Efficacy of Combined Initial Treatment of Methotrexate with Infliximab in Pediatric Crohn’s Disease: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment Regimens
2.3. Data Collection, Study Design, and Follow-Up
2.4. Outcome, Measures, and Definitions
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Outcomes
3.2.1. Primary Outcome Measures
3.2.2. Secondary-Outcome Measures
3.3. Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colombel, J.F.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rutgeerts, P.; Tang, K.L.; Oortwijn, A.; Bevelander, G.S.; Cornillie, F.J.; Sandborn, W.J. Randomised clinical trial: Deep remission in biologic and immunomodulator naive patients with Crohn’s disease—A SONIC post hoc analysis. Aliment. Pharmacol. Ther. 2015, 41, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Chen, B.L.; Mao, R.; Zhang, S.H.; He, Y.; Zeng, Z.R.; Ben-Horin, S.; Chen, M.H. Systematic review with meta-analysis: Loss of response and requirement of anti-TNFalpha dose intensification in Crohn’s disease. J. Gastroenterol. 2017, 52, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Fine, S.; Papamichael, K.; Cheifetz, A.S. Etiology and Management of Lack or Loss of Response to Anti-Tumor Necrosis Factor Therapy in Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2019, 15, 656–665. [Google Scholar]
- Nanda, K.S.; Cheifetz, A.S.; Moss, A.C. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): A meta-analysis. Am. J. Gastroenterol. 2023, 108, 40–47. [Google Scholar] [CrossRef]
- Neasa, M.G.; Aman, S.A.; Grace, H.; Caroline, L.; Stephen, P.; Danny, C.; Gavin, H.; Karen, B.; Aoibhlinn, O. The optimal management of anti-drug antibodies to infliximab and identification of anti-drug antibody values for clinical outcomes in patients with inflammatory bowel disease. Int. J. Colorectal Dis. 2021, 36, 1231–1241. [Google Scholar]
- Bar-Yoseph, H.; Waterman, M.; Almog, R.; Billiet, T.; Vermeire, S.; Ungar, B.; Yanai, H.; Dotan, I.; Ben-Horin, S.; Chowers, Y. Prevention of Antidrug Antibody Formation to Infliximab in Crohn’s Patients With Prior Failure of Thiopurines. Clin. Gastroenterol. Hepatol. 2017, 15, 69–75. [Google Scholar] [CrossRef]
- Chi, L.Y.; Zitomersky, N.L.; Liu, E.; Tollefson, S.; Bender-Stern, J.; Naik, S.; Snapper, S.; Bousvaros, A. The Impact of Combination Therapy on Infliximab Levels and Antibodies in Children and Young Adults With Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 1344–1351. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Heap, G.A.; Green, H.D.; Hamilton, B.; Bewshea, C.; Walker, G.J.; Thomas, A.; Nice, R.; Perry, M.H.; Bouri, S.; et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study. Lancet Gastroenterol. Hepatol. 2019, 4, 341–353. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Waterman, M.; Kopylov, U.; Yavzori, M.; Picard, O.; Fudim, E.; Awadie, H.; Weiss, B.; Chowers, Y. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2013, 11, 444–447. [Google Scholar] [CrossRef]
- Colman, R.J.; Portocarrero-Castillo, A.; Chona, D.; Hellmann, J.; Minar, P.; Rosen, M.J. Favorable Outcomes and Anti-TNF Durability After Addition of an Immunomodulator for Anti-Drug Antibodies in Pediatric IBD Patients. Inflamm. Bowel Dis. 2021, 27, 507–515. [Google Scholar] [CrossRef]
