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Abstract: Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear
transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and
SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine
fibroblasts expressing exogenous OCT4 or SOX2, or both, were analyzed regarding the expression
of pluripotency factors and imprinted genes H19 and IGF2R, and used for in vitro reprogramming.
The expression of the H19 gene was increased in the control sorted group, and putative iPSC-like
cells were obtained when cells were not submitted to cell sorting. When sorted cells expressing
OCT4, SOX2, or none (control) were used as donor cells for somatic cell nuclear transfer, fusion
rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and OCT4 vs. control
groups, respectively; cleavage rates were 66.66% vs. 81.68% and 86.47% vs. 85.18%, respectively;
blastocyst rates were 33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively. These results show that
the production of embryos by NT resulted in similar rates of in vitro developmental competence
compared to control cells regardless of different profiles of pluripotency-related gene expression
presented by donor cells; however, induced reprogramming was compromised after cell sorting.

Keywords: bovine; epigenetics; pluripotency; cellular reprogramming; OCT4; SOX2

1. Introduction

Assisted reproductive biotechniques (ARTs) such as in vitro embryo production (IVP),
intracytoplasmic sperm injection (ICSI), and mechanisms of in vitro induced reprogram-
ming by either nuclear transfer (NT) or exogenous expression of pluripotency-related tran-
scription factors (iPSCs generation) have important applications in regenerative medicine,
and they may also greatly contribute to enhance animal production. In particular, in vitro
reprogramming is a promising tool to overcome challenges in acquired infertilities or
conservation of endangered species, and they may also lead to a better understanding of
the underlying mechanism involved in initial embryonic development [1,2].

Nonetheless, ARTs are often performed in an environment that differs from the “in vivo”
conditions, concerning, for example, the gaseous atmosphere and the nutrient supply in the
culture. It has been shown that in vitro manipulations of gametes and embryos at the begin-
ning of an organism’s development may lead to changes in epigenetic regulation, particularly
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due to the possible disruption of the gene expression pattern during the reprogramming
cycles [3–8], which can lead to the occurrence of abnormalities in the development and even
after birth of individuals derived from these techniques [3–6]. Indeed, a high incidence of
epigenetic syndromes has been reported more frequently in ART-derived offspring than
when natural reproduction occurs, particularly due to an abnormal epigenetic reprogram-
ming leading to altered gene expression and dysfunctions in embryonic development and in
the embryonic annexes in imprinted genes after in vitro reprogramming [7,9].

Several human epigenetic syndromes have been associated with disrupted imprinted
genes, including Beckwith–Wiedemann or BWS [10], Silver–Russel or SRS [11], Angel-
man [12], and Prader–Willi [13] syndromes. In particular, BWS and SRS are reported to
be closely related to the H19 and IGF2 imprinted status. Usually, patients affected with
syndromes resulting from disorders in the H19/IGF2 locus present growth disorders, body
asymmetry, intellectual disability, and the appearance of tumors [14]. A common condition
in ruminants derived from ARTs is large offspring syndrome or LOS), with causes and
phenotypes very similar to the BWS in humans [15–17].

Mechanisms of pluripotency acquaintance, in vivo or in vitro, seem to be mediated by
the same pathways, eliciting nuclear remodeling and modulating gene expression. Two
transcription factors, OCT4 and NANOG, were the first to be identified as essential for
early embryonic development and for maintaining stem-cell pluripotency [18,19]. It was
also shown that SOX2, another transcription factor, heterodimerizes with OCT4, regulating
several genes in pluripotent cells [18–22]. Hence, not only are these transcription factors
bound to their target DNA sites, the proteins are known to interact with each other and
with chromatin remodeling agents, modulating the chromatin conformation and, therefore,
the gene expression [23,24]. Interestingly, more recently, both OCT4 and SOX2 factors
have been reported to have a considerable influence on the regulation of some imprinted
genes, especially at locus H19/IGF2, known to be essential for normal embryo and placenta
development [25–27].

In mouse embryos, Zimmerman et al. reported that the binding of OCT/SOX pluripo-
tency factors to the H19/IGF2 locus ICR contributed to hypomethylation in post-compaction
embryos, thus relating the methylation status of these genes to the main factors of pluripo-
tency [28]. Habib et al. (2014), through a study with 57 patients with BWS, demonstrated
that some patients who present methylation gain in the H19/IGF2 locus also present mu-
tations in the binding site of the OCT4/SOX2 factors, showing that the SOX/OCT motifs
within H19/IGF2 ICR also participate in maintaining hypomethylation of the maternal
allele [29].

