Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Oils’ Chemical Characteristics
2.2.1. Fatty Acids Composition
2.2.2. Phytosterols Composition and Content
2.2.3. Composition of Tocopherols and 8-Plastochromanol Content along with Carotenoids Composition and Content
2.2.4. Polyphenolic Compounds and Composition
2.3. In Vitro Studies
2.3.1. Cell Line and Conditions
2.3.2. Viability Assay
2.3.3. Accumulation of Rhodamine 123
2.3.4. Detection of Apoptosis
2.3.5. Measurement of the Amount of p53 Protein
2.3.6. Cell Cycle
2.3.7. Cell Migration
2.3.8. Proliferation Effect of Ki67 Protein
2.3.9. In Vitro Cyclooxygenase Inhibition Assay
2.4. Statistical Analysis
3. Results
3.1. Oil’s Chemical Characteristics
3.1.1. Fatty Acids
3.1.2. Phytosterols Composition and Content
3.2. In Vitro Studies
3.2.1. Viability Assay
3.2.2. Accumulation of Rhodamine 123
3.2.3. Detection of Apoptosis
3.2.4. Measurement of the Amount of p53 Protein
3.2.5. Cell Cycle
3.2.6. Cell Migration
3.2.7. Proliferation Effect of Ki67 Protein
3.2.8. In Vitro Cyclooxygenase Inhibition Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seebacher, N.; Stacy, A.; Porter, G.; Merlot, A. Clinical development of targeted and immune based anti-cancer therapies. J. Exp. Clin. Cancer Res. 2019, 38, 156. [Google Scholar] [CrossRef] [PubMed]
- Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, E.J.; LeRoith, D. Obesity and cancer. Cancer Metastasis Rev. 2022, 41, 463–464. [Google Scholar] [CrossRef]
- Islam, M.R.; Akash, S.; Rahman, M.M.; Nowrin, F.T.; Akter, T.; Shohag, S.; Rauf, A.; Aljohani, A.S.; Simal-Gandara, J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem.-Biol. Interact. 2022, 368, 110170. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.; Srivastava, S.K. Role of phytochemicals in perturbation of redox homeostasis in cancer. Antioxidants 2021, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, R. Anti-cancer properties of olive oil secoiridoid phenols: A systematic review of in vivo studies. Food Funct. 2016, 7, 4145–4159. [Google Scholar] [CrossRef]
- González-Fernández, M.J.; Ortea, I.; Guil-Guerrero, J.L. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol. Res. 2020, 9, 474–483. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S.; Daglia, M.; Rengasamy, K.R. Dietary carotenoids in cancer chemoprevention and chemotherapy: A review of emerging evidence. Pharmacol. Res. 2020, 157, 104830. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Price, J.F.; Fowkes, F.G.R.; Zanchetti, A.; Roncaglioni, M.C.; Tognoni, G.; Lee, R.; Belch, J.F.; Wilson, M.; Mehta, Z. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: Analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 2012, 379, 1602–1612. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Gutiérrez-Santiago, F. Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life 2023, 13, 264. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, H.; Shen, Y.; Ni, X.; Shen, S.; Das, U.N. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway. Arch. Med. Sci. AMS 2015, 11, 1081–1094. [Google Scholar]
