Prevalence and Characteristics of Metabolic Hyperferritinemia in a Population-Based Central-European Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Inclusion and Exclusion Criteria
- (i)
- Overall cohort: A baseline serum ferritin concentration was available in n = 9915 participants, comprising our overall cohort and representing an unselected population level.
- (ii)
- Study cohort: For the study cohort, we applied the consensus exclusion criteria, which were (a) transferrin saturation of >50% (n = 776), (b) anemia defined as blood hemoglobin < 12.5 g/dL in women and <13.0 g/dL in men (n = 396), (c) advanced chronic kidney disease defined by an estimated glomerular filtration rate (eGFR) of <30 mL/min (n = 10, with n = 1 with an eGFR < 15 mL/min) or (d) self-reported daily alcohol intake of >40 g in women and >60 g in men (n = 416). Some individuals held more than one exclusion criterion. Thus, after exclusion of a total of n = 1507 participants, the study cohort consisted of n = 8408 subjects.
- (iii)
- Affirmation cohort: As inaccuracies may arise from missing values with regard to the metabolic classification, we aimed to validate our findings in a cohort of subjects, in which a full metabolic characterization due to entirely complete data sets of the proposed metabolic parameters were available. This cohort comprised n = 6424 participants. Thus, any misclassification due to potentially incomplete metabolic data was avoided.
- (1)
- HF grade 1 with SF < 550 ng/mL (females 200–549 ng/mL, males 300–549 ng/mL)
- (2)
- HF grade 2 with SF of 550–1000 ng/mL
- (3)
- HF grade 3 with SF > 1000 ng/mL.
2.3. Definition of Metabolic Hyperferritinemia
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Overall Cohort
3.2. Characteristics of the Study Cohort Using the MHF Defining Criteria
3.3. Characteristics of the Affirmation Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plays, M.; Müller, S.; Rodriguez, R. Chemistry and biology of ferritin. Metallomics 2021, 13, mfab021. [Google Scholar] [CrossRef]
- Adams, P.C.; Reboussin, D.M.; Barton, J.C.; McLaren, C.E.; Eckfeldt, J.H.; McLaren, G.D.; Dawkins, F.W.; Acton, R.T.; Harris, E.L.; Gordeuk, V.R.; et al. Hemochromatosis and iron-overload screening in a racially diverse population. N. Engl. J. Med. 2005, 352, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Senussi, N.H.; Fertrin, K.Y.; Kowdley, K.V. Iron overload disorders. Hepatol. Commun. 2022, 6, 1842–1854. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Fracanzani, A.L.; Fargion, S.; Valenti, L. Iron in fatty liver and in the metabolic syndrome: A promising therapeutic target. J. Hepatol. 2011, 55, 920–932. [Google Scholar] [CrossRef]
- Aigner, E. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J. Hepatol. 2014, 7, 177. [Google Scholar] [CrossRef]
- Britton, L.J.; Subramaniam, V.N.; Crawford, D.H. Iron and non-alcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 8112–8122. [Google Scholar] [CrossRef]