It is, therefore, important to investigate possible factors involved in the induction
and regulation of pluripotency acquisition, imprinting maintenance, and gene expression
of the genes relevant to the development in cattle, possibly one of the livestock species
where in vitro technologies are currently used in favor of animal production. Herein, we
present an experimental in vitro model where pluripotency factors were studied together
or separately regarding their influence on cellular genomic imprinting regulation and
pluripotency acquisition in vitro.

2. Materials and Methods

All procedures were performed in accordance with the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and The ARRIVE Guidelines, as
well as with the rules issued by the National Council for Control of Animal Experimentation
(CONCEA, Ministry of Science, Technology, and Innovations and Communications, and
in accordance with Law 11.794 of 8 October 2008, Decree 6899 of 15 July 2009) and in
accordance with the provisions of the Resolution 466/12 of the National Health Council.
Protocols were then approved by the Ethics Committee on Animal Use of the School
of Veterinary Medicine and Animal Science University of São Paulo, Brazil (protocol
number 8077020516) and by the Ethics Committee on the Use of Animals of the Faculty of
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Animal Science and Food Engineering, University of São Paulo, Brazil (protocol number
3526250717).

2.1. Bovine Fetal Fibroblast (bFF) Isolation and Experimental Design

The cell lines were obtained from three Bos indicus (maternal) × Bos taurus (paternal)
fetuses at approximately 50 days of gestational age conceived after artificial insemination.
The crossbred (F1) model was used to study allele-specific imprinted genes expression as
previously described by our group and others, detailed below. After the removal of the
head and organs, tissue was washed with PBS (phosphate-buffered saline) and minced
into small fragments, followed by a 3 h incubation in collagenase IV (0.040 g/mL, Sigma-
Aldrich Corp., St. Louis, MO, USA) at 38.5 ◦C. Next, the dissociated tissue was plated
and cells were cultured in Iscove’s modified Dulbecco’s medium (IMDM, Thermo Fisher
Scientific; Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, Hyclone)
and antibiotics (penicillin/streptomycin, Thermo Fisher Scientific; Carlsbad, CA, USA) [30].
All lineages were cryopreserved at low passages (p2–3) and thawed for experiments.

All three bovine fetal fibroblast (bFF) lineages were used for exogenous expression
of OCT4, SOX2, or both, and then submitted to fluorescence analysis and cellular sorting.
A previously validated bicistronic vector system for iPSC induction that allows for simul-
taneous real-time tracking of expression of the individual transgenes in single cells was
used [31].

After cell recovery, bFF1 (male) was characterized regarding epigenetic maintenance
at the H19/IGF2 imprinted locus, and further reprogrammed by nuclear transfer (cells
expressing OCT4, SOX2, and control) or induced reprogramming (cells named non-sorted
control, sorted control, OCT4+, SOX2+, and OCT4 + SOX2).

The experimental design is briefly shown in Figure 1.
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Figure 1. Experimental design showing the cell isolation from Bos taurus × Bos indicus animals,
transduction, sorting, and cellular reprogramming through nuclear transfer or induced in vitro
reprogramming.

2.2. Generation of Fibroblasts Expressing Exogenous OCT4 and SOX2

For the production of the cells with exogenous expression of OCT4 and SOX2 and
the association of both OCT4 and SOX2, the pLM-vexGFP-Oct4 and pLM-mCitrine-Sox2
vectors were used for lentivirus production as previously described [31]. The first contained
human OCT4 (hOCT4) and a fluorescent reporter protein coding sequence for the vexGFP
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(excitable at 407 nm and emission at 535 nm, Addgene #22240); the second contained hSOX2
and the mCitrine (excitable at 516 nm and emission at 529 nm, Addgene #23242) fluorescent
reporter. The use of bicistronic lentiviral vectors encoding the reprogramming factors being
co-expressed with discernable fluorescent proteins guarantees the monitoring of expression
of each individual reprogramming factor in cells during the course of reprogramming, in a
stoichiometric and temporal manner.