- Bommareddy, A.; Zhang, X.; Schrader, D.; Kaushik, R.; Dwivedi, C. Inhibition of cell proliferation and induction of apoptosis of human colon cancer Caco-2 cells by alpha-linolenic acid and lignans present in flaxseed. Cancer Res. 2007, 67, 2566. [Google Scholar]
- Bradford, P.G.; Awad, A.B. Phytosterols as anticancer compounds. Mol. Nutr. Food Res. 2007, 51, 161–170. [Google Scholar] [CrossRef]
- Das Gupta, S.; Suh, N. Tocopherols in cancer: An update. Mol. Nutr. Food Res. 2016, 60, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Greenlaw, R.; Fang, Q.; Bender, W.; Yamaguchi, K.; Xue, B.; Yu, C. Studies on the chemopreventive potentials of vegetable oils and unsaturated fatty acids against breast cancer carcinogenesis at initiation. Eur. J. Cancer Prev. 2004, 13, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Lampri, E.; Fitsiou, E.; Vasileiadis, S.; Vamvakias, M.; Bardouki, H.; Goussia, A.; Malamou-Mitsi, V.; Panayiotidis, M.I. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci. Rep. 2017, 7, 3782. [Google Scholar] [CrossRef] [PubMed]
- Kohno, H.; Suzuki, R.; Yasui, Y.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci. 2004, 95, 481–486. [Google Scholar] [CrossRef]
- Prakash, J.; Gupta, S. Chemopreventive activity of Ocimum sanctum seed oil. J. Ethnopharmacol. 2000, 72, 29–34. [Google Scholar] [CrossRef]
- Yaman, T.; Uyar, A.; Kömüroğlu, A.U.; Keleş, Ö.F.; Yener, Z. Chemopreventive efficacy of juniper berry oil (Juniperus communis L.) on azoxymethane-induced colon carcinogenesis in rat. Nutr. Cancer 2021, 73, 133–146. [Google Scholar] [CrossRef]
- Sain, A.; Sahu, S.; Naskar, D. Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: A comprehensive review. Br. J. Nutr. 2021, 128, 1257–1273. [Google Scholar] [CrossRef]
- Villegas, C.; Perez, R.; Sterner, O.; Gonzalez-Chavarria, I.; Paz, C. Curcuma as an adjuvant in colorectal cancer treatment. Life Sci. 2021, 286, 120043. [Google Scholar] [CrossRef]
- Bhatia, E.; Doddivenaka, C.; Zhang, X.; Bommareddy, A.; Krishnan, P.; Matthees, D.P.; Dwivedi, C. Chemopreventive effects of dietary canola oil on colon cancer development. Nutr. Cancer 2011, 63, 242–247. [Google Scholar] [CrossRef]
- Igney, F.H.; Krammer, P.H. Death and anti-death: Tumour resistance to apoptosis. Nat. Rev. Cancer 2002, 2, 277–288. [Google Scholar] [CrossRef]
- Grajzer, M.; Wiatrak, B.; Gębarowski, T.; Matkowski, A.; Grajeta, H.; Rój, E.; Kulma, A.; Prescha, A. Chemistry, oxidative stability and bioactivity of oil extracted from Rosa rugosa (Thunb.) seeds by supercritical carbon dioxide. Food Chem. 2021, 335, 127649. [Google Scholar] [CrossRef]
- Grajzer, M.; Wiatrak, B.; Gębarowski, T.; Boba, A.; Rój, E.; Gorczyca, D.; Prescha, A. Bioactive Compounds of Raspberry Oil Emulsions Induced Oxidative Stress via Stimulating the Accumulation of Reactive Oxygen Species and NO in Cancer Cells. Oxid. Med. Cell. Longev. 2021, 2021, 5561672. [Google Scholar] [CrossRef]