- Milic, S.; Mikolasevic, I.; Orlic, L.; Devcic, E.; Starcevic-Cizmarevic, N.; Stimac, D.; Kapovic, M.; Ristic, S. The Role of Iron and Iron Overload in Chronic Liver Disease. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 2144–2151. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Visiedo-García, F.M.; Domínguez-Riscart, J.; González-Domínguez, R.; Mateos, R.M.; Lechuga-Sancho, A.M. Iron Metabolism in Obesity and Metabolic Syndrome. Int. J. Mol. Sci. 2020, 21, 5529. [Google Scholar] [CrossRef]
- Stechemesser, L.; Eder, S.K.; Wagner, A.; Patsch, W.; Feldman, A.; Strasser, M.; Auer, S.; Niederseer, D.; Huber-Schönauer, U.; Paulweber, B.; et al. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism. Mol. Metab. 2017, 6, 38–47. [Google Scholar] [CrossRef]
- Deugnier, Y.; Bardou-Jacquet, É.; Lainé, F. Dysmetabolic iron overload syndrome (DIOS). La Presse Médicale 2017, 46 Pt 2, e306–e311. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; Manco, M. Effects of iron overload on chronic metabolic diseases. Lancet Diabetes Endocrinol. 2014, 2, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.; Corradini, E.; Adams, L.A.; Aigner, E.; Alqahtani, S.; Arrese, M.; Bardou-Jacquet, E.; Bugianesi, E.; Fernandez-Real, J.-M.; Girelli, D.; et al. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat. Rev. Endocrinol. 2023, 19, 299–310. [Google Scholar] [CrossRef]
- Frey, V.N.; Langthaler, P.; Raphaelis, E.; Ring-Dimitriou, S.; Kedenko, L.; Aigner, E. Paracelsus 10,000: An observational cohort study about the health status of the population of Salzburg, Austria. Rationale, objectives and study design. Paracelsus Proc. Exp. Med. 2023, 1, 1–17. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Carvalhana, S.; Leitão, J.; Alves, A.C.; Bourbon, M.; Cortez-Pinto, H. How good is controlled attenuation parameter and fatty liver index for assessing liver steatosis in general population: Correlation with ultrasound. Liver Int. 2014, 34, e111–e117. [Google Scholar] [CrossRef]
- Harreiter, J.; Roden, M. Diabetes mellitus—Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2019). Wien. Klin. Wochenschr. 2019, 131, 6–15. [Google Scholar] [CrossRef]
- World Health Organization, Regional Office for Europe. WHO European Regional Obesity Report 2022; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2022; Available online: https://apps.who.int/iris/handle/10665/353747 (accessed on 21 January 2023).
- Moirand, R.; Mortaji, A.M.; Loréal, O.; Paillard, F.; Brissot, P.; Deugnier, Y. A new syndrome of liver iron overload with normal transferrin saturation. Lancet 1997, 349, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Mendler, M.H.; Turlin, B.; Moirand, R.; Jouanolle, A.M.; Sapey, T.; Guyader, D.; Le Gall, J.Y.; Brissot, P.; David, V.; Deugnier, Y. Insulin resistance-associated hepatic iron overload. Gastroenterology 1999, 117, 1155–1163. [Google Scholar] [CrossRef]