Lentiviral particles of OCT4-vexGFP and SOX2-mCitrine were produced by lipofection
of 293FT cells (Thermo Fisher Scientific; Carlsbad, CA, USA) with Lipofectamine 2000
(Thermo Fisher Scientific; Carlsbad, CA, USA), using 5 µg of pLM-vexGFP-Oct4 and pLM-
mCitrine-Sox2 vectors, 1.2 µg of PLP1 and PLP2 and 2.4 µg of PLP/VSVG (ViraPower
kit, Thermo Fisher Scientific; Carlsbad, CA, USA), following the manufacturer’s protocol.
The supernatant (culture medium) was collected and refreshed at 48 h and 72 h after
transfection, filtered, and used for transduction. Pluripotency was induced as previously
described, using mouse OCT4, SOX2, c-MYC, and KLF4 transcription factors (mOSKM,
mSTEMCCA) [32,33].

2.3. Flow Cytometry Analysis

After 72 h of transduction, protein expression was analyzed by flow cytometry. The
gating strategy comprised using non-transduced cells as controls. Positive cells were sorted
(BD FACSDiva software and BD FACSAria II SORP equipment—excitation laser 405 nm and
detection filter 510/30 for the vexGFP protein and excitation laser 488 nm and 530/30 de-
tection filter for the mCitrine protein). The recovered cells were re-cultured and induced to
pluripotency; some were cryopreserved (experimental group pre-induction), and others
were used in the subsequent analyses. On the basis of a higher transduction efficiency
detected by flow cytometry, one cellular lineage was used for in vitro reprogramming.

2.4. Gene Expression of Imprinted and Pluripotency Genes

RNA was extracted with the RNeasy mini kit (Qiagen, Hilden, Germany) according
to the manufacturer’s recommendations, and its quality and quantity were assessed by
spectrophotometer (Nanodrop 2000). cDNA was synthesized with the High-Capacity
cDNA reverse transcription kit (Thermo Fisher Scientific; Carlsbad, CA, USA) according
to the manufacturer’s recommendations. Experimental groups were quantified regarding
their transcripts of imprinted genes H19 and IGF2R and genes related to pluripotency OCT4
and SOX2. Beta-actin (ACTB) and CCR4-NOT transcription complex subunit 11 (ACTB
and C2ORF29 or CNOT11) were used as housekeeping genes.

Relative analysis of transcripts was performed by RT-qPCR (7500 Fast Real-Time
PCR System, Thermo Fisher Scientific; Carlsbad, CA, USA) using a commercial assay in
duplicate (Power SYBR®Green PCR Master Mix, Thermo Fisher Scientific; Carlsbad, CA,
USA), where 5 µL of the sample cDNA was added to a 20 µL final volume reaction. The
primers’ (Table 1) final concentration was 200 nM, and standard curves were performed to
evaluate the efficiency of each gene. The qPCR reaction consisted of a denaturation step
of 95 ◦C for 5 s, and an annealing temperature of 60 ◦C, for 40 cycles. Data were analyzed
using the delta–delta CT method [34].

2.5. Allele-Specific Methylation Analyses of the DMR at the H19/IGF2 Locus

DNA extraction was performed with the DNeasy Blood and Tissue Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s recommendations, and quality and quantity
were determined by a spectrophotometer (Nanodrop 2000). The EpiTect Bisulfite Kit (#59104
Qiagen, Hilden, Germany) was used according to the manufacturer’s recommendations
in a thermocycler for 5 min at 99 ◦C, 25 min at 60 ◦C, then 5 more min at 99 ◦C, 85 min at
60 ◦C, back to 5 min at 99 ◦C, 175 min at 60 ◦C, and finally, 20 ◦C overnight.
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Table 1. Primer sequences for the quantitative analysis of transcripts and methylation analysis at the
IGF2/H19 locus.

Name 5′–3′ Sequence

ACTB_FWD GCGGACAGGATGCAGAAA
ACTB_REV ACGGAGTACTTGCGCTCAG

C2ORF29_FWD ACTGAGCCTGACCATGCGATC
C2ORF29_REV GGCTGGAGTGAGGCCAATATG

H19_FWD AGTGGGAGGGGCATTGGACT
H19_REV GACCATATCATATCCCTCTGTGC-

SOX2_FWD ATGGGCTCGGTGGTGAAGT
SOX2_REV TGGTAGTGCTGGGACATGTGA
OCT4_FWD GCAAACGATCAAGCAGTGACTAC
OCT4_REV GGCGCCAGAGGAGAGGATACG