- Wróbel-Kwiatkowska, M.; Lorenc-Kukula, K.; Starzycki, M.; Oszmiański, J.; Kepczyńska, E.; Szopa, J. Expression of β-1, 3-glucanase in flax causes increased resistance to fungi. Physiol. Mol. Plant Pathol. 2004, 65, 245–256. [Google Scholar] [CrossRef]
- Wróbel, M.; Zebrowski, J.; Szopa, J. Polyhydroxybutyrate synthesis in transgenic flax. J. Biotechnol. 2004, 107, 41–54. [Google Scholar] [CrossRef]
- Lorenc-Kukuła, K.; Amarowicz, R.; Oszmiański, J.; Doermann, P.; Starzycki, M.; Skała, J.; Żuk, M.; Kulma, A.; Szopa, J. Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J. Agric. Food Chem. 2005, 53, 3685–3692. [Google Scholar] [CrossRef]
- Wróbel-Kwiatkowska, M.; Turnau, K.; Góralska, K.; Anielska, T.; Szopa, J. Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza 2012, 22, 493–499. [Google Scholar] [CrossRef]
- Wojtasik, W.; Kulma, A.; Dymińska, L.; Hanuza, J.; Żebrowski, J.; Szopa, J. Fibres from flax overproducing β-1, 3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity. BMC Biotechnol. 2013, 13, 1–16. [Google Scholar] [CrossRef]
- Skorkowska-Telichowska, K.; Hasiewicz-Derkacz, K.; Gębarowski, T.; Kulma, A.; Moreira, H.; Kostyn, K.; Gębczak, K.; Szyjka, A.; Wojtasik, W.; Gąsiorowski, K. Emulsions made of oils from seeds of GM flax protect V79 cells against oxidative stress. Oxid. Med. Cell. Longev. 2016, 2016, 7510759. [Google Scholar] [CrossRef] [PubMed]
- Prescha, A.; Świędrych, A.; Biernat, J.; Szopa, J. Increase in Lipid Content in Potato Tubers Modified by 14-3-3 Gene Overexpression. J. Agric. Food Chem. 2001, 49, 3638–3643. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Dutta, P.; Artz, W. Camelina oil and its unusual cholesterol content. J. Am. Oil Chem. Soc. 2002, 79, 965–969. [Google Scholar] [CrossRef]
- Fromm, M.; Bayha, S.; Kammerer, D.R.; Carle, R. Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different Rosaceae species. J. Agric. Food Chem. 2012, 60, 10733–10742. [Google Scholar] [CrossRef] [PubMed]
- Grajzer, M.; Wiatrak, B.; Jawień, P.; Marczak, Ł.; Wojakowska, A.; Wiejak, R.; Rój, E.; Grzebieluch, W.; Prescha, A. Evaluation of Recovery Methods for Fragaria vesca L. Oil: Characteristics, Stability and Bioactive Potential. Foods 2023, 12, 1852. [Google Scholar] [CrossRef] [PubMed]
- Pirisi, F.M.; Angioni, A.; Cabras, P.; Garau, V.L.; di Teulada, M.T.S.; dos Santos, M.K.; Bandino, G. Phenolic compounds in virgin olive oils I. Low-wavelength quantitative determination of complex phenols by high-performance liquid chromatography under isocratic elution. J. Chromatogr. A 1997, 768, 207–213. [Google Scholar] [CrossRef]
- Gębarowski, T.; Jęśkowiak, I.; Wiatrak, B. Investigation of the Properties of Linen Fibers and Dressings. Int. J. Mol. Sci. 2022, 23, 10480. [Google Scholar] [CrossRef]