- Simcox, J.A.; McClain, D.A. Iron and Diabetes Risk. Cell Metab. 2013, 17, 329–341. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Zhang, F.; Zhang, S.; Zhou, X.; Ji, L. Elevated serum ferritin concentration is associated with incident type 2 diabetes mellitus in a Chinese population: A prospective cohort study. Diabetes Res. Clin. Pract. 2018, 139, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Ortegón, M.F.; Ensaldo-Carrasco, E.; Shi, T.; McLachlan, S.; Fernández-Real, J.M.; Wild, S.H. Ferritin, metabolic syndrome and its components: A systematic review and meta-analysis. Atherosclerosis 2018, 275, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Corradini, E.; Buzzetti, E.; Dongiovanni, P.; Scarlini, S.; Caleffi, A.; Pelusi, S.; Bernardis, I.; Ventura, P.; Rametta, R.; Tenedini, E.; et al. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. J. Hepatol. 2021, 75, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Jin, C.-H.; Ke, J.-F.; Ma, Y.-L.; Wang, Y.-J.; Lu, J.-X.; Li, M.-F.; Li, L.-X. Serum iron is closely associated with metabolic dysfunction-associated fatty liver disease in type 2 diabetes: A real-world study. Front. Endocrinol. 2022, 13, 942412. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, M.; Li, H.; Chen, P.; Wang, M.; Gu, L.; Zhang, X.; Chen, L. Hyperferritinemia Correlates to Metabolic Dysregulation and Steatosis in Chinese Biopsy-Proven Nonalcoholic Fatty Liver Disease Patients. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 1543–1552. [Google Scholar] [CrossRef]
- Mayneris-Perxachs, J.; Cardellini, M.; Hoyles, L.; Latorre, J.; Davato, F.; Moreno-Navarrete, J.M.; Arnoriaga-Rodríguez, M.; Serino, M.; Abbott, J.; Barton, R.H.; et al. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome 2021, 9, 104. [Google Scholar] [CrossRef]
- Wang, H.; Sun, R.; Yang, S.; Ma, X.; Yu, C. Association between serum ferritin level and the various stages of non-alcoholic fatty liver disease: A systematic review. Front. Med. 2022, 9, 934989. [Google Scholar] [CrossRef]
- Murali, A.R.; Gupta, A.; Brown, K. Systematic review and meta-analysis to determine the impact of iron depletion in dysmetabolic iron overload syndrome and non-alcoholic fatty liver disease. Hepatol. Res. 2018, 48, E30–E41. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatol. Baltim. Md 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Moris, W.; Verhaegh, P.; Jonkers, D.; Deursen, C.V.; Koek, G. Hyperferritinemia in Nonalcoholic Fatty Liver Disease: Iron Accumulation or Inflammation? Semin. Liver Dis. 2019, 39, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Kowdley, K.V.; Belt, P.; Wilson, L.A.; Yeh, M.M.; Neuschwander-Tetri, B.A.; Chalasani, N.; Sanyal, A.J.; Nelson, J.E.; NASH Clinical Research Network. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2012, 55, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Shim, J.-J.; Park, S.K.; Ryoo, J.-H.; Choi, J.-M.; Oh, I.-H.; Jung, K.-W.; Cho, H.; Ki, M.; Won, Y.-J.; et al. Serum ferritin level is associated with liver steatosis and fibrosis in Korean general population. Hepatol. Int. 2019, 13, 222–233. [Google Scholar] [CrossRef]
- Du, S.-X.; Lu, L.-L.; Geng, N.; Victor, D.W.; Chen, L.-Z.; Wang, C.; Yue, H.-Y.; Xin, Y.-N.; Xuan, S.-Y.; Jin, W. Association of serum ferritin with non-alcoholic fatty liver disease: A meta-analysis. Lipids Health Dis. 2017, 16, 228. [Google Scholar] [CrossRef] [PubMed]