Amplification of fragments from the H19/IGF2 DMR (proximally−3327 to−2675 base
pairs away from exon 1 was performed using the primers U-H19 F1 and U-H19 R4 (Table 1).
The PCR reaction contained 38.5 µL of ultrapure H2Od, 5 µL of Buffer TPN 10× (Invitrogen),
1.5 µL of dNTP (Invitrogen), 1.5 µL of MgCl2, 1 µL of primer (one for each, forward and
reverse), and 0.5 µL of Platinum Taq (Invitrogen, #10966) for each sample, before adding
1 µL of DNA. Each PCR reaction was performed in triplicates. The protocol used was 1 min
of plate pre-heating, 50 cycles of 30 s at 94 ◦C, 30 s at 53 ◦C and 30 s at 72 ◦C, and one final
7 min step at 72 ◦C. Amplified samples were run in a 1.2% agarose gel alongside a 1 Kb
ladder, and the master mix lacking DNA as control was purified from the agarose gel and
sequenced.

Global and allelic expression analysis of imprinted genes was realized as described by
Suzuki and collaborators [35]. A single-nucleotide polymorphism (SNP) at the IGF2/H19
locus between Bos indicus and Bos taurus allowed for allele-specific DNA methylation
analysis after sequencing and allele-specific gene expression analysis. The nucleotide
guanine at the sequence TTTATGTATTA indicates Bos indicus origin; therefore, the allele is
of maternal origin. If the nucleotide adenine were present in its place, that would indicate
an allele of paternal origin.

2.6. In Vitro Induced Reprogramming into Pluripotency

Three repetitions (R1, R2, and R3) were submitted to the pluripotency induction. The
lentiviral particles containing mouse OSKM (mSTEMCCA) were produced by lipofection of
293FT cells, as previously described [32,33]. At 5 or 6 days after transduction, the cells were
transferred to culture plates containing a monolayer of mitotically inactivated (mitomycin
C, M4287 Sigma-Aldrich) mouse embryonic fibroblasts (MEFs).

During the cellular reprogramming, the cells were cultured in iPSC medium consisting
of DMEM/F12 Knockout (Thermo Fisher Scientific), supplemented with 20% knockout
serum replacement (KSR, Thermo Fisher Scientific), 1% glutamine (Thermo Fisher Scientific),
3.85 µM β-mercaptoethanol (Thermo Fisher Scientific), 1% non-essential amino acids (Thermo
Fisher Scientific), 10 ng/mL bFGF (Peprotech) and antibiotics (penicillin/streptomycin,
Thermo Fisher Scientific). Morphologically typical colonies were manually picked at the
first passage, and clonal lines were further dissociated for passaging with TrypLE Express
(Life Technologies).

2.7. Somatic Cell Nuclear Transfer

Fetal fibroblasts expressing either OCT4-vexGFP or SOX2-mCitrine were analyzed
for OCT4 and SOX2 gene expression through qPCR and flow cytometry analysis, which
enabled the sorting of positive cells used as donor cells for somatic cell nuclear transfer
procedures as previously described [36,37]. Briefly, bovine oocytes obtained from slaugh-
terhouses were in vitro matured for 18 h, enucleated, and reconstructed with fibroblasts
expressing OCT4-vexGFP (n = 182, in four replicates), SOX2-mCitrine (n = 203, in four
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replicates), or control cells (non-transduced, n = 178 and n = 149, in four replicates as control
of OCT4 or SOX2 expressing cells each). After reconstruction, embryos were activated with
ionomycin (5 µM, 5 min) and 6-DMAP (2 mM, 3 h) and in vitro cultured until blastocyst
stage (7 days) in SOF medium supplemented with 2.5% FBS and 3mg/mL BSA.

2.8. Statistical Analysis

Data obtained from the experimental procedures were analyzed using the statistical
program Statistical Analysis System (SAS University Edition), with previous verification of
the normality of the residues by the Shapiro–Wilk test (PROC UNIVARIATE) and submitted
to analysis of variance. Gene expression data were then submitted to the Bonferroni test. A
significance level of 5% was considered for all statistical analyses.