- Buckner, A.L.; Buckner, C.A.; Montaut, S.; Lafrenie, R.M. Treatment with flaxseed oil induces apoptosis in cultured malignant cells. Heliyon 2019, 5, e02251. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef]
- Butler, L.M.; Yuan, J.-M.; Huang, J.Y.; Su, J.; Wang, R.; Koh, W.-P.; Ong, C.-N. Plasma fatty acids and risk of colon and rectal cancers in the Singapore Chinese Health Study. NPJ Precis. Oncol. 2017, 1, 38. [Google Scholar] [CrossRef]
- Zamaria, N. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod. Nutr. Dev. 2004, 44, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Termer, M.; Carola, C.; Salazar, A.; Keck, C.M.; Hemberger, J.; von Hagen, J. Activity-Guided Characterization of COX-2 Inhibitory Compounds in Waltheria indica L. Extracts. Molecules 2021, 26, 7240. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.A.G.; Huerta-Alvarez, C. Reduced incidence of colorectal adenoma among long-term users of nonsteroidal antiinflammatory drugs: A pooled analysis of published studies and a new population-based study. Epidemiology 2000, 11, 376–381. [Google Scholar] [CrossRef]
- Jiang, Q.; Elson-Schwab, I.; Courtemanche, C.; Ames, B.N. γ-Tocopherol and its major metabolite, in contrast to α-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proc. Natl. Acad. Sci. USA 2000, 97, 11494–11499. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yu, H.; Ma, Q.; Shen, S.; Das, U.N. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction. Lipids Health Dis. 2010, 9, 106. [Google Scholar] [CrossRef]
- Lu, X.-f.; He, G.-q.; Yu, H.-n.; Ma, Q.; Shen, S.-r.; Das, U.N. Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes. J. Zhejiang Univ. Sci. B 2010, 11, 923–930. [Google Scholar] [CrossRef]
- McCann, S.E.; Freudenheim, J.L.; Marshall, J.R.; Graham, S. Risk of human ovarian cancer is related to dietary intake of selected nutrients, phytochemicals and food groups. J. Nutr. 2003, 133, 1937–1942. [Google Scholar] [CrossRef]
- Esche, R.; Barnsteiner, A.; Scholz, B.; Engel, K.-H. Simultaneous Analysis of Free Phytosterols/Phytostanols and Intact Phytosteryl/Phytostanyl Fatty Acid and Phenolic Acid Esters in Cereals. J. Agric. Food Chem. 2012, 60, 5330–5339. [Google Scholar] [CrossRef]
- Chou, T.H.; Ding, H.Y.; Hung, W.J.; Liang, C.H. Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp. Dermatol. 2010, 19, 742–750. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Soares, A.K.N.; de Sousa, D.P. Overview of the role of vanillin on redox status and cancer development. Oxid. Med. Cell. Longev. 2016, 2016, 9734816. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, A.K.A.; Mason, J.K.; Thompson, L.U. Growth and gene expression differ over time in alpha-linolenic acid treated breast cancer cells. Exp. Cell Res. 2015, 333, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Nanda, N.; Mahmood, S.; Bhatia, A.; Mahmood, A.; Dhawan, D.K. Chemopreventive role of olive oil in colon carcinogenesis by targeting noncoding RNAs and methylation machinery. Int. J. Cancer 2019, 144, 1180–1194. [Google Scholar] [CrossRef]