- Rostoker, G.; Loridon, C.; Griuncelli, M.; Rabaté, C.; Lepeytre, F.; Ureña-Torres, P.; Issad, B.; Ghali, N.; Cohen, Y. Liver Iron Load Influences Hepatic Fat Fraction in End-Stage Renal Disease Patients on Dialysis: A Proof of Concept Study. EBioMedicine 2018, 39, 461–471. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Zhang, Z.; Xie, J.; Yu, C.; Xu, L.; Li, Y. Iron Status and NAFLD among European Populations: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients 2022, 14, 5237. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Qiu, F.; Wu, L.; Yang, G.; Zhang, C.; Liu, X.; Sun, X.; Chen, X.; Wang, N. The role of iron metabolism in chronic diseases related to obesity. Mol. Med. 2022, 28, 130. [Google Scholar] [CrossRef]
Hyperferritinemia If Serum Ferritin Levels > 200 ng/mL in Females or >300 ng/mL in Males. Considered as Metabolic Hyperferritinemia If: | |
---|---|
Evidence of fatty liver |
|
OR evidence of type 2 diabetes mellitus |
|
OR evidence of obesity (BMI > 30 kg/m2) |
|
OR ≥ 2 of the following features of altered metabolism |
|
Non-HF n = 8527 | HF All Grades (n = 1388) | |||
---|---|---|---|---|
HF 1 (n = 1225) | HF 2 (n = 146) | HF 3 (n = 17) | ||
Age 40–49 years | 25% (n = 2125) | All grades 17% (n = 234) | ||
17% (n = 206) | 18% (n = 26) | 12% (n = 2) | ||
Age 50–59 years | 43% (n = 3684) | All grades 40% (n = 554) | ||
40% (n = 494) | 38% (n = 53) | 41% (n = 7) | ||
Age 60–69 years | 28% (n = 2350) | All grades 37% (n = 523) | ||
37% (n = 454) | 42% (n = 62) | 41% (n = 7) | ||
Age ≥ 70 years | 4% (n = 353) | All grades 6% (n = 77) | ||
6% (n = 71) | 3% (n = 5) | 6% (n = 1) | ||
Male * | 45% (n = 3845) | All grades 70% (n = 971) | ||
67% (n = 815) | 95% (n = 139) | 100% (n = 17) | ||
Female * | 55% (n = 4682) | All grades 30% (n = 417) | ||
33% (n = 410) | 5% (n = 7) | 0% (n = 0) | ||
BMI kg/m2 * | 25 (23–29) | 28 (25–31) | 29 (26–32) | 29 (27–32) |
Waist cm * | 92 (83–100) | 99 (92–107) | 102 (96–112) | 104 (99–110) |
Alcohol g/d * | 7 (2–17) | 13 (4–27) | 15 (6–30) | 38 (20–81) |
ALT U/L * | 21 (16–28) | 28 (21–39) | 38 (28–53) | 55 (35–105) |
AST U/L * | 22 (19–27) | 25 (21–31) | 30 (24–39) | 52 (33–141) |
GammaGT U/L * | 21 (15–32) | 32 (22–51) | 46 (29–73) | 170 (58–402) |
ALP U/L * | 63 (53–75) | 65 (56–77) | 63 (51–75) | 68 (62–98) |
HDL mg/dL * | 63 (52–75) | 55 (46–68) | 48 (42–55) | 53 (44–70) |
LDL mg/dL * | 139 (115–164) | 148 (124–171) | 142 (116–174) | 155 (121–170) |
TG mg/dL * | 94 (69–132) | 118 (89–167) | 160 (123–218) | 197 (102–264) |
Hgb g/dL * | 14.2 (13.4–15.0) | 14.9 (14.1–15.6) | 15.3 (14.7–16.1) | 15.2 (14.6–16.5) |
WBC 10⁹/L * | 5.8 (4.9–6.9) | 6.1 (5.1–7.2) | 5.9 (5.3–7.1) | 6.4 (5.7–6.9) |
PLT 10⁹/L * | 247 (213–283) | 237 (205–271) | 210 (181–244) | 198 (157–218) |
Major Criteria within the Overall Cohort n = 9915 | |||||||
Overall Cohort n = 9915 | HF All Grades n = 1388 | Non-HF n = 8527 | p-Value | ||||
HF 1 n = 1225 | HF 2 n = 146 | HF 3 n = 17 | |||||
Major criteria | FLI > 60 | 31% n = 3121 | All grades 57% (n = 792) | 27% (n = 2329) | <0.001 | ||