3. Results
3.1. bFF Expressing Exogenous OCT4 and SOX2

The exogenous expression of OCT4 and SOX2 was confirmed by flow cytometry
(Figure 2), where the positive populations were sorted out and recovered for in vitro
culture and reprogramming procedures. The percentage of positive cells in each cell line
and treatment group is presented in Table 2. The post-sorting purity percentage was 90%
or greater.
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bFF1 79.8 10.2 1.3 

Figure 2. Representative scatter plots of flow cytometric analysis of stable lines expressing OCT4-
vexGFP (A1–A3) and SOX2-mCitrine (B1–B3) used for sorting nuclear donor cells. Blue dots represent
negative cells (non-fluorescent) and red dots present positive cells (fluorescent cells). In (A1,B1), the
Y-axis represents side scatter (SSC) and X-axis represents forward scatter (FSC). (A2,B2) represent the
control groups, where the Y-axis represents the cell count and X-axis represents the fluorescence in
arbitrary units. (A3,B3) represent the hOCT4 and the hSOX2 groups, where the Y-axis represents the
cell count and X-axis represents the fluorescence in arbitrary units.

Due to higher fluorescence detection of bFF1, the post-sorting recovery was more
efficient, enabling its utilization for the subsequent experiments. Cells expressing both
OCT4 and SOX2 presented very high proliferation levels, followed by early senescence.
Such behavior was observed over three repetitions; therefore, they were used for induced
pluripotency, and nuclear transfer was not conducted.
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Table 2. Percentage of fluorescent cells by flow cytometry in three bovine fetal fibroblast cell lines.

hOCT4% hSOX2% hOCT4 + hSOX2%

bFF1 79.8 10.2 1.3

bFF2 22.7 4.2 0.4

bFF3 18.7 3.9 0.2

Average 40.4 6.1 0.63

3.2. Quantitative Gene Expression Analyzes of Imprinted Genes or Genes Related to Pluripotency

The experimental groups from the three repetitions were induced to pluripotency (R1,
R2, and R3) and evaluated regarding the expression of pluripotency factors OCT4 and
SOX2 and imprinted genes H19 and IGF2R. OCT4+ cells showed higher OCT4 expression,
and SOX2+ cells had greater SOX2 expression, as expected. This analysis enabled us to
detect the high exogenous expression of the target genes.

Double-positive cells (OCT4+/SOX2+) OCT4 + SOX2 cells showed an increase in
both OCT4 and SOX2 expression, albeit not statistically significant, probably because the
expression was similar to groups expressing only OCT4 and SOX2, and there is apparently
an interaction between exogenous OCT4 expression and endogenous SOX2 expression. It
is noteworthy that SOX2+ cells had an approximately 10-fold OCT4 level increase when
compared to the control (Figure 3).
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The analysis of the imprinted gene H19 expression showed an increased expression in
control sorted group, which was not expected. It is speculated herein that the pluripotency
factors somehow protect the locus against possible deregulation caused by the sorting pro-
cedure, and such possibility must be further investigated with analyses of more repetitions
and the methylation pattern of this specific locus.

No differences among the groups were observed when the imprinted gene IGF2R
was analyzed; however, there was an approximately 50% increase in expression levels in
the sorted control group when compared to the non-sorted control, indicating, once more,
a possible effect caused by the flow cytometry analysis and sorting on the regulation of
imprinted genes. More repetitions are needed to further understand this possibility.

The analysis of each repetition showed that, even though the gene expression pattern
seemed very similar in the groups, the non-sorted R1 had a unique pattern (Figure 4).
R1 had a higher expression of OCT4 and a lower expression of H19 in relation to R2
and R3, indicating a possible relationship between them, and R1 was the group able to
produce iPSCs colonies more efficiently. The existence of more reprogrammable populations
has already been described in the literature [38,39], and more studies are necessary to
reveal if such pre-disposition may be related to the regulation between imprinted and
pluripotency genes.
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Figure 4. Quantitative gene expression of OCT4, SOX2 (pluripotency-related genes), H19, and IGF2R
(imprinted genes) in bovine cells from experimental groups: control, sorted control, expressing
exogenous OCT4, expressing exogenous SOX2, or expressing both (OCT4 + SOX2), in arbitrary units.
R1, R2, and R3 are representative bars for each lineage (repetition).

3.3. Allele-Specific Methylation Analyses of the DMR at the H19/IGF2 Locus

The methylation was analyzed, and the bisulfite conversion rate (number of non-
converted cytosines in relation to all convertible cytosines) was considered appropriate
when superior to 90% (Table 3).

Table 3. Bisulfite conversion efficiency rate.