- Strik, A.S.; van den Brink, G.R.; Ponsioen, C.; Mathot, R.; Lowenberg, M.; D’Haens, G.R. Suppression of anti-drug antibodies to infliximab or adalimumab with the addition of an immunomodulator in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 45, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.M.; Blaker, P.; Mentzer, A.; Fong, S.C.; Marinaki, A.M.; Sanderson, J.D. Optimizing the use of thiopurines in inflammatory bowel disease. Ther. Adv. Chronic Dis. 2015, 6, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.; Gisbert, J.P. Maintenance therapy options for ulcerative colitis. Expert Opin. Pharmacother. 2016, 17, 1339–1349. [Google Scholar] [CrossRef]
- Feagan, B.G.; McDonald, J.W.; Panaccione, R.; Enns, R.A.; Bernstein, C.N.; Ponich, T.P.; Bourdages, R.; Macintosh, D.G.; Dallaire, C.; Cohen, A.; et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology 2014, 146, 681–688.e1. [Google Scholar] [CrossRef]
- Herfarth, H.H.; Kappelman, M.D.; Long, M.D.; Isaacs, K.L. Use of Methotrexate in the Treatment of Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2016, 22, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.E.; Jang, E.J.; Im, S.G.; Sohn, H.S. Medication use and drug expenditure in inflammatory bowel disease: Based on Korean National Health Insurance claims data (2010–2014). Korean J. Clin. Pharm. 2019, 29, 79–88. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- Levine, A.; Griffiths, A.; Markowitz, J.; Wilson, D.C.; Turner, D.; Russell, R.K.; Fell, J.; Ruemmele, F.M.; Walters, T.; Sherlock, M.; et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: The Paris classification. Inflamm. Bowel Dis. 2011, 17, 1314–1321. [Google Scholar] [CrossRef]
- Turner, D.; Griffiths, A.M.; Walters, T.D.; Seah, T.; Markowitz, J.; Pfefferkorn, M.; Keljo, D.; Otley, A.; Leleiko, N.S.; Mack, D.; et al. Appraisal of the pediatric Crohn’s disease activity index on four prospectively collected datasets: Recommended cutoff values and clinimetric properties. Am. J. Gastroenterol. 2010, 105, 2085–2092. [Google Scholar] [CrossRef]
- Kang, B.; Choi, S.Y.; Kim, H.S.; Kim, K.; Lee, Y.M.; Choe, Y.H. Mucosal Healing in Paediatric Patients with Moderate-to-Severe Luminal Crohn’s Disease Under Combined Immunosuppression: Escalation versus Early Treatment. J. Crohns Colitis 2016, 10, 1279–1286. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kang, B.; Lee, Y.; Kim, M.J.; Choe, Y.H. Infliximab “Top-Down” Strategy is Superior to “Step-Up” in Maintaining Long-Term Remission in the Treatment of Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kang, B.; Kim, M.J.; Sohn, I.; Lee, H.J.; Choe, Y.H. Early Infliximab Yields Superior Long-Term Effects on Linear Growth in Pediatric Crohn’s Disease Patients. Gut Liver 2018, 12, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Kappelman, M.D.; Wohl, D.A.; Herfarth, H.H.; Firestine, A.M.; Adler, J.; Ammoury, R.F.; Aronow, J.E.; Bass, D.M.; Bass, J.A.; Benkov, K.; et al. Comparative effectiveness of anti-TNF in combination with low-dose methotrexate vs anti-TNF monotherpy in pediatric Crohn’s disease: A pragmatic randomized trial. Gastroenterology 2023, 165, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Haisma, S.M.; Lijftogt, T.; Kindermann, A.; Damen, G.; de Ridder, L.; Escher, J.C.; Mearin, M.L.; de Meij, T.; Hendriks, D.; George, E.; et al. Methotrexate for maintaining remission in paediatric Crohn’s patients with prior failure or intolerance to thiopurines: A multicenter cohort study. J. Crohns Colitis 2015, 9, 305–311. [Google Scholar] [CrossRef]
- Hojsak, I.; Misak, Z.; Jadresin, O.; Mocic Pavic, A.; Kolacek, S. Methotrexate is an efficient therapeutic alternative in children with thiopurine-resistant Crohn’s disease. Scand. J. Gastroenterol. 2015, 50, 1208–1213. [Google Scholar] [CrossRef]