54% (n = 661) | 79% (n = 115) | 94% (n = 16) | |||||
BMI > 30 kg/m2 | 19% n = 1923 | All grades 31% (n = 433) | 17% (n = 1490) | <0.001 | |||
30% (n = 367) | 40% (n = 59) | 41% (n = 7) | |||||
T2DM | 6% n = 593 | All grades 10% (n = 140) | 5% (n = 453) | <0.001 | |||
9% (n = 109) | 18% (n = 26) | 29% (n = 5) | |||||
Minor Criteria within the Remaining Cohort n = 6436 | |||||||
Remaining cohort n = 6436 | Remaining HF all grades n = 555 | Remaining non-HF n = 5881 | p-value | ||||
HF 1 n = 525 | HF 2 n = 29 | HF 3 n = 1 | |||||
Minor criteria | Overweight | 43% n = 2758 | All grades 57% (n = 315) | 42% n = 2443 | <0.001 | ||
55% n = 303 | 2% n = 11 | 100% n = 1 | |||||
Arterial hypertension | 44% n = 2813 | All grades 52% (n = 291) | 43% n = 2522 | <0.001 | |||
49% n = 272 | 3% n = 19 | 0% n = 0 | |||||
Elevated HOMA Index | 13% n = 805 | All grades 21% (n = 114) | 12% n = 691 | <0.001 | |||
19% n = 108 | 1% n = 6 | 0% n = 0 | |||||
Impaired fasting glucose | 14% n = 876 | All grades 23% (n = 126) | 13% n = 750 | <0.001 | |||
22% n = 121 | 1% n = 5 | 0% n = 0 | |||||
Low HDL cholesterol | 11% n = 729 | All grades 14% (n = 77) | 11% n = 652 | 0.048 | |||
13% n = 70 | 1% n = 7 | 0% n = 0 | |||||
Elevated triglycerides | 8% n = 544 | All grades 11% (n = 60) | 8% n = 484 | 0.037 | |||
11% n = 59 | 1% n = 5 | 0% n = 0 |
Non-HF n = 7297 | HF All Grades (n = 1111) | |||
---|---|---|---|---|
HF 1 (n = 997) | HF 2 (n = 107) | HF 3 (n = 7) | ||
Age 40–49 years | 25% (n = 1789) | All grades 17% (n = 185) | ||
17% (n = 166) | 17% (n = 18) | 14% (n = 1) | ||
Age 50–59 years | 43% (n = 3160) | All grades 41% (n = 453) | ||
40% (n = 402) | 44% (n = 47) | 57% (n = 4) | ||
Age 60–69 years | 28% (n = 2032) | All grades 37% (n = 408) | ||
37% (n = 369) | 35% (n = 37) | 29% (n = 2) | ||
Age ≥ 70 years | 4% (n = 307) | All grades 6% (n = 65) | ||
6% (n = 60) | 5% (n = 5) | 0% (n = 0) | ||
Male * | 44% (n = 3243) | All grades 69% (n = 771) | ||
66% (n = 661) | 96% (n = 103) | 100% (n = 7) | ||
Female * | 56% (n = 4054) | All grades 31% (n = 340) | ||
34% (n = 336) | 4% (n = 4) | 0% (n = 0) | ||
BMI kg/m2 * | 26 (23–29) | 28 (25–31) | 30 (26–32) | 31 (27–34) |
Waist cm * | 92 (83–101) | 100 (93–107) | 102 (96–112) | 105 (102–112) |
Alcohol g/d * | 6 (2–15) | 11 (4–21) | 13 (4–26) | 31 (15–38) |
ALT U/L * | 21 (16–28) | 28 (21–39) | 38 (28–58) | 35 (25–92) |
AST U/L * | 22 (19–26) | 25 (21–31) | 30 (24–39) | 58 (37–78) |
GammaGT U/L * | 21 (15–32) | 32 (22–49) | 41 (26–62) | 152 (70–402) |
ALP U/L * | 63 (53–75) | 65 (56–77) | 63 (51–75) | 68 (65–98) |
HDL mg/dL * | 62 (51–75) | 55 (46–67) | 46 (40–53) | 58 (45–70) |
LDL mg/dL * | 139 (116–165) | 148 (124–170) | 146 (118–173) | 155 (121–168) |
TG mg/dL * | 94 (70–133) | 119 (89–169) | 157 (118–219) | 167 (102–304) |
Hb g/dL * | 14.2 (13.4–15.0) | 14.8 (14.1–15.6) | 15.2 (14.7–16.0) | 15.2 (14.3–16.5) |
WBC 10⁹/L * | 5.8 (4.9–6.9) | 6.1 (5.2–7.2) | 5.8 (5.2–6.9) | 6.7 (5.5–7.3) |
PLT 10⁹/L * | 247 (214–283) | 239 (207–273) | 209 (179–241) | 206 (177–219) |