Non-Sorted Control Sorted Control OCT4+ SOX2+ OCT4 + SOX2

Conversion rate 98.03% 98.23% 95.09% 98.89% 98.32%
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The percentage of total methylation, as well as the methylation at the CTCF region,
was calculated using the number of methylated and not methylated CpG islands. In
general, the paternal allele (taurus) was methylated, and the maternal allele (indicus) was
not methylated (Table 4).

Table 4. Methylation percentage in the DMR at the H19/IGF2 locus in the experimental groups.

Non-Sorted Control
(%DMR; %CTCF)

Sorted Control
(%DMR, %CTCF)

OCT4+
(%DMR, %CTCF)

SOX2+
(%DMR, %CTCF)

OCT4 + SOX2
(%DMR, %CTCF)

Maternal allele 21.42; 33.33 0; 0 21.24; 6.67 2.4; 5.55 5.95; 11.11

Paternal allele 100; 100 92.85; 100 100; 100 96.42; 100 92.3

3.4. Pluripotency Induction (iPSC Production)

bFF1 was used for pluripotency induction. Interestingly, non-sorted cells generated
biPS colonies, whereas sorted cells (control non-transgenic, OCT4-, SOX2-, and OCT4- +
SOX2-expressing cells) did not generate biPS cells.

The percentage of colonies formed is described in Table 5 (the number of colonies
formed divided by the number of plated transduced cells). The groups transduced with
hOSKM did not produce iPSC colonies.

Table 5. Percentage of iPSC colonies formed in each experimental group in all three repetitions (percent-
age and number of colonies).

Non-Sorted Control Sorted Control OCT4+ SOX2+ OCT4 + SOX2

R1 0.00035 (7) 0 0 0 0

R2 0.00005 (1) 0 0 0 0

R3 0 0 0 0 0

Cells showed typical colony morphology with approximately 15 to 20 days post
transduction (Figure 5).
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Figure 5. Representative image of a reprogrammed colony of cells from the non-sorted control before
first picking (p0), 200×.

Colonies were manually picked at the first passage and later enzymatically passaged.
Among the repetitions, different passages on bFF1 were used since the same cell line was
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cultured continuously while used on the repetitions. Therefore, R1 had the lowest number
of passages in vitro.

3.5. Somatic Cell Nuclear Transfer Using hOCT4 and hSOX2 Overexpressing Donor Cells

Fusion rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and
OCT4 vs. control groups, respectively; cleavage rates (48 h after activation) were 66.66% vs.
81.68% and 86.47% vs. 85.18%, respectively; blastocyst rates (192 h after activation) were
33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively (Figure 6).
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Figure 6. Development competence (percentage of reconstructed and fused embryos, cleavage, and
development—8 cell and blastocyst rates) of nuclear transfer-derived embryos produced with donor
cells expressing exogenous OCT4, SOX2, or none (control cells).

There were no differences in the rate of fusion, cleavage, percentage of embryos in
eight cells, and capacity of development to blastocysts on the seventh day of in vitro culture
between clone embryos reconstructed with modified or not cells.

4. Discussion

During development, a mammal’s genome is epigenetically reprogrammed on two
different and essential occasions: gametogenesis and early embryogenesis. The repro-
gramming processes occur in the primordial germ cells (PGCs), where epigenetic markers
are erased, and new ones are established at specific moments, both before and after fer-
tilization. After fertilization, a second wave of global demethylation occurs, except for
imprinted genes, followed by de novo methylation, which sets a new epigenetic layout
allowing totipotency and following cell line committed differentiation [40,41]. Epigenetic
modifications may be inherited but also modified by the environment, thus explaining the
more frequent and different phenotypical alterations observed in ART-generated individu-
als [42]. In this study, the creation of an in vitro experimental model that enables the study
of OCT4 and SOX2 transcription factors, as well as their combination, in the regulation
of the imprinting in the H19/IGF2 locus in bovine cells and cells reprogrammed in vitro
was proposed.