- Kandiel, A.; Fraser, A.G.; Korelitz, B.I.; Brensinger, C.; Lewis, J.D. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut 2005, 54, 1121–1125. [Google Scholar] [CrossRef]
- Kotlyar, D.S.; Lewis, J.D.; Beaugerie, L.; Tierney, A.; Brensinger, C.M.; Gisbert, J.P.; Loftus, E.V., Jr.; Peyrin-Biroulet, L.; Blonski, W.C.; Van Domselaar, M.; et al. Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: A meta-analysis. Clin. Gastroenterol. Hepatol. 2015, 13, 847–858.e4. [Google Scholar] [CrossRef]
- Beaugerie, L. Inflammatory bowel disease therapies and cancer risk: Where are we and where are we going? Gut 2012, 61, 476–483. [Google Scholar] [CrossRef]
- Mack, D.R.; Benchimol, E.I.; Critch, J.; deBruyn, J.; Tse, F.; Moayyedi, P.; Church, P.; Deslandres, C.; El-Matary, W.; Huynh, H.; et al. Canadian Association of Gastroenterology Clinical Practice Guideline for the Medical Management of Pediatric Luminal Crohn’s Disease. J. Can. Assoc. Gastroenterol. 2019, 2, e35–e63. [Google Scholar] [CrossRef]
- Van Rheenen, P.F.; Aloi, M.; Assa, A.; Bronsky, J.; Escher, J.C.; Fagerberg, U.L.; Gasparetto, M.; Gerasimidis, K.; Griffiths, A.; Henderson, P.; et al. The medical management of paediatric Crohn’s disease: An ECCO-ESPGHAN quideline update. J. Crohns Colitis. 2020, 15, 171–194. [Google Scholar] [CrossRef]
- Connell, W.R.; Kamm, M.A.; Ritchie, J.K.; Lennard-Jones, J.E. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 1993, 34, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Debnath, P.; Nair, S.; Jain, S.; Udgirkar, S.; Contractor, Q.; Rathi, P. Thiopurine-induced Myelosuppression with Severe Sepsis in a Patient with Crohn’s Disease: A Case Report. Indian. J. Crit. Care Med. 2021, 25, 228–230. [Google Scholar] [PubMed]
- Kim, H.T.; Choi, R.; Won, H.H.; Choe, Y.H.; Kang, B.; Lee, K.; Koo, H.H.; Yoo, K.H.; Kim, Y.H.; Lee, S.Y. NUDT15 genotype distributions in the Korean population. Pharmacogenet. Genom. 2017, 27, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Kim, T.J.; Choi, J.; Baek, S.Y.; Ahn, S.; Choi, R.; Lee, S.Y.; Choe, Y.H. Adjustment of azathioprine dose should be based on a lower 6-TGN target level to avoid leucopenia in NUDT15 intermediate metabolisers. Aliment. Pharmacol. Ther. 2020, 52, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Vu, D.H.; Nguyen, T.M.; Lachaux, A.; Boulieu, R. Exploring associations of 6-thioguanine nucleotide levels and other predictive factors with therapeutic response to azathioprine in pediatric patients with IBD using multilevel analysis. Inflamm. Bowel Dis. 2013, 19, 2404–2410. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nguyen, T.M.; Lachaux, A.; Boulieu, R. Usefulness of thiopurine metabolites in predicting azathioprine resistance in pediatric IBD patients. J. Clin. Pharmacol. 2013, 53, 900–908. [Google Scholar] [CrossRef]
- Salliot, C.; van der Heijde, D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: A systematic literature research. Ann. Rheum. Dis. 2009, 68, 1100–1104. [Google Scholar] [CrossRef]
- Turner, D.; Grossman, A.B.; Rosh, J.; Kugathasan, S.; Gilman, A.R.; Baldassano, R.; Griffiths, A.M. Methotrexate following unsuccessful thiopurine therapy in pediatric Crohn’s disease. Am. J. Gastroenterol. 2007, 102, 2804–2812. [Google Scholar] [CrossRef]
- Morgacheva, O.; Furst, D.E. Use of MTX in the elderly and in patients with compromised renal function. Clin. Exp. Rheumatol. 2010, 28, S85–S94. [Google Scholar]
- Rosh, J.R. The Current Role of Methotrexate in Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2020, 16, 43–46. [Google Scholar]