Major Criteria within the Study Cohort n = 8408 | |||||||
Study Cohort n = 8408 | HF All Grades n = 1111 | Non-HF n = 7297 | p-Value | ||||
HF 1 n = 997 | HF 2 n = 97 | HF 3 n = 7 | |||||
Major criteria | FLI > 60 | 32% n = 2669 | All grades 57% (n = 636) | 28% n = 2033 | <0.001 | ||
55% n = 544 | 80% n = 86 | 86% n = 6 | |||||
BMI > 30 kg/m2 | 21% n = 1745 | All grades 37% (n = 409) | 18% n = 1336 | <0.001 | |||
31% n = 309 | 43% n = 46 | 57% n = 4 | |||||
T2DM | 6% n = 496 | All grades 11% (n = 118) | 5% n = 378 | <0.001 | |||
10% n = 96 | 18% n = 19 | 43% n = 3 | |||||
Minor Criteria within the Remaining Cohort n = 5435 | |||||||
Remaining cohort n = 5435 | Remaining HF all grades n = 437 | Remaining non-HF n = 4998 | p-value | ||||
HF 1 n = 417 | HF 2 n = 20 | HF 3 n = 0 | |||||
Minor criteria | Overweight | 44% n = 2399 | All grades 58% (n = 256) | 43% n = 2143 | <0.001 | ||
57% n = 249 | 2% n = 7 | 0% n = 0 | |||||
Arterial hypertension | 44% n = 2406 | All grades 53% (n = 233) | 43% n = 2173 | <0.001 | |||
50% n = 220 | 3% n = 13 | 0% n = 0 | |||||
Elevated HOMA-Index | 14% n = 767 | All grades 21% (n = 94) | 12% n = 621 | <0.001 | |||
20% n = 88 | 1% n = 6 | 0% n = 0 | |||||
Impaired fasting glucose | 12% n = 634 | All grades 23% (n = 102) | 13% n = 642 | <0.001 | |||
22% n = 97 | 1% n = 5 | 0% n = 0 | |||||
Low HDL cholesterol | 12% n = 635 | All grades 14% (n = 63) | 11% n = 572 | 0.067 | |||
13% n = 58 | 1% n = 5 | 0% n = 0 | |||||
Elevated triglycerides | 9% n = 482 | All grades 12% (n = 54) | 9% n = 428 | 0.008 | |||
12% n = 51 | 1% n = 3 | 0% n = 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gensluckner, S.; Wernly, B.; Koutny, F.; Strebinger, G.; Zandanell, S.; Stechemesser, L.; Paulweber, B.; Iglseder, B.; Trinka, E.; Frey, V.; et al. Prevalence and Characteristics of Metabolic Hyperferritinemia in a Population-Based Central-European Cohort. Biomedicines 2024, 12, 207. https://doi.org/10.3390/biomedicines12010207
Gensluckner S, Wernly B, Koutny F, Strebinger G, Zandanell S, Stechemesser L, Paulweber B, Iglseder B, Trinka E, Frey V, et al. Prevalence and Characteristics of Metabolic Hyperferritinemia in a Population-Based Central-European Cohort. Biomedicines. 2024; 12(1):207. https://doi.org/10.3390/biomedicines12010207
Chicago/Turabian StyleGensluckner, Sophie, Bernhard Wernly, Florian Koutny, Georg Strebinger, Stephan Zandanell, Lars Stechemesser, Bernhard Paulweber, Bernhard Iglseder, Eugen Trinka, Vanessa Frey, and et al. 2024. "Prevalence and Characteristics of Metabolic Hyperferritinemia in a Population-Based Central-European Cohort" Biomedicines 12, no. 1: 207. https://doi.org/10.3390/biomedicines12010207
APA StyleGensluckner, S., Wernly, B., Koutny, F., Strebinger, G., Zandanell, S., Stechemesser, L., Paulweber, B., Iglseder, B., Trinka, E., Frey, V., Langthaler, P., Semmler, G., Valenti, L., Corradini, E., Datz, C., & Aigner, E. (2024). Prevalence and Characteristics of Metabolic Hyperferritinemia in a Population-Based Central-European Cohort. Biomedicines, 12(1), 207. https://doi.org/10.3390/biomedicines12010207