- Llor, X.; Pons, E.; Roca, A.; Alvarez, M.; Mane, J.; Fernandez-Banares, F.; Gassull, M. The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin. Nutr. 2003, 22, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Mannion, C.; Page, S.; Bell, L.H.; Verhoef, M. Components of an anticancer diet: Dietary recommendations, restrictions and supplements of the Bill Henderson Protocol. Nutrients 2010, 3, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Avelino, A.P.A.; Oliveira, G.M.; Ferreira, C.C.; Luiz, R.R.; Rosa, G. Additive effect of linseed oil supplementation on the lipid profiles of older adults. Clin. Interv. Aging 2015, 10, 1679–1685. [Google Scholar] [CrossRef]
- Skoczyńska, A.H.; Gluza, E.; Wojakowska, A.; Turczyn, B.; Skoczyńska, M. Linseed oil increases HDL3 cholesterol and decreases blood pressure in patients diagnosed with mild hypercholesterolaemia. Kardiol. Pol. (Pol. Heart J.) 2018, 76, 1242–1250. [Google Scholar] [CrossRef]
Oil | NIKE | B | M |
---|---|---|---|
Fatty acids [%] | |||
C16:0 | 5.54 ± 0.11 | 5.45 ± 0.18 | 5.45 ± 0.16 |
C18:0 | 6.12 ± 0.05 | 6.06 ± 0.06 | 5.96 ± 0.06 |
C18:1 n-9 | 23.20 ± 0.10 | 24.60 ± 0.10 | 23.60 ± 0.10 |
C18:2 n-6 | 19.20 ± 0.10 | 20.90 ± 0.20 | 19.70 ± 0.30 |
C18:3 n-3 | 44.90 ± 0.50 | 41.90 ± 0.30 | 44.40 ± 0.50 |
Others ∑ | 1.00 ± 0.00 | 1.10 ± 0.00 | 0.90 ± 0.00 |
SFA | 12.3 | 12.2 | 12 |
MUFA | 23.5 | 24.8 | 23.9 |
PUFA | 64.1 | 62.9 | 64.1 |
n-6/n-3 | 0.431 | 0.499 | 0.444 |
Phytosterols [mg/100 g] | |||
Campesterol | 128.8 ± 2.8 | 121.5 ± 5.9 | 121.1 ± 4.3 |
Stigmasterol | 40.2 ± 0.7 a | 42.4 ± 1.3 b | 27.4 ± 0.5 ab |
Obustifoliol | 19.8 ± 0.3 | 17.2 ± 0.2 | 16.6 ± 0.5 |
β-Sitosterol | 291.9 ± 4.9 a | 280.2 ± 13.5 ab | 296.6 ± 7.5 b |
Δ5-Avenasterol | 56.4 ± 2.8 | 51.2 ± 0.9 | 49.8 ± 1.9 |
Cycloartenol | 88.0 ± 1.7 | 86.2 ± 3.5 | 81.7 ± 2.1 |
24-Methylenecycloartanol | 56.6 ± 1.2 | 56.1 ± 0.7 | 58.7 ± 1.4 |
Total | 681.7 ± 11.7 ab | 654.8 ± 25.5 a | 652.0 ± 17.3 b |
Antioxidant Composition | NIKE | B | M |
---|---|---|---|
Tocopherols [mg/kg] | |||
α-Tocopherol | 13.61 ± 0.58 | 9.60 ± 1.58 | 11.93 ± 0.76 |
γ-Tocopherol | 330.86 ± 3.19 | 313.32 ± 18.99 | 327.26 ± 21.40 |
δ-Tocopherol | 10.20 ± 0.28 | 11.18 ± 1.01 | 11.08 ± 0.74 |
Total | 354.67 ± 3.75 a | 334.11 ± 20.90 a | 350.27 ± 21.46 |
Plastochromanol-8 [mg/kg] | 107.71 ± 7.84 b | 89.65 ± 9.79 | 80.50 ± 15.12 b |
Carotenoids [mg/kg] | |||
all-trans-β-Carotene | 4.51 ± 0.58 | 4.05 ± 0.34 | 2.05 ± 0.18 |
all-trans-Lutein + all-trans-Zeaxanthin | 18.82 ± 0.73 | 17.31 ± 1.59 | 19.18 ± 0.36 |
all-trans-Neoxanthin | 0.57 ± 0.06 | 0.51 ± 0.01 | 0.56 ± 0.08 |
all-trans-β-Cryptoxanthin | 0.19 ± 0.01 | 0.18 ± 0.01 | 0.20 ± 0.00 |
Total | 25.03 ± 0.24 | 22.86 ± 1.94 | 22.95 ± 0.29 |
Polyphenols [µg/kg] | |||
Vanillic acid | 32.78 ± 1.78 a | 45.91 ± 1.17 | 58.68 ± 5.00 a |