In this study, bovine cell lines expressing pluripotency exogenous factors OCT4, SOX2,
or both were produced. These lines are important to better understand the acquisition and
maintenance of the pluripotency process in vitro. The sorting of positive cells for those
factors allows us to use only those cells that have integrated the factors, increasing, in
theory, reprogramming efficiency. The production of such factors was accomplished by
the lentiviral approach, and the lentiviral production was confirmed through fluorescence
analysis of the 293FT cells after transfection. After 5 or 6 days post transduction, the
percentage of positive cells for the reporter genes was quantified by flow cytometry and
used as a lentiviral transduction efficiency parameter. Such measurement is valid for
the qualitative and quantitative analysis of the efficiency of integration of the transgene
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since the multiplicity of infection of these vectors results in a linear title of the average
fluorescence intensity of each corresponding fluorescent protein [31]. The same group
reported that a threefold increase of OCT4 in relation to the SOX2, KLF4, and c-MYC
levels raised the reprogramming efficiency, and the opposite resulted in a drastic decrease
in reprogramming efficiency [31]. In 2011, Yamaguchi and collaborators reported that
decreased SOX2 levels increased efficiency in partially reprogrammed cells production [43],
showing that both expression and interaction of OCT4 and SOX2 need to be finely regulated
for acquiring and maintaining pluripotency in vitro.

The expression of the imprinted genes H19 and IGF2 was also analyzed on the cell
lines produced, and the methylation of the DMR at the H19/IGF2 locus. Nevertheless,
the hypothesis that the overexpression of OCT4 and SOX2 in bovine cell lines is not only
possible but leads to modifications in expression and imprinting pattern in the H19/IGF2
locus, as well as in bovine reprogramming into pluripotency by TNCS or iPSC generation
efficiency, was not confirmed in this study.

Even though further analyses are needed, it is possible to observe that the methylation
pattern of the non-sorted group was slightly different from the others that were submitted
to the same sorting process; the maternal allele was, herein, completely demethylated.
To infer if the expression of the exogenous factors acts in a protective way toward the
H19/IGF2 locus from external interferences, such as sorting or reprogramming, further
analyses are still needed.

The generation of induced pluripotency models (induced pluripotent stem cells)
made it possible to study the process of in vitro reprogramming more precisely. In this
study, cell reprogramming after OSKM transduction was observed only in the control
group, and the study of whether the imbalance between OCT4 and SOX2 expression may
hamper induced reprogramming will be of great importance to better understand the role
of these pluripotency factors in the acquisition and maintenance of the epigenetic patterns
of reprogrammed cells.

Nonetheless, the results obtained herein (reprogrammed cells generated only from the
non-sorted control group and, within that group, a higher number of colonies on the first
repetition, fewer colonies on the second repetition, and none on the third), two effects can be
inferred: (1) a sorting effect, and (2) an in vitro passage number effect. The environmental
factor must also be considered, with possible effects caused by the laboratory routine itself
as changes in the culture medium lot or supplements.

Moreover, the embryo production by NT from cells expressing hOCT4 or hSOX2
resulted in similar in vitro embryonic development rates regardless of the gene expression
profiles of factors related to the pluripotency of the nucleus donor cells.

Lastly, in this study, we analyzed whether the overexpression of two important
pluripotency-related genes could be related to the success of cellular reprogramming
and to a specific imprinting deregulation, which is commonly reported (H19/IGF2 locus).
There is limited research on the influence of specific genes in the in vitro reprogramming
of animals other than rodents and primates. Herein, we showed that the overexpression
of pluripotency-related factors, proven by a reporter gene and molecular analysis, is not
able to completely impact the epigenetics and the efficiency of the in vitro reprogramming
in cattle, and other strategies should be implemented in order to generate healthy cloned
cattle or bona fide pluripotent stem cells in this species.

5. Conclusions

The results described in this study allow us to conclude that the production of cells
expressing exogenous pluripotent factors was successful, as shown by the gene expression
experiments. Cellular reprogramming to pluripotency by cloned embryo production was
achieved in the present study when cells expressing OCT4 or SOX2 were used as donor cells;
however, in our conditions, these cell lines did not result in iPSCs after induced reprogram-
ming in vitro. There was interference from the flow cytometer analysis and sorting process
in the expression of the imprinted gene H19 in at least one of the experimental groups.
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The production of embryos by NT of hSOX2- or hOCT4-expressing donor cells resulted
in similar rates of in vitro developmental competence compared to control cells regardless
of different profiles of pluripotency-related gene expression presented by donor cells. A
better understanding of the contribution of each reprogramming factor used in induced
reprogramming will establish strategies to enhance in vitro reprogramming performance.
Such knowledge will contribute to in vitro animal production by increasing the cloning
efficiency at term and regenerative medicine through the derivation and adequate culture
of reprogrammed pluripotent stem cells.
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