- Maser, E.A.; Villela, R.; Silverberg, M.S.; Greenberg, G.R. Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn’s disease. Clin. Gastroenterol. Hepatol. 2006, 4, 1248–1254. [Google Scholar] [CrossRef]
- Cottone, M.; Papi, C.; Orlando, A. Infliximab, azathioprine or combination therapy in the treatment of active Crohn’s disease. Expert Rev. Gastroenterol. Hepatol. 2010, 4, 709–712. [Google Scholar]
- Fousekis, F.S.; Papamichael, K.; Kourtis, G.; Albani, E.N.; Orfanidou, A.; Saridi, M.; Katsanos, K.H.; Christodoulou, D.K. The efficacy of immunomodulators in the prevention and suppression of anti-drug antibodies to anti-tumor necrosis factor therapy in inflammatory bowel disease. Ann. Gastroenterol. 2022, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Strand, V.; Goncalves, J.; Isaacs, J.D. Immunogenicity of biologic agents in rheumatology. Nat. Rev. Rheumatol. 2021, 17, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Dervieux, T.; Kremer, J.M.; Weinblatt, M.E. Differing contribution of methotrexate polyglutamates to adalimumab blood levels as compared with etanercept. Ann. Rheum. Dis. 2019, 78, 1285–1286. [Google Scholar] [CrossRef] [PubMed]
- Keizer, R.J.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef]
- Trotta, M.C.; Alfano, R.; Cuomo, G.; Romano, C.; Gravina, A.G.; Romano, M.; Galdiero, M.; Montemurro, M.V.; Giordano, A.; D’Amico, M. Comparison of Timing to Develop Anti-Drug Antibodies to Infliximab and Adalimumab Between Adult and Pediatric Age Groups, Males and Females. J. Pediatr. Pharmacol. Ther. 2022, 27, 63–71. [Google Scholar] [CrossRef]
- Lee, K.M.; Kim, Y.S.; Seo, G.S.; Kim, T.O.; Yang, S.K. Use of Thiopurines in Inflammatory Bowel Disease: A Consensus Statement by the Korean Association for the Study of Intestinal Diseases (KASID). Intest. Res. 2015, 13, 193–207. [Google Scholar] [CrossRef]
- Asada, A.; Nishida, A.; Shioya, M.; Imaeda, H.; Inatomi, O.; Bamba, S.; Kito, K.; Sugimoto, M.; Andoh, A. NUDT15 R139C-related thiopurine leukocytopenia is mediated by 6-thioguanine nucleotide-independent mechanism in Japanese patients with inflammatory bowel disease. J. Gastroenterol. 2016, 51, 22–29. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.D.; Chao, K.; Zhi, M.; Zheng, H.; Ruan, H.L.; Xin, S.; Ding, N.; Hu, P.J.; Huang, M.; et al. NUDT15 polymorphisms are better than thiopurine S-methyltransferase as predictor of risk for thiopurine-induced leukopenia in Chinese patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2016, 44, 967–975. [Google Scholar] [CrossRef]
- Kim, J.H.; Cheon, J.H.; Kim, W.H. The frequency and the course of the adverse effects of azathioprine/6-mercaptopurine treatment in patients with inflammatory bowel disease. Korean J. Gastroenterol. 2008, 51, 291–297. [Google Scholar] [PubMed]
- Yang, S.K.; Hong, M.; Baek, J.; Choi, H.; Zhao, W.; Jung, Y.; Haritunians, T.; Ye, B.D.; Kim, K.J.; Park, S.H.; et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet. 2014, 46, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.F.; Zhong, J.; Cheng, S.D.; Tang, Y.H.; Miao, F. Low-dose azathioprine effectively improves mucosal healing in Chinese patients with small bowel Crohn’s disease. J. Dig. Dis. 2014, 15, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.Y.; Chan, F.K.; Leung, W.K.; Li, M.K.; Leung, C.M.; Sze, S.F.; Ching, J.Y.; Lo, F.H.; Tsang, S.W.; Shan, E.H.; et al. Low-dose azathioprine is effective in maintaining remission in steroid-dependent ulcerative colitis: Results from a territory-wide Chinese population-based IBD registry. Therap. Adv. Gastroenterol. 2016, 9, 449–456. [Google Scholar] [CrossRef]