Vanillin | 95.40 ± 15.45 b | 95.67 ± 17.24 c | 145.91 ± 26.94 bc |
p-Coumaric acid | 20.98 ± 0.37 | 5.72 ±0.37 | 5.16 ± 0.54 |
Syringaldehyde | 6.23 ± 1.07 | 12.47 ± 1.70 | 16.07 ± 0.55 |
Ferulic acid | 48.66 ± 3.02 a | 28.17 ± 3.50 a | 30.42 ± 2.17 |
Coniferyl aldehyde | 23.35 ± 2.40 | 32.60 ± 3.32 | 37.47 ± 2.73 |
o-Coumaric acid | 3.47 ± 0.49 | 6.13 ± 0.34 | 6.99 ± 0.29 |
SECO * | 7.47 ± 0.74 | 7.91 ± 1.57 | 8.06 ± 1.50 |
Total | 238.34 ± 19.84 b | 234.57 ± 26.08 c | 308.77 ± 34.79 bc |
Cell Line | IC50 [mg/mL] | IC50 [μg/mL] | |||
---|---|---|---|---|---|
Nike | M | B | MB | Doxorubicin | |
CCD 841 CoTr | NA | NA | NA | NA | 33.2 ± 2.10 |
LoVo | 4.30 ± 0.60 | 1.54 ± 0.51 | 1.58 ± 0.40 | 1.54 ± 0.47 | 1.7 ± 0.42 |
LoVo Dx | 6.21 ± 2.90 | 1.58 ± 0.39 | 2.80 ± 0.61 | 3.49 ± 0.67 | 32.04 ± 3.5 |
A549 | 4.34 ± 1.27 | NA | 3.03 ± 0.95 | NA | 3.94 ± 0.7 |
MCF7 | 1.28 ± 0.21 | 1.62 ± 0.37 | 0.71 ± 0.05 | 1.17 ± 0.20 | 2.88 ± 0.46 |
CCRF/CEM | 0.67 ± 0.02 | 0.28 ± 0.01 | 0.38 ± 0.06 | 0.80 ± 0.03 | 1.48 ± 0.22 |
Polyphenols | ||||||||
---|---|---|---|---|---|---|---|---|
Total | Vanilic Acid | Vanilin | p-Coumaric Acid | Syringaldehyde | Ferulic Acid | Coniferyl Aldehyde | o-Coumaric Acid | |
LoVo | −0.50 * | −0.75 * | −0.56 * | 0.98 * | −0.84 * | 0.73 * | −0.74 * | −0.81 * |
LoVo Dx | −0.11 | −0.43 * | −0.18 | 0.95 | −0.55 | 0.91 * | −0.42 * | −0.53 * |
MCF7 | −0.48 * | −0.39 | −0.63 * | 0.18 | −0.36 | 0.02 | −0.27 | −0.26 |
CCRF/CEM | 0.57 * | 0.31 | 0.44 | 0.53 | 0.17 | 0.90 * | 0.35 | 0.24 |
IC50 [µg] (SD) | COX-2/COX-1 Selectivity Ratio | ||
---|---|---|---|
COX-1 | COX-2 | ||
Nike | 1381.89 ± 7.83 | 2838.07 ± 709.11 | 1.92 |
M | 944.1 ± 61.31 | 1813.96 ± 22.35 | 1.68 |
B | 1307.20 ± 159.20 | 2315.40 ± 180.09 | 1.72 |
MB | 1338.93 ± 103.34 | 2243.73 ± 378.89 | 2.12 |
Meloxicam | 116.89 ± 5.62 | 103.28 ± 8.30 | 0.88 |
Ibuprofen | 111.18 ± 2.35 | 149.34 ± 11.32 | 1.34 |
Ketoprofen | 74.39 ± 1.20 | 92.29 ± 5.89 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gębarowski, T.; Wiatrak, B.; Jęśkowiak-Kossakowska, I.; Grajzer, M.; Prescha, A. Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer. Biomedicines 2023, 11, 2592. https://doi.org/10.3390/biomedicines11092592
Gębarowski T, Wiatrak B, Jęśkowiak-Kossakowska I, Grajzer M, Prescha A. Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer. Biomedicines. 2023; 11(9):2592. https://doi.org/10.3390/biomedicines11092592
Chicago/Turabian StyleGębarowski, Tomasz, Benita Wiatrak, Izabela Jęśkowiak-Kossakowska, Magdalena Grajzer, and Anna Prescha. 2023. "Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer" Biomedicines 11, no. 9: 2592. https://doi.org/10.3390/biomedicines11092592
APA StyleGębarowski, T., Wiatrak, B., Jęśkowiak-Kossakowska, I., Grajzer, M., & Prescha, A. (2023). Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer. Biomedicines, 11(9), 2592. https://doi.org/10.3390/biomedicines11092592