rheumatoid Arthritis. J. Pers. Med. 2020, 10, 149. [Google Scholar] [CrossRef]
Variable | n | % | Media ± SD |
---|---|---|---|
Gender | |||
Female | 52 | 51.49 | - |
Male | 49 | 48.51 | - |
Age diagnosis PS | 101 | - | 27.25 (18.42–44.25) |
Family history PS | 52 | 51.49 | |
Smoking | |||
Smoker | 31 | 30.69 | - |
Non-smoker | 49 | 48.51 | - |
Former Smoker | 21 | 20.79 | - |
Alcoholic drinking | |||
Drinker | 38 | 37.62 | - |
Non-drinker | 61 | 60.40 | - |
Former drinker | 2 | 1.98 | - |
Type of PS | |||
Plaque | 74 | 73.27 | - |
Pustular | 5 | 4.95 | - |
Inverse | 1 | 0.99 | - |
Guttate | 5 | 4.95 | - |
Plaque and Guttate | 12 | 11.88 | - |
Plaque and Inverse | 2 | 1.98 | - |
Plaque and pustular | 1 | 0.99 | - |
Plaque, guttate and inverse | 1 | 0.99 | - |
Location of lesions | |||
Trunk and lower and upper limbs | 93 | 92.08 | - |
Scalp and face | 77 | 76.24 | - |
Nails | 58 | 57.43 | - |
Palmoplantar | 19 | 18.81 | - |
Flexures | 28 | 27.72 | - |
Psoriatic Arthritis | 31 | 30.69 | - |
Comorbidities | 57 | 56.44 | - |
Age of onset of MTX | 101 | - | 45.60 ± 14.79 |
Duration of MTX treatment (months) | 101 | - | 15 (5–33) |
Administration type of MTX | |||
Oral | 47 | 46.53 | - |
Subcutaneous | 30 | 29.70 | - |
Both | 24 | 23.76 | - |
Type of MTX therapy | |||
Monotherapy | 93 | 92.08 | - |
Combination Therapy | 8 | 7.92 | - |
Maximum MTX dose (mg/week) | 101 | - | 12.5 (10–15) |
Medication Adherence | |||
Adherent | 70 | 69.31 | - |
Non-adherent | 31 | 30.69 | - |
Toxicity (Grade 1–4) | 69 | 68.32 | - |
Gastrointestinal toxicity (Grade 1–4) | 29 | 28.71 | - |
Hepatotoxicity (Grade 1–4) | 37 | 36.63 | - |
Hematological toxicity (Grade 1–4) | 3 | 2.97 | - |
Nephrotoxicity (Grade 1–4) | 1 | 0.99 | - |
Asthenia (Grade 1–4) | 28 | 27.72 | - |
Nervous system toxicity (Grade 1–4) | 9 | 8.91 | - |
Skin Toxicity (Grade 1–4) | 8 | 7.92 | - |
Infections (Grade 1–4) | 6 | 5.94 | - |
Occurrence of adverse events | - | ||
More than 1 (grade 1–4) | 36 | 35.64 | - |
More than 2 (grade 1–4) | 15 | 14.85 | - |
Occurrence of Adverse Events | ||
---|---|---|
OR (CI95%) | p-Value | |
>1 Adverse Event | ||
Development of psoriatic arthritis (yes) | 3.49 (1.29–9.91) | 0.015 |
MTX administration | ||
Subcutaneous | 3.32 (1.09–10.68) | 0.036 |
Both | 14.67 (4.50–54.89) | <0.001 |
Overall Toxicity | ||
---|---|---|
OR (CI95%) | p-Value | |
Development of psoriatic arthritis (yes) | 5.60 (1.74–25.18) | 0.009 |
ABCG2 rs13120400-T (T vs. CC) | 8.33 (1.24–164.79) | 0.059 |
More than 1 Adverse Event | ||
---|---|---|
OR (CI95%) | p-Value | |
Development of psoriatic arthritis (yes) | 4.28 (1.48–13.45) | 0.009 |
MTX administration | ||
Both | 15.92 (4.60–64.78) | <0.001 |
Subcutaneous | 4.07 (1.26–14.43) | 0.022 |
FOXP3 rs3761548 (GT vs. TT/GG) | 3.86 (1.17–13.92) | 0.031 |
More than 2 Adverse Events | ||
---|---|---|
OR (CI95%) | p-Value | |
MTX administration | ||
Both | 7.35 (1.54–47.02) | 0.018 |
Subcutaneous | 4.89 (0.95–32.46) | 0.069 |
ABCC1 rs2238476 (AG vs. GG) | 8.04 (1.48–46.78) | 0.015 |
FOXP3 rs3761548 (GT vs. TT/GG) | 7.48 (1.68–46.23) | 0.014 |
Asthenia | ||
---|---|---|
OR (CI95%) | p-Value | |
MTX administration | ||
Subcutaneous | 6.45 (1.78–28.51) | 0.007 |
Both | 13.01 (3.49–60.27) | <0.001 |
ABCC1 rs2238476-AG (AG vs. GG) | 8.10 (1.69–46.63) | 0.011 |
FOXP3 rs3761548-GT (GT vs. TT/GG) | 4.10 (1.22–15.30) | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Membrive-Jiménez, C.; Vieira-Maroun, S.; Márquez-Pete, N.; Cura, Y.; Pérez-Ramírez, C.; Tercedor-Sánchez, J.; Jiménez-Morales, A.; Ramírez-Tortosa, M.d.C. ABCC1, ABCG2 and FOXP3: Predictive Biomarkers of Toxicity from Methotrexate Treatment in Patients Diagnosed with Moderate-to-Severe Psoriasis. Biomedicines 2023, 11, 2567. https://doi.org/10.3390/biomedicines11092567
Membrive-Jiménez C, Vieira-Maroun S, Márquez-Pete N, Cura Y, Pérez-Ramírez C, Tercedor-Sánchez J, Jiménez-Morales A, Ramírez-Tortosa MdC. ABCC1, ABCG2 and FOXP3: Predictive Biomarkers of Toxicity from Methotrexate Treatment in Patients Diagnosed with Moderate-to-Severe Psoriasis. Biomedicines. 2023; 11(9):2567. https://doi.org/10.3390/biomedicines11092567
Chicago/Turabian StyleMembrive-Jiménez, Cristina, Sayleth Vieira-Maroun, Noelia Márquez-Pete, Yasmin Cura, Cristina Pérez-Ramírez, Jesús Tercedor-Sánchez, Alberto Jiménez-Morales, and María del Carmen Ramírez-Tortosa. 2023. "ABCC1, ABCG2 and FOXP3: Predictive Biomarkers of Toxicity from Methotrexate Treatment in Patients Diagnosed with Moderate-to-Severe Psoriasis" Biomedicines 11, no. 9: 2567. https://doi.org/10.3390/biomedicines11092567
APA StyleMembrive-Jiménez, C., Vieira-Maroun, S., Márquez-Pete, N., Cura, Y., Pérez-Ramírez, C., Tercedor-Sánchez, J., Jiménez-Morales, A., & Ramírez-Tortosa, M. d. C. (2023). ABCC1, ABCG2 and FOXP3: Predictive Biomarkers of Toxicity from Methotrexate Treatment in Patients Diagnosed with Moderate-to-Severe Psoriasis. Biomedicines, 11(9), 2567. https://doi.org/10.3390/biomedicines11092567