- Lim, C.S.; Moon, W.; Park, S.J.; Park, M.I.; Choi, J.M.; Yoo, J.H.; Kim, J.B.; Lee, J.S. How should azathioprine be dosed in Crohn’s disease? a novel strategy of maximum dose-titration based on the lower limit of leukocyte count and tolerability. Korean J. Gastroenterol. 2013, 62, 111–116. [Google Scholar] [CrossRef]
MTX Group | AZA Group | p-Value | ||
---|---|---|---|---|
Patients (n) | 15 | 14 | ||
Age (years) | 13.48 (11.61–15.36) | 13.16 (11.13–15.20) | 0.770 a | |
Male sex (%) | 14 (93.3%) | 11 (78.6%) | 0.331 b | |
BMI | 19.46 (17.38–21.55) | 19.09 (17.43–20.75) | 0.496 a | |
Hematocrit (%) | 42.05 (4013–43.95) | 39.73 (38.02–41.44) | 0.065 a | |
Albumin (g/dL) | 4.43 (4.5–4.1) | 4.33 (4.20–4.47) | 0.237 a | |
ESR (mm/hr) | 9.47 (3.13–15.81) | 17.42 (9.52–25.32) | 0.095 a | |
CRP (mg/dL) | 0.27 (0.11–0.43) | 0.56 (0.19–0.92) | 0.130 a | |
Calprotectin (mg/kg) | 1440.73 (723.87–2157.59) | 1616.97 (1089.97–2143.97) | 0.529 a | |
PCDAI c | 30.38 (28.73–32.03) | 31.54 (30.36–32.72) | 0.244 a | |
Initial dose of the drug | 14.66 mg/BSA (14.13–15.2) | 0.53 mg/kg (0.49–0.56) | ||
Dosage of the drugs at 54 weeks | 12.26 mg/BSA (10.01–14.43) | 0.66 mg/kg (0.57–0.76) | ||
Dose of mesalazine (mg/kg) | 46.08 (41.4–50.76) | 43.93 (39.57–48.28) | 0.210 a | |
TPMT mutations (patient number) | 1 (6.7) | 1 (7.1) | ||
NUDT15 mutations (patient number) | 2 (13.3) | 4 (28.6) | ||
Paris classification at diagnosis | ||||
Age at diagnosis | A1a | 2 (13.3) | 4 (28.6) | |
A1b | 11 (73.3) | 5 (35.7) | ||
A2 | 2 (13.3) | 5 (35.7) | ||
Location | L1 | 2 (13.3) | 1 (7.1) | |
L2 | 1 (6.7) | 1 (7.1) | ||
L3 | 13 (86.7) | 12 (85.7) | ||
L4a | 6 (40) | 3 (21.4) | ||
L4b | 2 (13.3) | 4 (28.6) | ||
L4ab | 7 (46.7) | 7 (50) | ||
Behavior | B1 | 15 (100) | 14 (100) | |
B2 | 0 | 0 | ||
B3 | 0 | 0 | ||
p | 13 (86.7) | 10 (71.4) |
Univariate Cox Analysis | |||
---|---|---|---|
HR | 95% CI | p | |
Sex (female vs. male) | 0.38 | 0.41–3.42 | 0.385 |
Age at diagnosis | 1.07 | 0.84–1.37 | 0.583 |
Any colonic involvement | 1.84 | 0.84–2.67 | 0.990 |
Any upper gastrointestinal involvement | 1.60 | 0.25–10.29 | 0.619 |
PCDAI at diagnosis | 1.00 | 0.98–1.02 | 0.942 |
Erythrocyte sedimentation rate at diagnosis | 1.05 | 0.97–1.14 | 0.193 |
Albumin at diagnosis | 3.49 | 0.08–120 | 0.514 |
C-reactive protein at diagnosis | 0.41 | 0.07–2.45 | 0.326 |
SES-CD at diagnosis | 1.00 | 0.84–1.01 | 0.078 |
MTX vs. AZA | 0.71 | 0.13–3.90 | 0.691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-Z.; Kang, B.; Kim, E.-S.; Kwon, Y.; Choe, Y.-H.; Kim, M.-J. Efficacy of Combined Initial Treatment of Methotrexate with Infliximab in Pediatric Crohn’s Disease: A Pilot Study. Biomedicines 2023, 11, 2575. https://doi.org/10.3390/biomedicines11092575
Kim Y-Z, Kang B, Kim E-S, Kwon Y, Choe Y-H, Kim M-J. Efficacy of Combined Initial Treatment of Methotrexate with Infliximab in Pediatric Crohn’s Disease: A Pilot Study. Biomedicines. 2023; 11(9):2575. https://doi.org/10.3390/biomedicines11092575
Chicago/Turabian StyleKim, Yoon-Zi, Ben Kang, Eun-Sil Kim, Yiyoung Kwon, Yon-Ho Choe, and Mi-Jin Kim. 2023. "Efficacy of Combined Initial Treatment of Methotrexate with Infliximab in Pediatric Crohn’s Disease: A Pilot Study" Biomedicines 11, no. 9: 2575. https://doi.org/10.3390/biomedicines11092575
APA StyleKim, Y. -Z., Kang, B., Kim, E. -S., Kwon, Y., Choe, Y. -H., & Kim, M. -J. (2023). Efficacy of Combined Initial Treatment of Methotrexate with Infliximab in Pediatric Crohn’s Disease: A Pilot Study. Biomedicines, 11(9), 2575. https://doi.org/10.3390/biomedicines11092575